Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (7): 2009077.doi: 10.3866/PKU.WHXB202009077
Special Issue: Electrocatalysis
• REVIEW • Previous Articles Next Articles
Kangning Zhao, Xiao Li, Dong Su()
Received:
2020-09-25
Accepted:
2020-10-31
Published:
2020-11-10
Contact:
Dong Su
E-mail:dongsu@iphy.ac.cn
About author:
Dong Su, Email: dongsu@iphy.ac.cn; Tel: +86-10-82649555Supported by:
Kangning Zhao, Xiao Li, Dong Su. High-Entropy Alloy Nanocatalysts for Electrocatalysis[J]. Acta Phys. -Chim. Sin. 2021, 37(7), 2009077. doi: 10.3866/PKU.WHXB202009077
Fig 3
(a, b) Schematic illustration of intrinsic lattice distortion effect on Bragg diffraction: (a) perfect lattice with the same atoms and distorted lattice with solid-solution of different-sized atoms, (b) distortion effects on XRD intensity; (c) the PDFs obtained from X-ray diffraction and neutron diffraction, (d) the difference of the PDFs between the calculated PDF and measured ones 72, 73. Adapted from Mater. Chem. Phys. and Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., Elsevier and Springer publisher. "
Table 1
Summary of the synthetic method and electrocatalytic application of high-entropy alloy."
Composition | Synthetic method | Structure | Catalytic application | Ref. |
RuRhCoNi(Ir) | Carbothermal shock | FCC | NH3 decomposition | |
RuRhCoNiIr | Wet impregnation | Phase separation | NH3 decomposition | |
FeCoNiCuMo | Carbothermal shock | FCC | NH3 decomposition | |
PtPdRhRuCe | Carbothermal shock | FCC | NH3 oxidation | |
PtPdRhCoCe | Carbothermal shock | FCC | NH3 oxidation | 37 |
PtPdRhNi | Carbothermal shock | FCC | ORR a | |
PtPdFeCoNi | Carbothermal shock | FCC | ORR | |
PtRuCuOsIr | Mechanical alloying & dealloying | FCC | ORR, MOR b | |
PdAuAgTi | – | – | ORR | |
CrMnFeCoNi, | Combinatorial co-sputtering | – | ORR | |
AlNiCoIrMo | Arc-melting & dealloying | FCC | ORR | |
AlNiCuPtM (M = Ir, Pd, V, Co, Mn) | Arc-melting & dealloying | FCC | ORR | |
AlNiCuPtPdAu | Arc-melting & dealloying | FCC | HER c, OER d | |
CoCrFeMnNi | Kinetically-controlled laser-synthesis | FCC | HER | |
PtAuPd(RhRu) | Ultrasonication-assisted wet chemistry | FCC | HER | |
CoFeLaNiPt | Nanodroplet-mediated electrodeposition | Amorphous | HER, OER | |
FeNiMnCrCu | Arc-melting | FCC + BCC | OER | |
MnFeCoNi | Mechanical alloying | FCC | OER | |
AlNiCoFeM (M = Mo, Nb, Cr) | Arc-melting & dealloying | FCC | OER | |
MnFeCoNiCu | MOF-template method | FCC | OER | |
PtFeCoNiCuAg | Radio frequency sputter depositions | FCC | MOR | |
IrOsPtRhRu | Thermal decomposition | FCC/HCP | MOR | |
CuAgAuPtPd | Arc-melting & mechanical alloying | FCC | MOR | |
AgAuCuPdPt | Melting & cryogrinding | FCC | CO2RR e |
Fig 5
Carbothermal shock synthesis of high-entropy-alloy nanoparticles. (a) The precursor salt particles supported by carbon nanofiber before thermal shock and well-dispersed PtNi nanoparticles after CTS, (b) schematic illustration of the carbothermal shock method and the evolution of temperatures during the thermal shock, (c) STEM-EDS elemental mapping and HAADF-STEM image of octonary NPs 37. Reproduced with permission. Copyright 2017, American Association for the Advancement of Science. "
Fig 6
Electrochemical shock method for high-entropy metallic nanoparticles. (a) Current trace in response to the collision of a single nanodroplet onto a carbon fiber and the schematic illustration of nanodroplet-mediated electrodeposition, (b, c) elemental mapping images of low entropy and high entropy NPs, Scale bar, 500 nm 47."
Fig 7
(a) Schematic diagram of the FMBP experimental setup for synthesis of HEA-NPs, (b) schematic diagrams for synthesis of homogeneous and phase-separated HEA-NPs by FMBP and FBP strategies, (c) The simulation of the time required for precursors to reach 923 K in the FMBP process, (d, e) HAADF-STEM images for the denary MnCoNiCuRhPdSnIrPtAu HEA-NPs, (f) elemental mapping images of the denary HEA-NPs 83."
Fig 9
(a) The hybrid MC-MD simulation of a Ru-5 HEA nanoparticle after diffusion at 1500 K and quenching at 298 K, (b) the MD simulated diffusion coefficient of Ru and hybrid MC-MD simulated compositional partitions after annealing at 773 K, (c) the MC simulated compositional partitions of Co25Mo45Fe10Ni10Cu10 HEA nanoparticle at 573, 750 and 1000 K 35, 36."
Fig 10
(a) Comparison of predictive adsorption energies of *OH and DFT-calculated energies, (b) activity and distribution of adsorption energies of optimized IrPdPtRhRu HEA, (c, d) activity, selectivity and distribution of adsorption energies of optimized CoCuGaNiZn and AgAuCuPdPt HEA14, 46. Adapted from ACS Catal., American Chemical Society publisher."
Table 2
Summary of the electrocatalytic performance of high-entropy alloy catalysts."
Reaction | Composition | Structural feature | E1/2/VRHE | Tafel slope/(mV∙dec−1) | Electrolyte | Ref. |
ORR | PtPdRhNi | Nanoparticles | 0.86 | 32 | 1.0 mol∙L−1 KOH | |
PtPdFeCoNi | Nanoparticles | 0.85 | 31 | 1.0 mol∙L−1 KOH | ||
PtRuCuOsIr | Nanoporous | 0.864 | – | 0.1 mol∙L−1 HClO4 | ||
CrMnFeCoNi, | Nanoparticles | – | 82 ± 12 | 3 mol∙L−1 KCl | ||
AlNiCuPtPdAu | Nanoporous | 0.9 | – | 0.1 mol∙L−1 HClO4 | ||
AlNiCuPtMn | Nanoporous | 0.945 | 47 | 0.1 mol∙L−1 HClO4 | ||
Reaction | Composition | Structural feature | Overpotential/mV | Tafel slope/(mV·dec−1) | Electrolyte | Ref. |
HER | AlNiCuPtPdAu | Nanoporous | – | 28 | 0.1 mol∙L−1 HClO4 | |
AlNiCoIrMo | Nanoporous | 18.5 | 33.2 | 0.5 mol∙L−1 H2SO4 | ||
PtAuPd(RhRu) | Nanoparticles | 90 | 62 | 1.0 mol∙L−1 KOH | ||
CoFeLaNiPt | Nanoparticles | 555 | 0.1 mol∙L−1 KOH | |||
Reaction | Composition | Structural feature | Overpotential/mV | Tafel slope/(mV·dec−1) | Electrolyte | Ref. |
OER | CoFeLaNiPt | Nanoparticles | 377 | – | 0.1 mol∙L−1 KOH | |
FeNiMnCrCu | - | 342 | 58 | 1 mol∙L−1 NaOH | ||
MnFeCoNi | Nanoporous | 302 | 83.7 | 1 mol∙L−1 KOH | ||
AlNiCoFeMo | Nanoporous | 240 | 46 | 1 mol∙L−1 KOH | ||
MnFeCoNiCu | Nanoparticles | 263 | 43 | 1.0 mol∙L−1 KOH | ||
Reaction | Composition | Structural feature | If/Ib | Mass activity/(mA∙mgPt−1) | Electrolyte | Ref. |
MOR | PtFeCoNiCuAg | Nanoparticles | 1.09 | 0.504 | 0.5 mol∙L−1 H2SO4 1.0 mol∙L−1 CH3OH | |
IrOsPtRhRu | Nanoporous | 1.26 | 0.86 | 0.5 mol∙L−1 H2SO4 0.5 mol∙L−1 CH3OH |
Fig 12
(a) FESEM images of the FeCoNiCuMn NPs, (b) elemental analysis of HEA nanoparticles, (c) the bright-field TEM image of HEA, (d) high-resolution TEM image showing the atomic lattice of particle A and D, (e, f) electrocatalytic performance evaluation 52. Adapted from J. Mater. Chem. A, The Royal Society of Chemistry publisher."
1 |
Turner J. A. Science 2004, 305, 972.
doi: 10.1126/science.1103197 |
2 |
Lewis N. S. ; Nocera D. G. Proc. Natl. Acad. Sci. 2006, 103, 15729.
doi: 10.1073/pnas.0603395103 |
3 |
Chu S. ; Majumdar A. Nature 2012, 488, 294.
doi: 10.1038/nature11475 |
4 |
Seh Z. W. ; Kibsgaard J. ; Dickens C. F. ; Chorkendorff I. ; Nørskov J. K. ; Jaramillo T. F. Science 2017, 355, eaad4998.
doi: 10.1126/science.aad4998 |
5 |
Nguyen D. L. T. ; Kim Y. ; Hwang Y. J. ; Won D. H. Carbon Energy 2020, 2, 72.
doi: 10.1002/cey2.27 |
6 |
Ali A. ; Shen P. K. Carbon Energy 2020, 2, 99.
doi: 10.1002/cey2.26 |
7 |
He Y. ; Liu J. -C. ; Luo L. ; Wang Y. -G. ; Zhu J. ; Du Y. ; Li J. ; Mao S. X. ; Wang C. Proc. Natl. Acad. Sci. 2018, 115, 7700.
doi: 10.1073/pnas.1800262115 |
8 |
Li C. ; Tan H. ; Lin J. ; Luo X. ; Wang S. ; You J. ; Kang Y. -M. ; Bando Y. ; Yamauchi Y. ; Kim J. Nano Today 2018, 21, 91.
doi: 10.1016/j.nantod.2018.06.005 |
9 |
Yu J. ; He Q. ; Yang G. ; Zhou W. ; Shao Z. ; Ni M. ACS Catal. 2019, 9, 9973.
doi: 10.1021/acscatal.9b02457 |
10 |
Singh K. ; Tetteh E. B. ; Lee H. -Y. ; Kang T. -H. ; Yu J. -S. ACS Catal. 2019, 9, 8622.
doi: 10.1021/acscatal.9b01420 |
11 | Zhang C. ; Chen Z. ; Lian Y. ; Chen Y. ; Li Q. ; Gu Y. ; Lu Y. ; Deng Z. ; Peng Y. Acta Phys. -Chim. Sin. 2019, 35, 1404. |
张楚风; 陈哲伟; 连跃彬; 陈宇杰; 李沁; 顾银冬; 陆永涛; 邓昭; 彭扬. 物理化学学报, 2019, 35, 1404.
doi: 10.3866/PKU.WHXB201905030 |
|
12 |
Luo M. ; Sun Y. ; Qin Y. ; Li Y. ; Li C. ; Yang Y. ; Xu N. ; Wang L. ; Guo S. Mater. Today Nano 2018, 1, 29.
doi: 10.1016/j.mtnano.2018.04.008 |
13 |
Halawa M. I. ; Lai J. ; Xu G. Mater. Today Nano 2018, 3, 9.
doi: 10.1016/j.mtnano.2018.11.001 |
14 |
Batchelor T. A. A. ; Pedersen J. K. ; Winther S. H. ; Castelli I. E. ; Jacobsen K. W. ; Rossmeisl J. Joule 2019, 3, 834.
doi: 10.1016/.joule.2018.12.015 |
15 |
Wang S. ; Xin H. Chem 2019, 5, 502.
doi: 10.1016/j.chempr.2019.02.015 |
16 |
Nellaiappan S. ; Katiyar N. K. ; Kumar R. ; Parui A. ; Malviya K. D. ; Pradeep K. G. ; Singh A. K. ; Sharma S. ; Tiwary C. S. ; Biswas K. ACS Catal. 2020, 10, 3658.
doi: 10.1021/acscatal.9b04302 |
17 |
Nørskov J. K. ; Bligaard T. ; Rossmeisl J. ; Christensen C. H. Nat. Chem. 2009, 1, 37.
doi: 10.1038/nchem.121 |
18 |
Mao Y. ; Chen J. ; Wang H. ; Hu P. Chin. J. Catal. 2015, 36, 1596.
doi: 10.1016/S1872-2067(15)60875-0 |
19 |
Sankar M. ; Dimitratos N. ; Miedziak P. J. ; Wells P. P. ; Kiely C. J. ; Hutchings G. J. Chem. Soc. Rev. 2012, 41, 8099.
doi: 10.1039/C2CS35296F |
20 |
Pickering H. W. ; Wagner C. J. Electrochem. Soc. 1967, 114, 698.
doi: 10.1149/1.2426709/meta |
21 |
Toshima N. ; Yonezawa T. New J. Chem. 1998, 22, 1179.
doi: 10.1039/A805753B |
22 |
Tao F. ; Grass M. E. ; Zhang Y. ; Butcher D. R. ; Renzas J. R. ; Liu Z. ; Chung J. Y. ; Mun B. S. ; Salmeron M. ; Somorjai G. A. Science 2008, 322, 932.
doi: 10.1126/science.1164170 |
23 |
Pendergast A. D. ; Glasscott M. W. ; Renault C. ; Dick J. E. Electrochem. Commun. 2019, 98, 1.
doi: 10.1016/j.elecom.2018.11.005 |
24 |
Bu L. ; Zhang N. ; Guo S. ; Zhang X. ; Li J. ; Yao J. ; Wu T. ; Lu G. ; Ma J. -Y. ; Su D. ; et al Science 2016, 354, 1410.
doi: 10.1126/science.aah6133 |
25 |
Li Q. ; Wu L. ; Wu G. ; Su D. ; Lv H. ; Zhang S. ; Zhu W. ; Casimir A. ; Zhu H. ; Mendoza-Garcia A. ; Sun S. Nano Lett. 2015, 15, 2468.
doi: 10.1021/acs.nanolett.5b00320 |
26 |
Zhang S. ; Metin Ö. ; Su D. ; Sun S. Angew. Chem. Int. Ed. 2013, 52, 3681.
doi: 10.1002/anie.201300276 |
27 |
Luo M. ; Zhao Z. ; Zhang Y. ; Sun Y. ; Xing Y. ; Lv F. ; Yang Y. ; Zhang X. ; Hwang S. ; Qin Y. ; et al Nature 2019, 574, 81.
doi: 10.1038/s41586-019-1603-7 |
28 |
Hansgen D. A. ; Vlachos D. G. ; Chen J. G. Nat. Chem. 2010, 2, 484.
doi: 10.1038/nchem.626 |
29 |
Boisen A. ; Dahl S. ; Jacobsen C. J. H. J. Catal. 2002, 208, 180.
doi: 10.1006/jcat.2002.3571 |
30 |
Tomboc G. M. ; Kwon T. ; Joo J. ; Lee K. J. Mater. Chem. A 2020, 8, 14844.
doi: 10.1039/D0TA05176D |
31 |
Koo W. -T. ; Millstone J. E. ; Weiss P. S. ; Kim I. -D. ACS Nano 2020, 14, 6407.
doi: 10.1021/acsnano.0c03993 |
32 | Xin, Y.; Li, S.; Qian, Y.; Zhu, W.; Yuan, H.; Jiang, P.; Guo, R.; Wang, L. ACS Catal. 2020, 11280. doi: 10.1021/acscatal.0c03617 |
33 | Li, H.; Zhu, H.; Zhang, S.; Zhang, N.; Du, M.; Chai, Y. Small Struct. 2020, doi: 10.1002/sstr.202000033 |
34 |
Dai S. ChemSusChem 2020, 13, 1915.
doi: 10.1002/cssc.202000448 |
35 |
Xie P. ; Yao Y. ; Huang Z. ; Liu Z. ; Zhang J. ; Li T. ; Wang G. ; Shahbazian-Yassar R. ; Hu L. ; Wang C. Nat. Commun. 2019, 10, 4011.
doi: 10.1073/pnas.1903721117 |
36 |
Yao Y. ; Liu Z. ; Xie P. ; Huang Z. ; Li T. ; Morris D. ; Finfrock Z. ; Zhou J. ; Jiao M. ; Gao J. ; et al Sci. Adv. 2020, 6, eaaz0510.
doi: 10.1126/sciadv.aaz0510 |
37 |
Yao Y. ; Huang Z. ; Xie P. ; Lacey S. D. ; Jacob R. J. ; Xie H. ; Chen F. ; Nie A. ; Pu T. ; Rehwoldt M. ; et al Science 2018, 359, 1489.
doi: 10.1126/science.aan5412 |
38 |
Chen X. ; Si C. ; Gao Y. ; Frenzel J. ; Sun J. ; Eggeler G. ; Zhang Z. J. Power Sources 2015, 273, 324.
doi: 10.1016/j.jpowsour.2014.09.076 |
39 |
Li J. ; Stein H. S. ; Sliozberg K. ; Liu J. ; Liu Y. ; Sertic G. ; Scanley E. ; Ludwig A. ; Schroers J. ; Schuhmann W. ; et al J. Mater. Chem. A 2016, 5, 67.
doi: 10.1016/S1872-2067(15)60875-0 |
40 |
Li S. ; Tang X. ; Jia H. ; Li H. ; Xie G. ; Liu X. ; Lin X. ; Qiu H. J. Catal. 2020, 383, 164.
doi: 10.1016/j.jcat.2020.01.024 |
41 |
Löffler T. ; Meyer H. ; Savan A. ; Wilde P. ; Garzón Manjón A. ; Chen Y. -T. ; Ventosa E. ; Scheu C. ; Ludwig A. ; Schuhmann W. Adv. Energy Mater. 2018, 8, 1802269.
doi: 10.1002/aenm.201802269 |
42 |
Löffler T. ; Savan A. ; Meyer H. ; Meischein M. ; Strotkötter V. ; Ludwig A. ; Schuhmann W. Angew. Chem. Int. Ed. 2020, 59, 5844.
doi: 10.1002/anie.201914666 |
43 |
Qiu H. ; Fang G. ; Wen Y. ; Liu P. ; Xie G. ; Liu X. ; Sun S. J. Mater. Chem. A 2019, 7, 6499.
doi: 10.1039/C9TA00505F |
44 |
Jin Z. ; Lv J. ; Jia H. ; Liu W. ; Li H. ; Chen Z. ; Lin X. ; Xie G. ; Liu X. ; Sun S. ; Qiu H. J. Small 2019, 15, 1904180.
doi: 10.1002/smll.201904180 |
45 |
Yao Y. ; Huang Z. ; Li T. ; Wang H. ; Liu Y. ; Stein H. S. ; Mao Y. ; Gao J. ; Jiao M. ; Dong Q. ; et al Proc. Natl. Acad. Sci. 2020, 117, 6316.
doi: 10.1073/pnas.1903721117 |
46 |
Pedersen J. K. ; Batchelor T. A. A. ; Bagger A. ; Rossmeisl J. ACS Catal. 2020, 10, 2169.
doi: 10.1021/acscatal.9b04343 |
47 |
Glasscott M. W. ; Pendergast A. D. ; Goines S. ; Bishop A. R. ; Hoang A. T. ; Renault C. ; Dick J. E. Nat. Commun. 2019, 10, 2650.
doi: 10.1038/s41467-019-10303-z |
48 |
Liu M. ; Zhang Z. ; Okejiri F. ; Yang S. ; Zhou S. ; Dai S. Adv. Mater. Interfaces 2019, 6, 1900015.
doi: 10.1002/admi.201900015 |
49 |
Waag F. ; Li Y. ; Ziefuß A. R. ; Bertin E. ; Kamp M. ; Duppel V. ; Marzun G. ; Kienle L. ; Barcikowski S. ; Gökce B. RSC Adv. 2019, 9, 18547.
doi: 10.1039/C9RA03254A |
50 |
Cui X. ; Zhang B. ; Zeng C. ; Guo S. MRS Commun. 2018, 8, 1230.
doi: 10.1557/mrc.2018.111 |
51 |
Dai W. ; Lu T. ; Pan Y. J. Power Sources 2019, 430, 104.
doi: 10.1016/j.jpowsour.2019.05.030 |
52 |
Huang K. ; Zhang B. ; Wu J. ; Zhang T. ; Peng D. ; Cao X. ; Zhang Z. ; Li Z. ; Huang Y. J. Mater. Chem. A 2020, 8, 11938.
doi: 10.1039/D0TA02125C |
53 |
Qiu H. ; Fang G. ; Gao J. ; Wen Y. ; Lv J. ; Li H. ; Xie G. ; Liu X. ; Sun S. ACS Mater. Lett. 2019, 1, 526.
doi: 10.1021/acsmaterialslett.9b00414 |
54 |
Feng J. ; Chen D. ; Pikhitsa P. V. ; Jung Y. -H. ; Yang J. ; Choi M. Matter 2020, 3, 1646.
doi: 10.1016/j.matt.2020.07.027 |
55 |
Tsai C. -F. ; Yeh K. -Y. ; Wu P. -W. ; Hsieh Y. -F. ; Lin P. J. Alloys Compd. 2009, 478, 868.
doi: 10.1016/j.jallcom.2008.12.055 |
56 |
Yusenko K. V. ; Riva S. ; Carvalho P. A. ; Yusenko M. V. ; Arnaboldi S. ; Sukhikh A. S. ; Hanfland M. ; Gromilov S. A. Scr. Mater. 2017, 138, 22.
doi: 10.1016/j.scriptamat.2017.05.022 |
57 |
Katiyar N. K. ; Nellaiappan S. ; Kumar R. ; Malviya K. D. ; Pradeep K. G. ; Singh A. K. ; Sharma S. ; Tiwary C. S. ; Biswas K. Mater. Today Energy 2020, 16, 100393.
doi: 10.1016/j.mtener.2020.100393 |
58 |
Yeh J. W. ; Chen S. K. ; Lin S. J. ; Gan J. Y. ; Chin T. S. ; Shun T. T. ; Tsau C. H. ; Chang S. Y. Adv. Eng. Mater. 2004, 6, 299.
doi: 10.1002/adem.200300567 |
59 | Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Mater. Sci. Eng. A 2004, 375–377, 213. doi: 10.1016/j.msea.2003.10.257 |
60 |
Yeh J. -W. JOM 2013, 65, 1759.
doi: 10.1007/s11837-013-0761-6 |
61 |
Ruffa A. R. Phys. Rev. B 1982, 25, 5895.
doi: 10.1103/PhysRevB.25.5895 |
62 |
Zhang W. ; Liaw P. K. ; Zhang Y. Sci. China Mater. 2018, 61, 2.
doi: 10.1007/s40843-017-9195-8 |
63 |
Gludovatz B. ; Hohenwarter A. ; Thurston K. V. S. ; Bei H. ; Wu Z. ; George E. P. ; Ritchie R. O. Nat. Commun. 2016, 7, 10602.
doi: 10.1038/ncomms10602 |
64 |
Zhang Z. ; Sheng H. ; Wang Z. ; Gludovatz B. ; Zhang Z. ; George E. P. ; Yu Q. ; Mao S. X. ; Ritchie R. O. Nat. Commun. 2017, 8, 14390.
doi: 10.1038/ncomms14390 |
65 |
Ding J. ; Yu Q. ; Asta M. ; Ritchie R. O. Proc. Natl. Acad. Sci. 2018, 115, 8919.
doi: 10.1073/pnas.1808660115 |
66 |
Zhang R. ; Zhao S. ; Ding J. ; Chong Y. ; Jia T. ; Ophus C. ; Asta M. ; Ritchie R. O. ; Minor A. M. Nature 2020, 581, 283.
doi: 10.1038/s41586-020-2275-z |
67 |
George E. P. ; Raabe D. ; Ritchie R. O. Nat. Rev. Mater. 2019, 4, 515.
doi: 10.1038/s41578-019-0121-4 |
68 |
Ma D. ; Grabowski B. ; Körmann F. ; Neugebauer J. ; Raabe D. Acta Mater. 2015, 100, 90.
doi: 10.1016/j.actamat.2015.08.050 |
69 |
Miracle D. B. ; Senkov O. N. Acta Mater. 2017, 122, 448.
doi: 10.1016/j.actamat.2016.08.081 |
70 |
Zhang Y. ; Zuo T. T. ; Tang Z. ; Gao M. C. ; Dahmen K. A. ; Liaw P. K. ; Lu Z. P. Proc. Natl. Acad. Sci. 2014, 61, 1.
doi: 10.1016/j.pmatsci.2013.10.001 |
71 |
Gibbs J. W. Am. J. Sci. 1878, 16, 441.
doi: 10.2475/ajs.s3-16.96.441 |
72 |
Yeh J. -W. ; Chang S. -Y. ; Hong Y. -D. ; Chen S. -K. ; Lin S. -J. Mater. Chem. Phys. 2007, 103, 41.
doi: 10.1016/j.matchemphys.2007.01.003 |
73 |
Guo W. ; Dmowski W. ; Noh J. ; Rack P. D. ; Liaw P. K. ; Egami T. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2013, 44, 1994.
doi: 10.1007/s11661-012-1474-0 |
74 |
Tsai K. Y. ; Tsai M. H. ; Yeh J. W. Acta Mater. 2013, 61, 4887.
doi: 10.1016/j.actamat.2013.04.058 |
75 | Ranganathan S. Curr. Sci. 2003, 85, 1404. |
76 |
Pickering E. J. ; Jones N. G. Int. Mater. Rev. 2016, 61, 183.
doi: 10.1080/09506608.2016.1180020 |
77 |
Pickering E. J. ; Muñoz-Moreno R. ; Stone H. J. ; Jones N. G. Scr. Mater. 2016, 113, 106.
doi: 10.1016/j.scriptamat.2015.10.025 |
78 |
Laplanche G. ; Berglund S. ; Reinhart C. ; Kostka A. ; Fox F. ; George E. P. Acta Mater. 2018, 161, 338.
doi: 10.1016/j.actamat.2018.09.040 |
79 |
Schuh B. ; Mendez-Martin F. ; Völker B. ; George E. P. ; Clemens H. ; Pippan R. ; Hohenwarter A. Acta Mater. 2015, 96, 258.
doi: 10.1016/j.actamat.2015.06.025 |
80 |
Otto F. ; Dlouhý A. ; Pradeep K. G. ; Kuběnová M. ; Raabe D. ; Eggeler G. ; George E. P. Acta Mater. 2016, 112, 40.
doi: 10.1016/j.actamat.2016.04.005 |
81 |
Sharma G. ; Kumar D. ; Kumar A. ; Al-Muhtaseb A. a. H. ; Pathania D. ; Naushad M. ; Mola G. T. Mater. Sci. Eng. C 2017, 71, 1216.
doi: 10.1016/j.msec.2016.11.002 |
82 |
Yang Y. ; Lin Z. ; Gao S. ; Su J. ; Lun Z. ; Xia G. ; Chen J. ; Zhang R. ; Chen Q. ACS Catal. 2017, 7, 469.
doi: 10.1021/acscatal.6b02573 |
83 |
Gao S. ; Hao S. ; Huang Z. ; Yuan Y. ; Han S. ; Lei L. ; Zhang X. ; Shahbazian-Yassar R. ; Lu J. Nat. Commun. 2020, 11, 2016.
doi: 10.1038/s41467-020-15934-1 |
84 |
Wu D. ; Kusada K. ; Yamamoto T. ; Toriyama T. ; Matsumura S. ; Kawaguchi S. ; Kubota Y. ; Kitagawa H. J. Am. Chem. Soc. 2020, 142, 13833.
doi: 10.1021/jacs.0c04807 |
85 |
Glasscott M. W. ; Pendergast A. D. ; Dick J. E. ACS Appl. Nano Mater. 2018, 1, 5702.
doi: 10.1021/acsanm.8b01308 |
86 |
Glasscott M. W. ; Dick J. E. ACS Nano 2019, 13, 4572.
doi: 10.1021/acsnano.9b00546 |
87 |
Glasscott M. W. ; Dick J. E. Anal. Chem. 2018, 90, 7804.
doi: 10.1021/acs.analchem.8b02219 |
88 |
LaMer V. K. ; Dinegar R. H. J. Am. Chem. Soc. 1950, 72, 4847.
doi: 10.1021/ja01167a001 |
89 |
Pound G. M. ; Mer V. K. L. J. Am. Chem. Soc. 1952, 74, 2323.
doi: 10.1021/ja01129a044 |
90 |
Jia Z. ; Yang T. ; Sun L. ; Zhao Y. ; Li W. ; Luan J. ; Lyu F. ; Zhang L. C. ; Kruzic J. J. ; Kai J. J. ; et al Adv. Mater. 2020, 32, 2000385.
doi: 10.1002/adma.202000385 |
91 |
Chen P. ; Liu X. ; Hedrick J. L. ; Xie Z. ; Wang S. ; Lin Q. -Y. ; Hersam M. C. ; Dravid V. P. ; Mirkin C. A. Science 2016, 352, 1565.
doi: 10.1126/science.aaf8402 |
92 |
Chen P. ; Liu M. ; Du J. S. ; Meckes B. ; Wang S. ; Lin H. ; Dravid V. P. ; Wolverton C. ; Mirkin C. A. Science 2019, 363, 959.
doi: 10.1126/science.aav4302 |
93 |
Chen P. ; Du J. S. ; Meckes B. ; Huang L. ; Xie Z. ; Hedrick J. L. ; Dravid V. P. ; Mirkin C. A. J. Am. Chem. Soc. 2017, 139, 9876.
doi: 10.1021/jacs.7b03163 |
94 |
Xu X. ; Du Y. ; Wang C. ; Guo Y. ; Zou J. ; Zhou K. ; Zeng Z. ; Liu Y. ; Li L. J. Alloys Compd. 2020, 822, 153642.
doi: 10.1016/j.jallcom.2020.153642 |
95 |
Calvo-Dahlborg M. ; Brown S. G. R. J. Alloys Compd. 2017, 724, 353.
doi: 10.1016/j.jallcom.2017.07.074 |
96 |
Otto F. ; Yang Y. ; Bei H. ; George E. P. Acta Mater. 2013, 61, 2628.
doi: 10.1016/j.actamat.2013.01.042 |
97 |
Masa J. ; Schuhmann W. J. Solid State Electrochem. 2020, 24, 2181.
doi: 10.1007/s10008-020-04757-1 |
98 |
Medford A. J. ; Vojvodic A. ; Hummelshøj J. S. ; Voss J. ; Abild-Pedersen F. ; Studt F. ; Bligaard T. ; Nilsson A. ; Nørskov J. K. J. Catal. 2015, 328, 36.
doi: 10.1016/j.jcat.2014.12.033 |
99 |
Torelli D. A. ; Francis S. A. ; Crompton J. C. ; Javier A. ; Thompson J. R. ; Brunschwig B. S. ; Soriaga M. P. ; Lewis N. S. ACS Catal. 2016, 6, 2100.
doi: 10.1021/acscatal.5b02888 |
100 |
Wang S. ; Jiang S. P. Natl. Sci. Rev. 2017, 4, 163.
doi: 10.1093/nsr/nww099 |
101 |
Gong K. ; Du F. ; Xia Z. ; Durstock M. ; Dai L. Science 2009, 323, 760.
doi: 10.1126/science.1168049 |
102 |
Wang T. ; Xie H. ; Chen M. ; D'Aloia A. ; Cho J. ; Wu G. ; Li Q. Nano Energy 2017, 42, 69.
doi: 10.1016/j.nanoen.2017.10.045 |
103 |
Zhao T. ; Hu Y. ; Gong M. ; Lin R. ; Deng S. ; Lu Y. ; Liu X. ; Chen Y. ; Shen T. ; Hu Y. ; et al Nano Energy 2020, 74, 104877.
doi: 10.1016/j.nanoen.2020.104877 |
104 |
Qiu H. J. ; Shen X. ; Wang J. Q. ; Hirata A. ; Fujita T. ; Wang Y. ; Chen M. W. ACS Catal. 2015, 5, 3779.
doi: 10.1021/acscatal.5b00073 |
105 |
Jia Q. ; Zhao Z. ; Cao L. ; Li J. ; Ghoshal S. ; Davies V. ; Stavitski E. ; Attenkofer K. ; Liu Z. ; Li M. ; et al Nano Lett. 2018, 18, 798.
doi: 10.1021/acs.nanolett.7b04007 |
106 |
Shi Y. ; Yang B. ; Liaw P. Metals 2017, 2, 107.
doi: 10.3390/met7020043 |
107 |
Alaneme K. K. ; Bodunrin M. O. ; Oke S. R. J. Mater. Res. Technol. 2016, 5, 384.
doi: 10.1016/j.jmrt.2016.03.004 |
108 |
Chou Y. L. ; Yeh J. W. ; Shih H. C. Corros. Sci. 2010, 52, 2571.
doi: 10.1016/j.corsci.2010.04.004 |
109 |
Shi Y. ; Yang B. ; Xie X. ; Brechtl J. ; Dahmen K. A. ; Liaw P. K. Corros. Sci. 2017, 119, 33.
doi: 10.1016/j.corsci.2017.02.019 |
110 |
McNicol B. D. ; Rand D. A. J. ; Williams K. R. J. Power Sources 1999, 83, 15.
doi: 10.1016/S0378-7753(99)00244-X |
111 |
Kamarudin S. K. ; Achmad F. ; Daud W. R. W. Int. J. Hydrog. Energy 2009, 34, 6902.
doi: 10.1016/j.ijhydene.2009.06.013 |
112 |
Tiwari J. N. ; Tiwari R. N. ; Singh G. ; Kim K. S. Nano Energy 2013, 2, 553.
doi: 10.1016/j.nanoen.2013.06.009 |
113 |
Zhuang L. Carbon Energy 2018, 34, 115.
doi: 10.3866/pku.Whxb201707102 |
114 | Zhou Y. ; Han N. ; Li Y. Acta Phys. -Chim. Sin. 2020, 36, 2001041. |
周远; 韩娜; 李彦光. 物理化学学报, 2020, 36, 2001041.
doi: 10.3866/PKU.WHXB202001041 |
|
115 |
Wang S. ; Kou T. ; Baker S. E. ; Duoss E. B. ; Li Y. Mater. Today Nano 2020, 12, 100096.
doi: 10.1016/j.mtnano.2020.100096 |
116 |
Kang Y. ; Yang P. ; Markovic N. M. ; Stamenkovic V. R. Nano Today 2016, 11, 587.
doi: 10.1016/j.nantod.2016.08.008 |
117 |
Chen Y. ; Lai Z. ; Zhang X. ; Fan Z. ; He Q. ; Tan C. ; Zhang H. Nat. Rev. Chem. 2020, 4, 243.
doi: 10.1038/s41570-020-0173-4 |
118 |
Fan Z. ; Zhang H. Chem. Soc. Rev. 2016, 45, 63.
doi: 10.1039/C5CS00467E |
119 |
Xia Y. ; Xiong Y. ; Lim B. ; Skrabalak S. E. Angew. Chem. Int. Ed. 2009, 48, 60.
doi: 10.1002/anie.200802248 |
120 |
Tan C. ; Chen J. ; Wu X. -J. ; Zhang H. Nat. Rev. Mater. 2018, 3, 17089.
doi: 10.1038/natrevmats.2017.89 |
121 |
Aslam U. ; Rao V. G. ; Chavez S. ; Linic S. Nat. Catal. 2018, 1, 656.
doi: 10.1038/s41929-018-0138-x |
122 |
Luo M. ; Guo S. Nat. Rev. Mater. 2017, 2, 17059.
doi: 10.1038/natrevmats.2017.59 |
123 |
Hwang S. ; Chen X. ; Zhou G. ; Su D. Adv. Energy Mater. 2020, 10, 1902105.
doi: 10.1002/aenm.201902105 |
124 |
Su D. Green Energy Environ. 2017, 2, 70.
doi: 10.1016/j.gee.2017.02.001 |
125 |
Gilroy K. D. ; Ruditskiy A. ; Peng H. -C. ; Qin D. ; Xia Y. Chem. Rev. 2016, 116, 10414.
doi: 10.1021/acs.chemrev.6b00211 |
126 |
Ge M. ; Su F. ; Zhao Z. ; Su D. Mater. Today Nano 2020, 11, 100087.
doi: 10.1016/j.mtnano.2020.100087 |
127 |
Jia Z. ; Yang T. ; Sun L. ; Zhao Y. ; Li W. ; Luan J. ; Lyu F. ; Zhang L. -C. ; Kruzic J. J. ; Kai J. -J. ; et al Adv. Mater. 2020, 32, 2000385.
doi: 10.1002/adma.202000385 |
128 |
Anandkumar M. ; Bhattacharya S. ; Deshpande A. S. RSC Adv. 2019, 9, 26825.
doi: 10.1039/C9RA04636D |
129 |
Chen H. ; Lin W. ; Zhang Z. ; Jie K. ; Mullins D. R. ; Sang X. ; Yang S. -Z. ; Jafta C. J. ; Bridges C. A. ; Hu X. ; et al ACS Mater. Lett. 2019, 1, 83.
doi: 10.1021/acsmaterialslett.9b00064 |
130 |
Chen H. ; Jie K. ; Jafta C. J. ; Yang Z. ; Yao S. ; Liu M. ; Zhang Z. ; Liu J. ; Chi M. ; Fu J. ; et al Appl. Catal. B 2020, 276, 119155.
doi: 10.1016/j.apcatb.2020.119155 |
131 |
Deng C. ; Wu P. ; Zhu L. ; He J. ; Tao D. ; Lu L. ; He M. ; Hua M. ; Li H. ; Zhu W. Appl. Mater. Today 2020, 20, 100680.
doi: 10.1016/j.apmt.2020.100680 |
132 |
Okejiri F. ; Zhang Z. ; Liu J. ; Liu M. ; Yang S. ; Dai S. ChemSusChem 2020, 13, 111.
doi: 10.1002/cssc.201902705 |
133 |
Oses C. ; Toher C. ; Curtarolo S. Nat. Rev. Mater. 2020, 5, 295.
doi: 10.1038/s41578-019-0170-8 |
134 |
Wang T. ; Chen H. ; Yang Z. ; Liang J. ; Dai S. J. Am. Chem. Soc. 2020, 142, 4550.
doi: 10.1021/jacs.9b12377 |
[1] | Yuehan Cao, Rui Guo, Minzhi Ma, Zeai Huang, Ying Zhou. Effects of Electron Density Variation of Active Sites in CO2 Activation and Photoreduction: A Review [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303029-. |
[2] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[3] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[4] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[5] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[6] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[7] | Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211025-0. |
[8] | Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2301023-0. |
[9] | Yifei Xu, Hanwen Yang, Xiaoxia Chang, Bingjun Xu. Introduction to Electrocatalytic Kinetics [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2210025-0. |
[10] | Ruifang Wei, Dongfeng Li, Heng Yin, Xiuli Wang, Can Li. Operando Electrochemical UV-Vis Absorption Spectroscopy with Microsecond Time Resolution [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207035-0. |
[11] | Tianran Wei, Shusheng Zhang, Qian Liu, Yuan Qiu, Jun Luo, Xijun Liu. Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207026-0. |
[12] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[13] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[14] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[15] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
|