Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (8): 2301027.doi: 10.3866/PKU.WHXB202301027
Special Issue: Solid State Batteries
• REVIEW • Previous Articles
Liu Yuankai1,2, Yu Tao1,2, Guo Shaohua1,2,*(), Zhou Haoshen1,*(
)
Received:
2023-01-16
Accepted:
2023-02-13
Published:
2023-03-23
Contact:
Guo Shaohua, Zhou Haoshen
E-mail:shguo@nju.edu.cn;hszhou@nju.edu.cn
Supported by:
Liu Yuankai, Yu Tao, Guo Shaohua, Zhou Haoshen. Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application[J]. Acta Phys. -Chim. Sin. 2023, 39(8), 2301027. doi: 10.3866/PKU.WHXB202301027
Fig 2
Schematic illustration of issues experienced in sulfide-based all-solid-state lithium batteries. For cathode/electrolyte interface, the mainly issues are the side reactions between solid electrolyte and cathode active material (CAM). For sulfide solid electrolyte, the mainly issue is the further improvement of ionic conductivity and air stability. For anode/electrolyte interface, the mainly issues are the lithium dendrite and side reactions between solid electrolyte and lithium metal."
Fig 3
(a) Schematic illustration of chlorination of lithium argyrodites on the SE/NCM cathode material Interface 67; (b) schematic illustration of sulfite modified Li-rich Mn-based oxide (LRMO) cathode material (Li1.2Mn0.54Co0.13Ni0.13O2) 68. (a) Adapted with permission from Ref. 67, Copyright 2019, Wiley-VCH; (b) Adapted with permission from Ref. 68, Copyright 2022, AAAS."
Fig 4
(a) Schematic illustration of space charge layer reflected by Li concentration on the cathode active material/SE interface 75; (b) DPC-STEM image of Li1.175Nb0.645Ti0.4O3(LNTO)-coated LCO; (c) schematic diagram of interfacial ion transportation on the LNTO@ LCO and LiNbO3 (LNO)@LCO 80; (d) schematic illustration of the influence of ferroelectric and paraelectric BaTiO3 coating on the interface with applied electric field; (e) comparison of cycling performance of all-solid-state batteries with bare LCO, ferroelectric BaTiO3, paraelectric BaTiO3 and paraelectric SrTiO3 81. (a) Adapted with permission from Ref. 75, Copyright 2014, American Chemical Society; (b, c) Adapted with permission from Ref. 80, Copyright 2022, Wiley-VCH; (d, e) Adapted with permission from Ref. 81, Copyright 2022, Wiley-VCH."
Fig 5
(a) The Li-ion migration pathways analyzed using the maximum entropy method (MEM); (b) influence of Br−/S2− site-disorder on the radial distribution functions of Li+ in 4d site 87; (c) explanation of the influence of Bi, O co-doped Li3PS4 on the air stability by Soft-Hard-Acid-Base theory 92; (d) influence of different cations in sulfide solid electrolyte on the hydrolysis reaction energy 93. (a, b) Adapted with permission from Ref. 87, Copyright 2021, Wiley-VCH; (c) Adapted with permission from Ref. 92, Copyright 2022, Wiley-VCH; (d) Adapted with permission from Ref. 93, Copyright 2022, Wiley-VCH."
Fig 6
(a) Schematic of the practical stability window of the LGPS electrolyte and the chemical potential of different alloy electrodes 99; (b) voltage profiles of Li-In alloy during the lithiation process 100; (c) schematic diagrams of the dynamic evolution and interfacial mechanism 101; (d) working mechanism of Ag–C anode and schematic diagrams of all-solid-state battery that comprises a Ag–C nanocomposite anode layer 103. (a) Adapted with permission from Ref. 99, Copyright 2022, AAAS; (b) Adapted with permission from Ref. 100, Copyright 2021, AAAS; (c) Adapted with permission from Ref. 101, Copyright 2022, American Chemical Society; (d) Adapted with permission from Ref. 103, Copyright 2020, Springer Nature."
Fig 7
(a) Schematic of the preparation of the LiI layer on the Li metal surface through a chemical iodine vapor deposition method; (b) critical current density analysis of Li/LiI/LGPS/LiI/Li symmetric battery 112; (c) illustration of in situ formation of the LixMg/LiF/polymer solid electrolyte interphase; (d) critical current density analysis of Li/LGPS/Li cells using LGPS with and without LiMg22 liquid electrolyte treatment 113. (a, b) Adapted with permission from Ref. 112, Copyright 2022, Royal Society of Chemistry; (c, d) Adapted with permission from Ref. 113, Copyright 2021, American Chemical Society."
Fig 8
(a) Schematic illustration of LPSC/LGPS(LSPS)/LPSC multilayer electrolyte; (b) cycling performance of all-solid-state batteries using LPSC/LSPS/LPSC multilayer electrolyte 120; (c) schematic illustration of all-solid-state batteries using LPSC electrolyte with and without PEGDME solid polymer electrolyte and their different influence on Li dendrite, self-discharge and humidity resistance; (d) galvanostatic charge-discharge performance of Li–Li symmetric batteries using LPSC electrolyte with different PEGDME solid polymer electrolyte addition 122. (a, b) Adapted with permission from Ref. 120, Copyright 2021, Springer Nature; (c, d) Adapted with permission from Ref. 122, Copyright 2021, Wiley-VCH."
Table 1
The performance of part of sulfide-based all-solid-state lithium batteries."
Cathode/electrolyte/anode | Modification method | Current density/ (mA∙cm−2) | Initial capacity/ (mAh∙g−1) | Capacity retention | Ref. | |
C/E | LNO@NCM712/Li5.5PS4.5Cl1.5/Li-In | LNO coating | 5C | 138.9 | 300 cycles, 88% | |
LZO@NCM70/LPSC/Li-In | LZO coating | 1.5 | 110 | 650 cycles, 86.1% | ||
LLTO@NCM532/LPSC/Li-In | LLTO coating | 0.1C | 135 | 200 cycles, 80% | ||
C/E | LNTO@LCO/LPSC/Li-In | LNTO coating | 0.5C | 147.2 | 1000 cycles, 80% | |
Li2RuO3/LPSC/Li-In | Li2RuO3 cathode | 0.8 | 210 | 1000 cycles, 90% | ||
Li2SO4@LRMO/LICF-LPSC/Li-In | Sulfite coating of LRMO cathode | 1C | 130 | 300 cycles, 81.2% | ||
E | NCM523/Li6.5Sb0.5Ge0.5S5I/ Li-In | Li6.5Sb0.5Ge0.5S5I electrolyte and Li3YCl6 catholyte | 4.77 | 164 | 50 cycles, 93.2% | |
LNO@NCM712/ Li3.12P0.94Bi0.06S3.91O0.09I/Li | Bi, O co-doped Li3PS4 | 0.1C | 106.1 | 50 cycles, 83.2% | ||
LNO@NCM622/oxysulfide-coated LPSC/Li-In | Oxysulfide layer on LPSC | 0.1 | 125.6 | 200 cycles, 64.77% | ||
LFP/PVDF-HFP-Li7PS6 CSE/Li | PVDF-HFP-Li7PS6 CSE | 0.2C | 160 | 150 cycles, 98% | ||
A/E | S/LGPS/Li0.8Al | Li-Al alloy anode | 0.36 | 1237 | 200 cycles, 93.29% | |
LZO@LiNi0.9Co0.05Mn0.05O2/LPSC/Ag-C pouch cell | Ag-C anode | 3.4 | 146 | 1000 cycles, 89% | ||
NCM811/LPSC/μ-Si | μ-Si anode | 5.0 | > 1250 | 500 cycles, 80% | ||
Cl@S-NCM811/LPSC-CLA/Li | CuF2, LiNO3 additives in LPSC | 2.55 | 150 | 100 cycles, 69.4% | ||
S/LGPS/LiI-Li | LiI layer on Li metal | 0.2 | 1360 | 150 cycles, 80.6% | ||
LNO@LCO/LPSCl0.3F0.7 | F doping LPSC electrolyte | 0.13 | 115 | 50 cycles, 95% | ||
NCM811/LPSC-LGPS-LPSC/Graphite-Li | LPSC-LGPS-LPSC multilayer electrolyte | 8.6 | 100 | 10000 cycles, 82% | ||
LNO@LCO/PEGDME-LPSC/Li | PEGDME-LPSC CSE | 0.5 | 88 | 650 cycles 80% |
Fig 9
(a) Schematic illustration of fabricating thin Li10GeP2S12 electrolyte membrane with nylon mesh support by slurry-casting technique; (b) comparison of cycling performance of all-solid-state batteries with and without gel polymer interlayer 139; (c) schematics of fabricating Fe7S8@C/LPSB composite electrodes by infiltration method; (d) rate performance of all-solid-state batteries using infiltration Fe7S8 as the cathode material 141. (a, b) Adapted with permission from Ref. 139, Copyright 2022, Elsevier Inc.; (c, d) Adapted with permission from Ref. 141, Copyright 2022, Wiley-VCH."
Fig 10
(a) Schematic illustration of the ultrathin Li5.4PS4.4Cl1.6 membrane fabrication 155; (b) illustrations of the morphological changes experienced by composite cathodes prepared with PTFE and with the ionomer before and after cycling; (c) cycling performance of all-solid-state batteries using composite cathode prepared without binder, with PTFE and with ionomer 156. (a) Adapted with permission from Ref. 155, Copyright 2021, American Chemical Society; (b, c) Adapted with permission from Ref. 156, Copyright 2022, American Chemical Society."
1 |
Cheng X. B., Zhang R., Zhao C. Z., Zhang Q. Chem. Rev., 2017, 117 (15), 10403.
doi: 10.1021/acs.chemrev.7b00115 |
2 |
Bonnick P., Muldoon J. Energy Environ. Sci., 2022, 15 (5), 1840.
doi: 10.1039/d2ee00842d |
3 |
Banerjee A., Wang X., Fang C., Wu E. A., Meng Y. S. Chem. Rev., 2020, 120 (14), 6878.
doi: 10.1021/acs.chemrev.0c00101 |
4 |
Yu X., Manthiram A. Energy Storage Mater., 2021, 34, 282.
doi: 10.1016/j.ensm.2020.10.006 |
5 |
Tang S., Guo W., Fu Y. Adv. Energy Mater., 2020, 11 (2), 2000802.
doi: 10.1002/aenm.202000802 |
6 |
Cheng Z., Liu T., Zhao B., Shen F., Jin H., Han X. Energy Storage Mater., 2021, 34, 388.
doi: 10.1016/j.ensm.2020.09.016 |
7 |
Cheng Z., Pan H., Li F., Duan C., Liu H., Zhong H., Sheng C., Hou G., He P., Zhou H. Nat. Commun., 2022, 13 (1), 125.
doi: 10.1038/s41467-021-27728-0 |
8 |
Chen G., Zhang F., Zhou Z., Li J., Tang Y. Adv. Energy Mater., 2018, 8 (25), 1801219.
doi: 10.1002/aenm.201801219 |
9 |
Li J., Liu X., Feng Y., Yin J. Prog. Polym. Sci., 2022, 126, 101505.
doi: 10.1016/j.progpolymsci.2022.101505 |
10 |
Lei, D.; He, Y. B.; Huang, H.; Yuan, Y.; Zhong, G.; Zhao, Q.; Hao, X.; Zhang, D.; Lai, C.; Zhang, S.; et al. Nat. Commun., 2019, 10 (1), 4244.
doi: 10.1038/s41467-019-11960-w |
11 |
Xia S., Yang B., Zhang H., Yang J., Liu W., Zheng S. Adv. Funct. Mater., 2021, 31 (28), 2101168.
doi: 10.1002/adfm.202101168 |
12 |
Liu S., Liu W., Ba D., Zhao Y., Ye Y., Li Y., Liu J. Adv. Mater., 2022, 35 (2), e2110423.
doi: 10.1002/adma.202110423 |
13 |
Wang C., Yang T., Zhang W., Huang H., Gan Y., Xia Y., He X., Zhang J. J. Mater. Chem. A, 2022, 10 (7), 3400.
doi: 10.1039/d1ta10607d |
14 |
Li Y., Sun Z., Liu D., Gao Y., Wang Y., Bu H., Li M., Zhang Y., Gao G., Ding S. J. Mater. Chem. A, 2020, 8 (4), 2021.
doi: 10.1039/c9ta11542k |
15 |
Zhou Q., Ma J., Dong S., Li X., Cui G. Adv. Mater., 2019, 31 (50), 1902029.
doi: 10.1002/adma.201902029 |
16 |
Zuo X., Cheng Y., Xu L., Chen R., Liu F., Zhang H., Mai L. Energy Storage Mater., 2022, 46, 570.
doi: 10.1016/j.ensm.2022.01.045 |
17 |
Wang, X.; Zhang, C.; Sawczyk, M.; Sun, J.; Yuan, Q.; Chen, F.; Mendes, T. C.; Howlett, P. C.; Fu, C.; Wang, Y.; et al. Nat. Mater., 2022, 21, 1057.
doi: 10.1038/s41563-022-01296-0 |
18 |
Ma J., Wu Y., Jiang H., Yao X., Zhang F., Hou X., Feng X., Xiang H. Energy Environ. Mater., 2023,
doi: 10.1002/eem2.12370 |
19 |
Kim K. J., Rupp J. L. M. Energy Environ. Sci., 2020, 13 (12), 4930.
doi: 10.1039/d0ee02062a |
20 |
Zheng J., Tang M., Hu Y. Y. Angew. Chem. Int. Ed., 2016, 55 (40), 12538.
doi: 10.1002/anie.201607539 |
21 |
Yang T., Zheng J., Cheng Q., Hu Y. Y., Chan C. K. ACS Appl. Mater. Interfaces, 2017, 9 (26), 21773.
doi: 10.1021/acsami.7b03806 |
22 |
Goodenough J. B., Hong H. Y. P., Kafalas J. A. Mater. Res. Bull., 1976, 11 (2), 203.
doi: 10.1016/0025-5408(76)90077-5 |
23 |
Feng X. Y., Fang H., Wu N., Liu P. C., Jena P., Nanda J., Mitlin D. Joule, 2022, 6 (3), 543.
doi: 10.1016/j.joule.2022.01.015 |
24 |
Yan Y., Ju J., Dong S., Wang Y., Huang L., Cui L., Jiang F., Wang Q., Zhang Y., Cui G. Adv. Sci., 2021, 8 (9), 2003887.
doi: 10.1002/advs.202003887 |
25 |
Cui C., Zeng C., Huang G. X., Feng X., Zhang Y., Zhai T. Y., Li H. Q. Adv. Energy Mater., 2022, 12 (41), 2202250.
doi: 10.1002/aenm.202202250 |
26 |
Liu W., Lee S. W., Lin D., Shi F., Wang S., Sendek A. D., Cui Y. Nat. Energy, 2017, 2 (5), 17035.
doi: 10.1038/nenergy.2017.35 |
27 |
Chandra S., Kim Y., Vivona D., Waluyo I., Hunt A., Schlueter C., Lee J. B., Shao-Horn Y., Yildiz B. J. Mater. Chem. A, 2022, 10 (7), 3485.
doi: 10.1039/d1ta08853j |
28 |
Zhang L. F., Xu L., Nian Y., Wang W. Z., Han Y., Luo L. L. ACS Nano, 2022, 16 (4), 6898.
doi: 10.1021/acsnano.2c02250 |
29 |
Bae J., Li Y. T., Zhang J., Zhou X. Y., Zhao F., Shi Y., Goodenough J. B., Yu G. H. Angew. Chem. Int. Ed., 2018, 57 (8), 2096.
doi: 10.1002/anie.201710841 |
30 |
Nikodimos Y., Su W. N., Hwang B. J. Adv. Energy Mater., 2022, 13 (3), 2202854.
doi: 10.1002/aenm.202202854 |
31 |
Park K. H., Kaup K., Assoud A., Zhang Q., Wu X. H., Nazar L. F. ACS Energy Lett., 2020, 5 (2), 533.
doi: 10.1021/acsenergylett.9b02599 |
32 |
Kim S. Y., Kaup K., Park K. H., Assoud A., Zhou L. D., Liu J., Wu X. H., Nazar L. F. ACS Mater. Lett., 2021, 3 (7), 930.
doi: 10.1021/acsmaterialslett.1c00142 |
33 |
Li, X. N.; Liang, J. W.; Luo, J.; Banis, M. N.; Wang, C. H.; Li, W. H.; Deng, S. X.; Yu, C.; Zhao, F. P.; Hu, Y. F.; et al. Energy Environ. Sci., 2019, 12 (9), 2665.
doi: 10.1039/c9ee02311a |
34 |
Kochetkov I., Zuo T. T., Ruess R., Singh B., Zhou L. D., Kaup K., Janek J., Nazar L. Energy Environ. Sci., 2022, 15 (9), 3933.
doi: 10.1039/d2ee00803c |
35 |
Xu, G. F.; Luo, L.; Liang, J. W.; Zhao, S. Q.; Yang, R.; Wang, C. H.; Yu, T. W.; Wang, L. M.; Xiao, W.; Wang, J. T.; et al. Nano Energy, 2022, 92, 106674.
doi: 10.1016/j.nanoen.2021.106674 |
36 |
Zhou L., Zuo T.-T., Kwok C. Y., Kim S. Y., Assoud A., Zhang Q., Janek J., Nazar L. F. Nat. Energy, 2022, 7 (1), 83.
doi: 10.1038/s41560-021-00952-0 |
37 |
Lee J., Lee T., Char K., Kim K. J., Choi J. W. Acc. Chem. Res., 2021, 54 (17), 3390.
doi: 10.1021/acs.accounts.1c00333 |
38 |
Yu T., Ke B. Y., Li H. Y., Guo S. H., Zhou H. S. Mater. Chem. Front., 2021, 5 (13), 4892.
doi: 10.1039/d1qm00474c |
39 |
Maniwa R., Calpa M., Rosero-Navarro N. C., Miura A., Tadanaga K. J. Mater. Chem. A, 2021, 9 (1), 400.
doi: 10.1039/d0ta08658d |
40 | Wang H., An H., Shan H., Zhao L., Wang J. Acta Phys. Chim. Sin., 2021, 37, 2007070. |
王晗, 安汉文, 单红梅, 赵雷, 王家钧 物理化学学报, 2021, 37, 2007070.
doi: 10.3866/PKU.WHXB202007070 |
|
41 |
Wang C. H., Liang J. W., Zhao Y., Zheng M. T., Li X. N., Sun X. L. Energy Environ. Sci., 2021, 14 (5), 2577.
doi: 10.1039/d1ee00551k |
42 |
Lu Y., Gu S., Hong X. H., Rui K., Huang X., Jin J., Chen C. H., Yang J. H., Wen Z. Y. Energy Storage Mater., 2018, 11, 16.
doi: 10.1016/j.ensm.2017.09.007 |
43 |
Huang W., Matsui N., Hori S., Suzuki K., Hirayama M., Yonemura M., Saito T., Kamiyama T., Sasaki Y., Yoon Y., et al. J. Am. Chem. Soc., 2022, 144 (11), 4989.
doi: 10.1021/jacs.1c13178 |
44 |
Deiseroth H.-J., Kong S.-T., Eckert H., Vannahme J., Reiner C., ZaißT., Schlosser M. Angew. Chem. Int. Ed., 2008, 120 (4), 767.
doi: 10.1002/ange.200703900 |
45 |
Kamaya N., Homma K., Yamakawa Y., Hirayama M., Kanno R., Yonemura M., Kamiyama T., Kato Y., Hama S., Kawamoto K., et al. Nat. Mater., 2011, 10 (9), 682.
doi: 10.1038/Nmat3066 |
46 |
Zhou L., Assoud A., Zhang Q., Wu X., Nazar L. F. J. Am. Chem. Soc., 2019, 141 (48), 19002.
doi: 10.1021/jacs.9b08357 |
47 |
Kraft M. A., Ohno S., Zinkevich T., Koerver R., Culver S. P., Fuchs T., Senyshyn A., Indris S., Morgan B. J., Zeier W. G. J. Am. Chem. Soc., 2018, 140 (47), 16330.
doi: 10.1021/jacs.8b10282 |
48 |
Lu P., Xia Y., Huang Y., Li Z., Wu Y., Wang X., Sun G., Shi S., Sha Z., Chen L., et al. Adv. Funct. Mater., 2022, 33 (8), 2211211.
doi: 10.1002/adfm.202211211 |
49 |
Liang Y., Liu H., Wang G., Wang C., Ni Y., Nan C. W., Fan L. Z. Infomat, 2022, 4 (5), e12292.
doi: 10.1002/inf2.12292 |
50 |
Koerver R., Aygun I., Leichtweiss T., Dietrich C., Zhang W. B., Binder J. O., Hartmann P., Zeier W. G., Janek J. Chem. Mater., 2017, 29 (13), 5574.
doi: 10.1021/acs.chemmater.7b00931 |
51 |
Cho S., Kim D. Y., Lee J. I., Kang J., Lee H., Kim G., Seo D. H., Park S. Adv. Funct. Mater., 2022, 32 (47), 2208629.
doi: 10.1002/adfm.202208629 |
52 |
Wang, C. H.; Zhao, Y.; Sun, Q.; Li, X.; Liu, Y. L.; Liang, J. W.; Li, X. N.; Lin, X. T.; Li, R. Y.; Adair, K. R.; et al. Nano Energy, 2018, 53, 168.
doi: 10.1016/j.nanoen.2018.08.030 |
53 |
Wang, L. L.; Sun, X. W.; Ma, J.; Chen, B. B.; Li, C.; Li, J. D.; Chang, L.; Yu, X. R.; Chan, T. S.; Hu, Z. W.; et al. Adv. Energy Mater., 2021, 11 (32), 2100881.
doi: 10.1002/aenm.202100881 |
54 |
Bai X., Yu T., Ren Z., Gong S., Yang R., Zhao C. Energy Storage Mater., 2022, 51, 527.
doi: 10.1016/j.ensm.2022.07.006 |
55 |
Chen S. J., Xie D. J., Liu G. Z., Mwizerwa J. P., Zhang Q., Zhao Y. R., Xu X. X., Yao X. Y. Energy Storage Mater., 2018, 14, 58.
doi: 10.1016/j.ensm.2018.02.020 |
56 |
Li Y., Zhang D. C., Xu X. J., Wang Z. S., Liu Z. B., Shen J. D., Liu J., Zhu M. J. Energy Chem., 2021, 60, 32.
doi: 10.1016/j.jechem.2020.12.017 |
57 |
Nikodimos Y., Huang C. J., Taklu B. W., Su W. N., Hwang B. J. Energy Environ. Sci., 2022, 15 (3), 991.
doi: 10.1039/d1ee03032a |
58 |
Lee, J. E.; Park, K. H.; Kim, J. C.; Wi, T. U.; Ha, A. R.; Song, Y. B.; Oh, D. Y.; Woo, J.; Kweon, S. H.; Yeom, S. J.; et al. Adv. Mater., 2022, 34 (16), 2200083.
doi: 10.1002/adma.202200083 |
59 |
Yu Z. X., Shang S. L., Ahn K., Marty D. T., Feng R. Z., Engelhard M. H., Liu Z. K., Lu D. P. ACS Appl. Mater. Interfaces, 2022, 14 (28), 32035.
doi: 10.1021/acsami.2c07388 |
60 |
Wan H., Zhang J., Xia J., Ji X., He X., Liu S., Wang C. Adv. Funct. Mater., 2021, 32 (15), 2110876.
doi: 10.1002/adfm.202110876 |
61 |
Wu J., Liu S., Han F., Yao X., Wang C. Adv. Mater., 2021, 33 (6), e2000751.
doi: 10.1002/adma.202000751 |
62 |
Zhou L. D., Minafra N., Zeier W. G., Nazar L. F. Acc. Chem. Res., 2021, 54 (12), 2717.
doi: 10.1021/acs.accounts.0c00874 |
63 |
Yi J. G., Zhou D., Liang Y. H., Liu H., Ni H. F., Fan L. Z. J. Energy Chem., 2021, 58, 17.
doi: 10.1016/j.jechem.2020.09.038 |
64 |
Huang G., Zhong Y., Xia X., Wang X., Gu C., Tu J. J. Colloid Interface Sci., 2023, 632 (Pt A), 11.
doi: 10.1016/j.jcis.2022.11.048 |
65 |
Peng L., Ren H., Zhang J., Chen S., Yu C., Miao X., Zhang Z., He Z., Yu M., Zhang L., et al. Energy Storage Mater., 2021, 43, 53.
doi: 10.1016/j.ensm.2021.08.028 |
66 |
Sun, Z.; Lai, Y. Q.; Lv, N.; Hu, Y. Q.; Li, B. Q.; Jing, S. H.; Jiang, L. X.; Jia, M.; Li, J.; Chen, S. Y.; et al. Adv. Mater. Interfaces, 2021, 8 (15), 2100624.
doi: 10.1002/admi.202100624 |
67 |
Zuo T. T., Walther F., Teo J. H., Ruess R., Wang Y., Rohnke M., Schroder D., Nazar L. F., Janek J. Angew. Chem. Int. Ed., 2022, 62 (7), e202213228.
doi: 10.1002/anie.202213228 |
68 |
Sun S., Zhao C.-Z., Yuan H., Fu Z.-H., Chen X., Lu Y., Li Y.-F., Hu J.-K., Dong J., Huang J.-Q. Sci. Adv., 2022, 8 (47), eadd5189.
doi: 10.1126/sciadv.add5189 |
69 |
Hatzell K. B. Matter, 2022, 5 (8), 2533.
doi: 10.1016/j.matt.2022.06.055 |
70 |
Riegger L. M., Schlem R., Sann J., Zeier W. G., Janek J. Angew. Chem. Int. Ed., 2021, 60 (12), 6718.
doi: 10.1002/anie.202015238 |
71 |
Nakamura H., Kawaguchi T., Masuyama T., Sakuda A., Saito T., Kuratani K., Ohsaki S., Watano S. J. Power Sources, 2020, 448, 227579.
doi: 10.1016/j.jpowsour.2019.227579 |
72 |
Zhao C., Liu Z. Q., Weng W., Wu M., Yan X. Y., Yang J., Lu H. M., Yao X. Y. Rare Met., 2022, 41 (11), 3639.
doi: 10.1007/s12598-022-02086-y |
73 |
Marchini F., Saha S., Dalla Corte D. A., Tarascon J. M. ACS Appl. Mater. Interfaces, 2020, 12 (13), 15145.
doi: 10.1021/acsami.9b22937 |
74 |
Wu Y., Zhou K., Ren F., Ha Y., Liang Z., Zheng X., Wang Z., Yang W., Zhang M., Luo M., et al. Energy Environ. Sci., 2022, 15 (8), 3470.
doi: 10.1039/d2ee01067d |
75 |
Haruyama J., Sodeyama K., Han L., Takada K., Tateyama Y. Chem. Mater., 2014, 26 (14), 4248.
doi: 10.1021/cm5016959 |
76 |
Yamamoto K., Iriyama Y., Asaka T., Hirayama T., Fujita H., Fisher C. A., Nonaka K., Sugita Y., Ogumi Z. Angew. Chem. Int. Ed., 2010, 49 (26), 4414.
doi: 10.1002/anie.200907319 |
77 |
Masuda H., Ishida N., Ogata Y., Ito D., Fujita D. Nanoscale, 2017, 9 (2), 893.
doi: 10.1039/c6nr07971g |
78 |
Nomura Y., Yamamoto K., Hirayama T., Ouchi S., Igaki E., Saitoh K. Angew. Chem. Int. Ed., 2019, 58 (16), 5292.
doi: 10.1002/anie.201814669 |
79 |
Wang L., Xie R., Chen B., Yu X., Ma J., Li C., Hu Z., Sun X., Xu C., Dong S., et al. Nat. Commun., 2020, 11 (1), 5889.
doi: 10.1038/s41467-020-19726-5 |
80 |
He W., Ahmad N., Sun S., Zhang X., Ran L., Shao R., Wang X., Yang W. Adv. Energy Mater., 2022, 13 (3), 2203703.
doi: 10.1002/aenm.202203703 |
81 |
Park B. K., Kim H., Kim K. S., Kim H. S., Han S. H., Yu J. S., Hah H. J., Moon J., Cho W., Kim K. J. Adv. Energy Mater., 2022, 12 (37), 2201208.
doi: 10.1002/aenm.202201208 |
82 |
Kraft M. A., Culver S. P., Calderon M., Bocher F., Krauskopf T., Senyshyn A., Dietrich C., Zevalkink A., Janek J., Zeier W. G. J. Am. Chem. Soc., 2017, 139 (31), 10909.
doi: 10.1021/jacs.7b06327 |
83 | Peng L., Yu C., Wei C., Liao C., Chen S., Zhang L., Cheng S., Xie J. Acta Phys.-Chim. Sin., 2023, 39, 2211034. |
彭林峰, 余创, 魏超超, 廖聪, 陈帅, 张隆, 程时杰, 谢佳 物理化学学报, 2023, 39, 2211034.
doi: 10.3866/PKU.WHXB202211034 |
|
84 |
de Klerk N. J. J., Roslon T., Wagemaker M. Chem. Mater., 2016, 28 (21), 7955.
doi: 10.1021/acs.chemmater.6b03630 |
85 |
Chen H. M., Chen M. H., Adams S. Phys. Chem. Chem. Phys., 2015, 17 (25), 16494.
doi: 10.1039/c5cp01841b |
86 |
Minafra N., Culver S. P., Krauskopf T., Senyshyn A., Zeier W. G. J. Mater. Chem. A, 2018, 6 (2), 645.
doi: 10.1039/c7ta08581h |
87 |
Gautam A., Sadowski M., Ghidiu M., Minafra N., Senyshyn A., Albe K., Zeier W. G. Adv. Energy Mater., 2020, 11 (5), 2003369.
doi: 10.1002/aenm.202003369 |
88 |
Peng L. F., Chen S. Q., Yu C., Wei C. C., Liao C., Wu Z. K., Wang H. L., Cheng S. J., Xie J. ACS Appl. Mater. Interfaces, 2022, 14 (3), 4179.
doi: 10.1021/acsami.1c21561 |
89 |
Lu P. S., Liu L. L., Wang S., Xu J. R., Peng J., Yan W. L., Wang Q. C., Li H., Chen L. Q., Wu F. Adv. Mater., 2021, 33 (32), 2100921.
doi: 10.1002/adma.202100921 |
90 |
Chen T., Zhang L., Zhang Z. X., Li P., Wang H. Q., Yu C., Yan X. L., Wang L. M., Xu B. ACS Appl. Mater. Interfaces, 2019, 11 (43), 40808.
doi: 10.1021/acsami.9b13313 |
91 |
Zhao F., Liang J., Yu C., Sun Q., Li X., Adair K., Wang C., Zhao Y., Zhang S., Li W., et al. Adv. Energy Mater., 2020, 10 (9), 1903422.
doi: 10.1002/aenm.201903422 |
92 |
Ni Y., Huang C., Liu H., Liang Y., Fan L. Z. Adv. Funct. Mater., 2022, 32 (41), 2205998.
doi: 10.1002/adfm.202205998 |
93 |
Zhu Y., Mo Y. Angew. Chem. Int. Ed., 2020, 59 (40), 17472.
doi: 10.1002/anie.202007621 |
94 |
Liang J. W., Li X. N., Zhao Y., Goncharova L. V., Li W. H., Adair K. R., Banis M. N., Hu Y. F. Sham T. K., Huang H., et al. Adv. Energy Mater., 2019, 9 (38), 1902125.
doi: 10.1002/aenm.201902125 |
95 |
Ke X. Y., Wang Y., Dai L. M., Yuan C. Energy Storage Mater., 2020, 33, 309.
doi: 10.1016/j.ensm.2020.07.024 |
96 |
Luo S. T., Liu X. Y., Zhang X., Wang X. F., Wang Z. Y., Zhang Y. F., Wang H. D., Ma W. G., Zhu L. Y., Zhang X. ACS Energy Lett., 2022, 7, 3064.
doi: 10.1021/acsenergylett.2c015433064 |
97 |
Zhao Y., Wu Y., Liu H., Chen S. L., Bo S. H. ACS Appl. Mater. Interfaces, 2021, 13 (30), 35750.
doi: 10.1021/acsami.1c08944 |
98 |
Xu J., Li J., Li Y., Yang M., Chen L., Li H., Wu F. Adv. Mater., 2022, 34 (34), e2203281.
doi: 10.1002/adma.202203281 |
99 |
Pan H., Zhang M., Cheng Z., Jiang H., Yang J., Wang P., He P., Zhou H. Sci. Adv., 2022, 8 (15), eabn4372.
doi: 10.1126/sciadv.abn4372 |
100 |
Lu Y., Zhao C.-Z., Zhang R., Yuan H., Hou L.-P., Fu Z.-H., Chen X., Huang J.-Q., Zhang Q. Sci. Adv., 2021, 7 (38), eabi5520.
doi: 10.1126/sciadv.abi5520 |
101 |
Wan J., Song Y.-X., Chen W.-P., Guo H.-J., Shi Y., Guo Y.-J., Shi J.-L., Guo Y.-G., Jia F.-F., Wang F.-Y. J. Am. Chem. Soc., 2020, 143, 839.
doi: 10.1021/jacs.0c10121 |
102 |
Luo S., Wang Z., Li X., Liu X., Wang H., Ma W., Zhang L., Zhu L., Zhang X. Nat. Commun., 2021, 12 (1), 6968.
doi: 10.1038/s41467-021-27311-7 |
103 |
Lee, Y.-G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.-S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S.; et al. Nat. Energy, 2020, 5 (4), 299.
doi: 10.1038/s41560-020-0575-z |
104 |
Wang Y., Wu Y. J., Wang Z. X., Chen L. Q., Li H., Wu F. J. Mater. Chem. A, 2022, 10 (9), 4517.
doi: 10.1039/d1ta10966a |
105 |
Wan M., Kang S., Wang L., Lee H. W., Zheng G. W., Cui Y., Sun Y. Nat. Commun., 2020, 11 (1), 829.
doi: 10.1038/s41467-020-14550-3 |
106 |
Xu X. Q., Xu R., Cheng X. B., Xiao Y., Peng H. J., Yuan H., Liu F. Y. J. Energy Chem., 2021, 56, 391.
doi: 10.1016/j.jechem.2020.08.029 |
107 |
He F., Tang W., Zhang X., Deng L., Luo J. Adv. Mater., 2021, 33 (45), e2105329.
doi: 10.1002/adma.202105329 |
108 |
Chen L., Fan L. Z. Energy Storage Mater., 2018, 15, 37.
doi: 10.1016/j.ensm.2018.03.015 |
109 |
Huo H. Y., Janke J. ACS Energy Lett., 2022, 7 (11), 4005.
doi: 10.1021/acsenergylett.2c01950 |
110 |
Tan D. H. S., Chen Y.-T., Yang H., Bao W., Sreenarayanan B., Doux J.-M., Li W., Lu B., Ham S.-Y., Sayahpour B. Science, 2021, 373 (6562), 1494.
doi: 10.1126/science.abg7217 |
111 |
Kasemchainan J., Zekoll S., Spencer Jolly D., Ning Z., Hartley G. O., Marrow J., Bruce P. G. Nat. Mater., 2019, 18 (10), 1105.
doi: 10.1038/s41563-019-0438-9 |
112 |
Liu H., Lai W. H., Lei Y., Yang H., Wang N., Chou S., Liu H. K., Dou S. X., Wang Y. X. Adv. Energy Mater., 2022, 12 (6), 2103304.
doi: 10.1002/aenm.202103304 |
113 |
Feng W., Hu J., Qian G., Xu Z., Zan G., Liu Y., Wang F., Wang C., Xia Y. Sci. Adv., 2022, 8 (42), eadd8972.
doi: 10.1126/sciadv.add8972 |
114 |
Han F. D., Westover A. S., Yue J., Fan X. L., Wang F., Chi M. F., Leonard D. N., Dudney N., Wang H., Wang C. S. Nat. Energy, 2019, 4 (3), 187.
doi: 10.1038/s41560-018-0312-z |
115 |
Hogrefe C., Waldmann T., Hölzle M., Wohlfahrt-Mehrens M. J. Power Sources, 2023, 556, 232391.
doi: 10.1016/j.jpowsour.2022.232391 |
116 | Guan J., Li N., Yu L. Acta Phys. Chim. Sin., 2021, 37, 2009011. |
关俊, 李念武, 于乐 物理化学学报, 2021, 37, 2009011.
doi: 10.3866/PKU.WHXB202009011 |
|
117 |
Duan C., Cheng Z., Li W., Li F., Liu H., Yang J., Hou G., He P., Zhou H. Energy Environ. Sci., 2022, 15 (8), 3236.
doi: 10.1039/d2ee01358d |
118 |
Wan H., Liu S., Deng T., Xu J., Zhang J., He X., Ji X., Yao X., Wang C. ACS Energy Lett., 2021, 6 (3), 862.
doi: 10.1021/acsenergylett.0c02617 |
119 |
Liang X., Pang Q., Kochetkov I. R., Sempere M. S., Huang H., Sun X., Nazar L. F. Nat. Energy, 2017, 2 (9), 17119.
doi: 10.1038/nenergy.2017.119 |
120 |
Chen, J.; Fan, X. L.; Li, Q.; Yang, H. B.; Khoshi, M. R.; Xu, Y. B.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Y.; et al. Nat. Energy, 2020, 5 (5), 386.
doi: 10.1038/s41560-020-0601-1 |
121 |
Xu X. Q., Jiang F. N., Yang S. J., Xiao Y., Liu H., Liu F. Y., Liu L., Cheng X. B. J. Energy Chem., 2022, 69, 205.
doi: 10.1016/j.jechem.2022.01.019 |
122 |
Stalin, S.; Chen, P. Y.; Li, G. J.; Deng, Y.; Rouse, Z.; Cheng, Y. F.; Zhang, Z. Y.; Biswal, P.; Jin, S.; Baker, S. P.; et al. Matter, 2021, 4 (11), 3753.
doi: 10.1016/j.matt.2021.09.025 |
123 |
Chang C. Y., Yao Y., Li R. R., Guo Z. H., Li L. W., Pan C. X., Hu W. G., Pu X. Nano Energy, 2022, 93, 106871.
doi: 10.1016/j.nanoen.2021.106871 |
124 |
Ma T. Y., Yu X. N., Cheng X. L., Li H. Y., Zhu W. T., Qiu X. P. ACS Appl. Mater. Interfaces, 2017, 9 (15), 13247.
doi: 10.1021/acsami.7b03046 |
125 |
Wang C. Adair K. R., Liang J., Li X., Sun Y., Li X., Wang J., Sun Q., Zhao F., Lin X., et al. Adv. Funct. Mater., 2019, 29 (26), 1900392.
doi: 10.1002/adfm.201900392 |
126 |
Ye L., Li X. Nature, 2021, 593 (7858), 218.
doi: 10.1038/s41586-021-03486-3 |
127 |
Liu X. M., Garcia-Mendez R., Lupini A. R., Cheng Y. Q., Hood Z. D., Han F. D., Sharafi A., Idrobo J. C., Dudney N. J. Wang C. S., et al. Nat. Mater., 2021, 20 (11), 1485.
doi: 10.1038/s41563-021-01019-x |
128 |
Yang X., Gao X., Jiang M., Luo J., Yan J., Fu J., Duan H., Zhao S., Tang Y., Yang R., et al. Angew. Chem. Int. Ed., 2022, 62 (5), e202215680.
doi: 10.1002/anie.202215680 |
129 |
Wang M. J., Choudhury R., Sakamoto J. Joule, 2019, 3 (9), 2165.
doi: 10.1016/j.joule.2019.06.017 |
130 |
Hansel C., Kundu D. Adv. Mater. Interfaces, 2021, 8 (10), 2100206.
doi: 10.1002/admi.202100206 |
131 |
Wu Y., Bo S.-H. ACS Appl. Energy Mater., 2022, 5 (11), 13571.
doi: 10.1021/acsaem.2c02285 |
132 |
Ham S.-Y., Yang H., Nunez-cuacuas O., Tan D. H. S., Chen Y.-T., Deysher G., Cronk A., Ridley P., Doux J.-M. Wu E. A., et al. Energy Storage Mater., 2023, 55, 455.
doi: 10.1016/j.ensm.2022.12.013 |
133 |
Cangaz S., Hippauf F., Takata R., Schmidt F., Dörfler S., Kaskel S. Batteries Supercaps, 2022, 5 (9), e202200100.
doi: 10.1002/batt.202200100 |
134 |
Yi, J.; He, P.; Liu, H.; Ni, H.; Bai, Z.; Fan, L.-Z. J. Energy Chem., 2021, 52, 202.
doi: 10.1016/j.jechem.2020.03.057 |
135 |
Lee, Y.; Jeong, J.; Lee, H. J.; Kim, M.; Han, D.; Kim, H.; Yuk, J. M.; Nam, K.-W.; Chung, K. Y.; Jung, H.-G.; et al. ACS Energy Lett., 2021, 7 (1), 171.
doi: 10.1021/acsenergylett.1c02428 |
136 |
Jung W. D., Jeon M., Shin S. S., Kim J. S., Jung H. G., Kim B. K., Lee J. H., Chung Y. C., Kim H. ACS Omega, 2020, 5 (40), 26015.
doi: 10.1021/acsomega.0c03453 |
137 |
Li Y., Arnold W., Thapa A., Jasinski J. B., Sumanasekera G., Sunkara M., Druffel T., Wang H. ACS Appl. Mater. Interfaces, 2020, 12 (38), 42653.
doi: 10.1021/acsami.0c08261 |
138 |
Zhao F., Sun Q., Yu C., Zhang S., Adair K., Wang S., Liu Y., Zhao Y., Liang J., Wang C., et al. ACS Energy Lett., 2020, 5 (4), 1035.
doi: 10.1021/acsenergylett.0c00207 |
139 |
Liu H., He P., Wang G., Liang Y., Wang C., Fan L.-Z. Chem. Eng. J., 2022, 430, 132991.
doi: 10.1016/j.cej.2021.132991 |
140 |
Cao D., Li Q., Sun X., Wang Y., Zhao X., Cakmak E., Liang W., Anderson A., Ozcan S., Zhu H. Adv. Mater., 2021, 33 (52), e2105505.
doi: 10.1002/adma.202105505 |
141 |
Xi L., Li Y., Zhang D., Liu Z., Xu X., Liu J. Energy Environ. Mater., 2023, e12461.
doi: 10.1002/eem2.12461 |
142 |
Wang C., Li X., Zhao Y., Banis M. N., Liang J., Li X., Sun Y. Adair K. R., Sun Q., Liu Y., et al. Small Methods, 2019, 3 (10), 1900261.
doi: 10.1002/smtd.201900261 |
143 |
Zhu, G. L.; Zhao, C. Z.; Peng, H. J.; Yuan, H.; Hu, J. K.; Nan, H. X.; Lu, Y.; Liu, X. Y.; Huang, J. Q.; He, C.; et al. Adv. Funct. Mater., 2021, 31 (32), 2101985.
doi: 10.1002/adfm.202101985 |
144 |
Park K. H., Bai Q., Kim D. H., Oh D. Y., Zhu Y. Z., Mo Y. F., Jung Y. S. Adv. Energy Mater., 2018, 8 (18), 1800035.
doi: 10.1002/aenm.201800035 |
145 |
Tan D. H. S., Banerjee A., Chen Z., Meng Y. S. Nat. Nanotechnol., 2021, 16 (4), 479.
doi: 10.1038/s41565-021-00877-5 |
146 |
Kawaguchi T., Nakamura H., Watano S. Powder Technol., 2018, 323, 581.
doi: 10.1016/j.powtec.2016.03.055 |
147 |
Xu J., Liu L., Yao N., Wu F., Li H., Chen L. Mater. Today Nano, 2019, 8, 100048.
doi: 10.1016/j.mtnano.2019.100048 |
148 |
Fan L. Z., He H. C., Nan C. W. Nat. Rev. Mater., 2021, 6 (11), 1003.
doi: 10.1038/s41578-021-00320-0 |
149 |
Wang X., Ye L., Nan C. W., Li X. ACS Appl. Mater. Interfaces, 2022, 14 (41), 46627.
doi: 10.1021/acsami.2c12920 |
150 |
Du Z. J., Wood D., Daniel C., Kalnaus S., Li J. L. J. Appl. Electrochem., 2017, 47 (3), 405.
doi: 10.1007/s10800-017-1047-4 |
151 |
Kato Y., Shiotani S., Morita K., Suzuki K., Hirayama M., Kanno R. J. Phys. Chem. Lett., 2018, 9 (3), 607.
doi: 10.1021/acs.jpclett.7b02880 |
152 |
Hippauf F., Schumm B., Doerfler S., Althues H., Fujiki S., Shiratsuchi T., Tsujimura T., Aihara Y., Kaskel S. Energy Storage Mater., 2019, 21, 390.
doi: 10.1016/j.ensm.2019.05.033 |
153 |
Jiang T. L., He P. G., Wang G. X., Shen Y., Nan C. W., Fan L. Z. Adv. Energy Mater., 2020, 10 (12), 1903376.
doi: 10.1002/aenm.201903376 |
154 |
Li Y., Wu Y., Wang Z., Xu J., Ma T., Chen L., Li H., Wu F. Mater. Today, 2022, 55, 92.
doi: 10.1016/j.mattod.2022.04.008 |
155 |
Zhang Z., Wu L., Zhou D., Weng W., Yao X. Nano Lett., 2021, 21 (12), 5233.
doi: 10.1021/acs.nanolett.1c01344 |
156 |
Hong, S.-B.; Lee, Y.-J.; Kim, U.-H.; Bak, C.; Lee, Y. M.; Cho, W.; Hah, H. J.; Sun, Y.-K.; Kim, D.-W. ACS Energy Lett., 2022, 7 (3), 1092.
doi: 10.1021/acsenergylett.1c02756 |
157 |
Thieme S., Bruckner J., Bauer I., Oschatz M., Borchardt L., Althues H., Kaskel S. J. Mater. Chem. A, 2013, 1 (32), 9225.
doi: 10.1039/c3ta10641a |
158 |
Kavan L. Chem. Rev., 1997, 97 (8), 3061.
doi: 10.1021/cr960003n |
159 |
Hlavaty J., Kavan L. Carbon, 1997, 35 (1), 127.
doi: 10.1016/S0008-6223(97)81119-0 |
160 |
Li Y., Wu Y., Ma T., Wang Z., Gao Q., Xu J., Chen L., Li H., Wu F. Adv. Energy Mater., 2022, 12 (37), 2201732.
doi: 10.1002/aenm.202201732 |
161 |
Tan D. H. S., Meng Y. S., Jang J. Joule, 2022, 6 (8), 1755.
doi: 10.1016/j.joule.2022.07.002 |
162 |
Schnell J., Gunther T., Knoche T., Vieider C., Kohler L., Just A., Keller M., Passerini S., Reinhart G. J. Power Sources, 2018, 382, 160.
doi: 10.1016/j.jpowsour.2018.02.062 |
163 |
Yun B. N., Lee S., Jung W. D., Shin H. J., Kim J. T., Yu S., Chung K. Y., Kim H., Jung H. G. ACS Appl. Mater. Interfaces, 2022, 14 (7), 9242.
doi: 10.1021/acsami.1c24895 |
164 |
Liang J., Zhu Y., Li X., Luo J., Deng S., Zhao Y., Sun Y., Wu D., Hu Y., Li W., et al. Nat. Commun., 2023, 14 (1), 146.
doi: 10.1038/s41467-022-35667-7 |
165 |
Liu, Q.-S.; An, H.-W.; Wang, X.-F.; Kong, F.-P.; Sun, Y.-C.; Gong, Y.-X.; Lou, S.-F.; Shi, Y.-F.; Sun, N.; Deng, B.; et al. Natl. Sci. Rev., 2023, nwac272.
doi: 10.1093/nsr/nwac272 |
166 |
Kim, J. Y.; Park, J.; Kang, S. H.; Jung, S.; Shin, D. O.; Lee, M. J.; Oh, J.; Kim, K. M.; Zausch, J.; Lee, Y.-G.; et al. Energy Storage Mater., 2021, 41, 289.
doi: 10.1016/j.ensm.2021.06.005 |
167 |
Shi T., Tu Q., Tian Y., Xiao Y., Miara L. J., Kononova O., Ceder G. Adv. Energy Mater., 2020, 10 (1), 1902881.
doi: 10.1002/aenm.201902881 |
168 |
Albertus, P.; Anandan, V.; Ban, C.; Balsara, N.; Belharouak, I.; Buettner-Garrett, J.; Chen, Z.; Daniel, C.; Doeff, M.; Dudney, N. J.; et al. ACS Energy Lett., 2021, 6, 1399.
doi: 10.1021/acsenergylett.1c00445 |
169 |
Yuan K., Yuan L. X., Chen J., Xiang J. W., Liao Y. Q., Li Z., Huang Y. H. Small Struct, 2021, 2 (3), 2000059.
doi: 10.1002/sstr.202000059 |
170 |
Liang S., Xia Y., Liang C., Gan Y. P., Huang H., Zhang J., Tao X. Y., Sun W., Han W. Q., Zhang W. K. J. Mater. Chem. A, 2018, 6 (21), 9906.
doi: 10.1039/c8ta01342j |
171 |
Zhao Y. Z., Smith W., Wolden C. A. J. Electrochem. Soc., 2020, 167 (7), 070520.
doi: 10.1149/1945-7111/ab6e3f |
172 |
Zhao Y. Z., Yang Y. G., Wolden C. A. ACS Appl. Energy Mater., 2019, 2 (3), 2246.
doi: 10.1021/acsaem.9b00032 |
173 |
Kohl M., Bruckner J., Bauer I., Althues H., Kaskel S. J. Mater. Chem. A, 2015, 3 (31), 16307.
doi: 10.1039/c5ta04504e |
174 |
Ye F., Noh H., Lee J., Lee H., Kim H. T. J. Mater. Chem. A, 2018, 6 (15), 6617.
doi: 10.1039/c8ta00515j |
175 |
Smith W. H., Vaselabadi S. A., Wolden C. A. ACS Appl. Energy Mater., 2022, 5 (4), 4029.
doi: 10.1021/acsaem.2c00442 |
176 |
Tu F., Zhao Z., Zhang X., Wang Z., Ma Y., Zhang H., Song D., Zhang L., Yang Y., Zhu L. ACS Sustain. Chem. Eng., 2022, 10 (47), 15365.
doi: 10.1021/acssuschemeng.2c02238 |
177 |
Cao D., Sun X., Wang Y., Zhu H. Energy Storage Mater., 2022, 48, 458.
doi: 10.1016/j.ensm.2022.03.012 |
178 |
Cao D., Sun X., Li Y., Anderson A., Lu W., Zhu H. Adv. Mater., 2022, 34 (24)
doi: 10.1002/adma.202200401 |
179 |
Su X., Wu Q. L., Li J. C., Xiao X. C., Lott A., Lu W. Q., Sheldon B. W., Wu J. Adv. Energy Mater., 2014, 4 (1), 1300882.
doi: 10.1002/aenm.201300882 |
180 |
Zhu B., Wang X. Y., Yao P. C., Li J. L., Zhu J. Chem. Sci., 2019, 10 (30), 7132.
doi: 10.1039/c9sc01201j |
181 |
Ashuri M., He Q. R., Shaw L. L. Nanoscale, 2016, 8 (1), 74.
doi: 10.1039/c5nr05116a |
182 |
Luo, D.; Zheng, L.; Zhang, Z.; Li, M.; Chen, Z. W.; Cui, R. G.; Shen, Y. B.; Li, G. R.; Feng, R. F.; Zhang, S. J.; et al. Nat. Commun., 2021, 12 (1), 186.
doi: 10.1038/s41467-020-20339-1 |
183 |
Kim, C.-S.; Jeong, K. M.; Kim, K.; Yi, C.-W. Electrochim. Acta, 2015, 155, 431.
doi: 10.1016/j.electacta.2014.12.005 |
184 |
Ding C., Liu Y., Ono L. K., Tong G., Zhang C., Zhang J., Lan J., Yu Y., Chen B., Qi Y. B. Energy Storage Mater., 2022, 50, 417.
doi: 10.1016/j.ensm.2022.05.035 |
185 |
Liang Z., Xiang Y., Wang K., Zhu J., Jin Y., Wang H., Zheng B., Chen Z., Tao M., Liu X., et al. Nat. Commun., 2023, 14 (1), 259.
doi: 10.1038/s41467-023-35920-7 |
186 |
Zeng D., Yao J., Zhang L., Xu R., Wang S., Yan X., Yu C., Wang L. Nat. Commun., 2022, 13 (1), 1909.
doi: 10.1038/s41467-022-29596-8 |
[1] | Linfeng Peng, Chuang Yu, Chaochao Wei, Cong Liao, Shuai Chen, Long Zhang, Shijie Cheng, Jia Xie. Recent Progress on Lithium Argyrodite Solid-State Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211034-0. |
[2] | Gaolong Zhu, Chenzi Zhao, Hong Yuan, Haoxiong Nan, Bochen Zhao, Lipeng Hou, Chuangxin He, Quanbing Liu, Jiaqi Huang. Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005003-. |
[3] | Han Wang, Hanwen An, Hongmei Shan, Lei Zhao, Jiajun Wang. Research Progress on Interfaces of All-Solid-State Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2007070-. |
[4] | Huifang Fei,Yongpeng Liu,Chuanliang Wei,Yuchan Zhang,Jinkui Feng,Chuanzhong Chen,Huijun Yu. Poly(propylene carbonate)-based Polymer Electrolyte with an Organic Cathode for Stable All-Solid-State Sodium Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905015-. |
[5] | LI Jing-Zhe, KONG Fan-Tai, WU Guo-Hua, CHEN Wang-Chao, HUANG Yang, FANG Xia-Qin, DAI Song-Yuan. Di-n-alkylphosphinic Acid with a Long Alkyl Chain as a Coadsorbent for Modifying TiO2 Photoanodes [J]. Acta Phys. -Chim. Sin., 2014, 30(4): 662-668. |
[6] | LI Jing-Zhe, KONG Fan-Tai, WU Guo-Hua, HUANG Yang, CHEN Wang-Chao, DAI Song-Yuan. TiO2/Dye/Electrolyte Interface Modification for Dye-Sensitized Solar Cells [J]. Acta Phys. -Chim. Sin., 2013, 29(09): 1851-1864. |
[7] | Lv Gong-Xun, Li Shu-Ben, Savinov , E N, Parmon V N. Composite Sulfide Photocatalyst of CuχS·CdS Interface-Modified with Cobalt Phthalocyanine [J]. Acta Phys. -Chim. Sin., 1994, 10(09): 790-795. |
|