Acta Phys. -Chim. Sin. ›› 2024, Vol. 40 ›› Issue (1): 2303034.doi: 10.3866/PKU.WHXB202303034
Special Issue: Multi-Physical Fields Driven Catalysis for Energy Conversion
• ARTICLE • Previous Articles Next Articles
Chengbo Zhang1,2, Xiaoping Tao1,2, Wenchao Jiang1,3, Junxue Guo1,3, Pengfei Zhang1,2, Can Li1,2,3, Rengui Li1,2,*()
Received:
2023-03-16
Accepted:
2023-04-14
Published:
2023-08-21
Contact:
Rengui Li
E-mail:rgli@dicp.ac.cn
Supported by:
Chengbo Zhang, Xiaoping Tao, Wenchao Jiang, Junxue Guo, Pengfei Zhang, Can Li, Rengui Li. Microwave-Assisted Synthesis of Bismuth Chromate Crystals for Photogenerated Charge Separation[J]. Acta Phys. -Chim. Sin. 2024, 40(1), 2303034. doi: 10.3866/PKU.WHXB202303034
1 |
Inoue Y. Energy Environ. Sci. 2009, 2, 364.
doi: 10.1039/B816677N |
2 |
Maeda K. ; Domen K. J. Phys. Chem. C 2007, 111, 7851.
doi: 10.1021/jp070911w |
3 | He R. ; Cao S. ; Yu J. Acta Phys. -Chim. Sin. 2016, 32, 2841. |
赫荣安; 曹少文; 余家国; 物理化学学报, 2016, 32, 2841.
doi: 10.3866/PKU.WHXB201611021 |
|
4 | He R. ; Chen R. ; Luo J. ; Zhang S. ; Xu D. Acta Phys. -Chim. Sin. 2021, 37, 2011022. |
赫荣安; 陈容; 罗金花; 张世英; 许第发; 物理化学学报, 2021, 37, 2011022.
doi: 10.3866/PKU.WHXB202011022 |
|
5 |
Tao X. ; Zhao Y. ; Mu L. ; Wang S. ; Li R. ; Li C. Adv. Energy Mater. 2018, 8, 1701392.
doi: 10.1002/aenm.201701392 |
6 |
He R. ; Xu D. ; Cheng B. ; Yu J. ; Ho W. Nanoscale Horiz. 2018, 3, 464.
doi: 10.1039/c8nh00062j |
7 |
Xu M. ; Yang J. ; Sun C. ; Liu L. ; Cui Y. ; Liang B. Chem. Eng. J. 2020, 389, 124402.
doi: 10.1016/j.cej.2020.124402 |
8 |
Hasanvandian F. ; Moradi M. ; Samani S. A. ; Kakavandi B. ; Setayesh S. R. ; Noorisepehr M. Chemosphere 2022, 287, 132273.
doi: 10.1016/j.chemosphere.2021.132273 |
9 |
Li Z. ; Zhang Z. ; Wang L. ; Meng X. J. Catal. 2020, 382, 40.
doi: 10.1016/j.jcat.2019.12.001 |
10 |
Lai K. ; Wei W. ; Dai Y. ; Zhang R. ; Huang B. Rare Metals 2011, 30, 166.
doi: 10.1007/s12598-011-0262-0 |
11 |
Liu Y. H. ; Li J. B. ; Liang J. K. ; Luo J. ; Ji L. N. ; Zhang J. Y. ; Rao G. H. Mater. Chem. Phys. 2008, 112, 239.
doi: 10.1016/j.matchemphys.2008.05.038 |
12 |
Zhang Q. ; Huang B. ; Wang P. ; Zhang X. ; Qin X. ; Wang Z. Int. J. Photoenergy 2012, 2012, 461291.
doi: 10.1155/2012/461291 |
13 |
Chawla H. ; Chandra A. ; Ingole P. P. ; Garg S. J. Ind. Eng. Chem. 2021, 95, 1.
doi: 10.1016/j.jiec.2020.12.028 |
14 |
Tao X. ; Zhou H. ; Zhang C. ; Ta N. ; Li R. ; Li C. Adv. Mater. 2023, 35, 2211182.
doi: 10.1002/adma.202211182 |
15 |
Jiang W. ; Ni C. ; Zhang L. ; Shi M. ; Qu J. ; Zhou H. ; Zhang C. ; Chen R. ; Wang X. ; Li C. ; et al Angew. Chem. Int. Ed. 2022, 61, e202207161.
doi: 10.1002/anie.202207161 |
16 |
Mu L. ; Zhao Y. ; Li A. ; Wang S. ; Wang Z. ; Yang J. ; Wang Y. ; Liu T. ; Chen R. ; Zhu J. ; et al Energy Environ. Sci. 2016, 9, 2463.
doi: 10.1039/C6EE00526H |
17 |
Shi M. ; Li G. ; Li J. ; Jin X. ; Tao X. ; Zeng B. ; Pidko E. A. ; Li R. ; Li C. Angew. Chem. Int. Ed. 2020, 59, 6590.
doi: 10.1002/anie.201916510 |
18 |
Zhao Y. ; Ding C. ; Zhu J. ; Qin W. ; Tao X. ; Fan F. ; Li R. ; Li C. Angew. Chem. Int. Ed. 2020, 59, 9653.
doi: 10.1002/anie.202001438 |
19 |
Zhao Y. ; Li R. ; Mu L. ; Li C. Cryst. Growth Des. 2017, 17, 2923.
doi: 10.1021/acs.cgd.7b00291 |
20 |
Rodrigues B. S. ; Branco C. M. ; Corio P. ; Souza J. S. Cryst. Growth Des. 2020, 20, 3673.
doi: 10.1021/acs.cgd.9b01517 |
21 |
Xie J. ; Shevlin S. A. ; Ruan Q. ; Moniz S. J. A. ; Liu Y. ; Liu X. ; Li Y. ; Lau C. C. ; Guo Z. X. ; Tang J. Energy Environ. Sci. 2018, 11, 1617.
doi: 10.1039/C7EE02981K |
22 | Mei Z. H. ; Wang G. H. ; Yan S. D. ; Wang J. Acta Phys. -Chim. Sin. 2021, 37, 2009097. |
梅子慧; 王国宏; 严素定; 王娟; 物理化学学报, 2021, 37, 2009097.
doi: 10.3866/pku.Whxb202009097 |
|
23 |
Huang C. ; Wen Y. ; Ma J. ; Dong D. ; Shen Y. ; Liu S. ; Ma H. ; Zhang Y. Nat. Commun. 2021, 12, 320.
doi: 10.1038/s41467-020-20521-5 |
24 |
Wu L. ; Bi J. ; Li Z. ; Wang X. ; Fu X. Catal. Today 2008, 131, 15.
doi: 10.1016/j.cattod.2007.10.089 |
25 |
Wang J. ; Wu W. ; Kondo H. ; Fan T. ; Zhou H. Nanotechnology 2022, 33, 342002.
doi: 10.1088/1361-6528/ac6c97 |
26 |
Yang G. ; Park S.-J. Materials 2019, 12, 1177.
doi: 10.3390/ma12071177 |
27 |
Anumol E. A. ; Kundu P. ; Deshpande P. A. ; Madras G. ; Ravishankar N. ACS Nano 2011, 5, 8049.
doi: 10.1021/nn202639f |
28 |
Chen Y. ; Yang W. ; Gao S. ; Zhu L. ; Sun C. ; Li Q. ChemSusChem 2018, 11, 1521.
doi: 10.1002/cssc.201800180 |
29 |
Yang Z. ; Shen M. ; Dai K. ; Zhang X. ; Chen H. Appl. Surf. Sci. 2018, 430, 505.
doi: 10.1016/j.apsusc.2017.08.072 |
30 |
Hamza M. A. ; El-Shazly A. N. ; Allam N. K. Mater. Lett. 2020, 262, 127188.
doi: 10.1016/j.matlet.2019.127188 |
31 |
Bandiello E. ; Errandonea D. ; Martinez-Garcia D. ; Santamaria-Perez D. ; Manjón F. J. Phys. Rev. B 2012, 85, 024108.
doi: 10.1103/PhysRevB.85.024108 |
32 |
Frost R. L. J. Raman Spectrosc. 2004, 35, 153.
doi: 10.1002/jrs.1121 |
33 |
Leandro M. K. D. N. S. ; Moura J. V. B. ; Freire P. D. T. C. ; Vega M. L. ; Lima C. D. L. ; Hidalgo Á. A. ; Araújo A. C. J. D. ; Freitas P. R. ; Paulo C. L. R. ; Sousa A. K. D. ; et al Antibiotics 2021, 10, 1068.
doi: 10.3390/antibiotics10091068 |
34 |
Chaves M. D. S. ; Lima G. D. ; De Assis M. ; Mendonca C. D. S. ; Pinatti I. M. ; Gouveia A. F. ; Rosa I. L. V. ; Longo E. ; Almeida M. A. P. ; Franco T. J. Solid State Chem. 2019, 274, 270.
doi: 10.1016/j.jssc.2019.03.031 |
35 |
Lu J. ; Zhou W. ; Zhang X. ; Xiang G. J. Phys. Chem. Lett. 2020, 11, 1038.
doi: 10.1021/acs.jpclett.9b03575 |
36 |
Chen X. ; Xu Y. ; Ma X. ; Zhu Y. Natl. Sci. Rev. 2020, 7, 652.
doi: 10.1093/nsr/nwz198 |
37 |
Meng X. ; Zhang Z. J. Photochem. Photobiol. A 2015, 310, 33.
doi: 10.1016/j.jphotochem.2015.04.024 |
38 |
Gao X. ; Huang K. ; Zhang Z. ; Meng X. Chem. Commun. 2022, 58, 2014.
doi: 10.1039/D1CC06734F |
39 |
Li R. ; Zhang F. ; Wang D. ; Yang J. ; Li M. ; Zhu J. ; Zhou X. ; Han H. ; Li C. Nat. Commun. 2013, 4, 1432.
doi: 10.1038/ncomms2401 |
40 |
Li R. ; Tao X. ; Chen R. ; Fan F. ; Li C. Chem. Eur. J. 2015, 21, 14337.
doi: 10.1002/chem.20150256 |
[1] | Linfeng Xiao, Wanlu Ren, Shishi Shen, Mengshan Chen, Runhua Liao, Yingtang Zhou, Xibao Li. Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction [J]. Acta Phys. -Chim. Sin., 2024, 40(8): 2308036-. |
[2] | Haitao Wang, Lianglang Yu, Jizhou Jiang, Arramel, Jing Zou. S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity [J]. Acta Phys. -Chim. Sin., 2024, 40(5): 2305047-. |
[3] | Jiawei Hu, Kai Xia, Ao Yang, Zhihao Zhang, Wen Xiao, Chao Liu, Qinfang Zhang. Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2024, 40(5): 2305043-. |
[4] | Liu Lin, Zemin Sun, Huatian Chen, Lian Zhao, Mingyue Sun, Yitao Yang, Zhensheng Liao, Xinyu Wu, Xinxin Li, Cheng Tang. Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production [J]. Acta Phys. -Chim. Sin., 2024, 40(4): 2305019-. |
[5] | Yanhui Guo, Li Wei, Zhonglin Wen, Chaorong Qi, Huanfeng Jiang. Recent Progress on Conversion of Carbon Dioxide into Carbamates [J]. Acta Phys. -Chim. Sin., 2024, 40(4): 2307004-. |
[6] | Yuanqing Wang, Yusong Pan, Hongwu Zhu, Yanlei Xiang, Rong Han, Run Huang, Chao Du, Chengling Pan. Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation [J]. Acta Phys. -Chim. Sin., 2024, 40(4): 2304050-. |
[7] | Kezhen Lai, Fengyan Li, Ning Li, Yangqin Gao, Lei Ge. Identification of Charge Transfer Pathways in Metal-Organic Framework- Derived Ni-CNT/ZnIn2S4 Heterojunctions for Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304018-. |
[8] | Qianwei Song, Guanchao He, Huilong Fei. Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212038-0. |
[9] | Zhongliao Wang, Jing Wang, Jinfeng Zhang, Kai Dai. Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209037-. |
[10] | Zhongqi Zan, Xibao Li, Xiaoming Gao, Juntong Huang, Yidan Luo, Lu Han. 0D/2D Carbon Nitride Quantum Dots (CNQDs)/BiOBr S-Scheme Heterojunction for Robust Photocatalytic Degradation and H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209016-. |
[11] | Xinhe Wu, Guoqiang Chen, Juan Wang, Jinmao Li, Guohong Wang. Review on S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212016-0. |
[12] | Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212010-. |
[13] | Wenjie Zhou, Qihang Jing, Jiaxin Li, Yingzhi Chen, Guodong Hao, Lu-Ning Wang. Organic Photocatalysts for Solar Water Splitting: Molecular- and Aggregate-Level Modifications [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211010-0. |
[14] | Yonggang Lei, Tianyu Zhao, Kim Hoong Ng, Yingzhen Zhang, Xuerui Zang, Xiao Li, Weilong Cai, Jianying Huang, Jun Hu, Yuekun Lai. Metallic Tungsten Carbide Coupled with Liquid-Phase Dye Photosensitizer for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2206006-0. |
[15] | Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2211029-0. |
|