Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (5): 2211025.doi: 10.3866/PKU.WHXB202211025
• REVIEW • Previous Articles Next Articles
Shuai Yang1, Yuxin Xu1, Zikun Hao1, Shengjian Qin1, Runpeng Zhang1, Yu Han1, Liwei Du1, Ziyi Zhu1, Anning Du1, Xin Chen3, Hao Wu4, Bingbing Qiao5, Jian Li6,7, Yi Wang1, Bingchen Sun1, Rongrong Yan1, Jinjin Zhao2,*()
Received:
2022-11-16
Accepted:
2022-12-22
Published:
2022-12-30
Contact:
Jinjin Zhao
E-mail:jinjinzhao2012@163.com
Supported by:
Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors[J]. Acta Phys. -Chim. Sin. 2023, 39(5), 2211025. doi: 10.3866/PKU.WHXB202211025
Fig 1
Structures, properties and physical mechanisms of perovskite. (a) Crystal cell structure of ABX3 type perovskite. (b) Several typical element valence states in perovskite materials, which can be used for electrocatalysis; (c) Common elements in ABX3 perovskite; (d) The photoelectric conversion mechanism 7, (e) all-optical conversion mechanism 7 and (f) electro-optical conversion mechanism in perovskite materials 7. (d–f) Adapted with permission from Ref. 7, Copyright 2022 John Wiley and Sons."
Fig 2
Operation mechanisms and device performances of perovskite photoelectric conversion medical sensor. (a) The detecting mechanism of perovskite photoelectric conversion sensors. (b) The operation mechanism of the TiO2/SrTiO3/polydopamine/glucose oxidase photoelectric conversion sensor 21. (c) The detecting mechanism, measurement method 85 and (d) surface passivation mechanism of the CsPbBr3 quantum dot-MoS2 nanoflakes photoelectric conversion sensor 85. (e) Current–time (I–t) characteristics of the Au/Bi4NbO8Cl heterojunction photoelectric conversion sensor at different cysteine concentrations 83. (f) I–t characteristics of the dual functional molecular imprinted polymers/MAPbI3/ITO photoelectric conversion sensor under different salicylic acid concentrations, and the inset is the linear calibration curve 86. (g) Comparison of the detection results of the CsPbBr3 quantum dot-MoS2 nanoflakes photoelectric conversion sensor and the luminometer at different alpha fetoprotein concentrations 85. (b) Adapted from Elsevier publisher; (c, d, g) Adapted with permission from Ref. 85, Copyright 2021 American Chemical Society; (e) Adapted with permission from Ref. 83, Copyright 2017 American Chemical Society. (f) Adapted with permission from Ref. 86, Copyright 2019 American Chemical Society."
Table 1
The key materials and device performances of perovskite photoelectric conversion medical sensors."
Detected substance | Key materials | Detection range | Limit of detection | Ref. |
Glucose | TiO2/SrTiO3/polydopamine/glucose oxidase | 0–32 mmol∙L−1 | 25.68 μmol∙L−1 | |
Cysteine | Au/Bi4NbO8Cl | 0.1–5 mmol∙L−1 | 10−5 mol∙L−1 | |
Dihydronicotinamide Adenine Dinucleotide | ZnO-inverse opal photonic crystals/CsPbBr3 | 0.1–250 μmol∙L−1 | 0.0120 μmol∙L−1 | |
Cholesterol | Molecularly imprinted polymer@polyvinylidene fluoride-MAPbI3@carbon nanodots | 1.0 × 10−13–5.0 × 10−8 mol∙L−1 | 2.1 × 10−14 mol∙L−1 | |
miR-155 | MAPbI3/ZnO | 1 × 10−2 fmol∙L−1–2 × 104 pmol∙L−1 | 5 × 10−3 fmol∙L−1 | |
Human hepatitis B surface antigen | CsPbBr3-MoS2 | Order of magnitude of dilution factor 10−4–1 | Dilution factor 4.6 × 10−3 | |
Human immunodeficiency virus antibody | Dilution factor 2.1 × 10−3 | |||
Alpha fetoprotein | CsPbBr3-MoS2 | 0.1–500 ng∙mL−1 | 2.7 ng∙mL−1 | |
TiO2-inverse opal photonic crystals/CsPbCl3 | 0.08–980 ng∙mL−1 | 30 pg∙mL−1 | ||
5-hydroxymethylcytosine | Bi4NbO8Cl@Bi2S3 | 0.3–300 nmol∙L−1 | 0.0779 nmol∙L−1 | |
Salicylic Acid | Molecularly imprinted polymer/MAPbI3 | 7.0 × 10−13–1.0 × 10−8 mol∙L−1 | 1.95 × 10−13 mol∙L−1 | |
Ampicillin | BiFeO3/graphite-like C3N4 | 1 × 10−12–1 × 10–6 mol∙L−1 | 3.3 × 10−13 mol∙L−1 |
Fig 3
Operation mechanisms and device performances of perovskite all-optical conversion medical sensors. (a) The operation mechanism of the CsPbBr3 sensor for sensing Cl− and I− concentrations 26, 31. (b) The operation mechanism of the CsPbBr3 nanocrystal@phospholipid all-optical conversion sensor for detecting bee venom concentrations 75. (c) Photoluminescence (PL) spectra and fluorescence photos of the CsPbBr3 all-optical conversion sensor under different humidities 101. (d) PL spectra and fluorescence photos of CsPbBr3@poly(styrene/acrylamide) all-optical conversion sensor at different Fe3+ concentrations 30. (e) PL spectra and fluorescence photos of CsPbBr3 all-optical conversion sensor under different Cl− concentrations 31. Fluorescence change mechanism of perovskite all-optical conversion medical sensor, (f) Electrons are transferred, and the fluorescence is quenched; (g) Perovskite material is degraded, and the fluorescence is quenched; (h) Phase transition occurs, and the fluorescence emission spectrum changes. (a) Adapted with permission from Ref. 26, Copyright 2019 American Chemical Society; Adapted from Springer Nature publisher; (b) Adapted from Elsevier publisher; (c) Adapted from Elsevier publisher; (d) Adapted from Elsevier publisher; (e) Adapted from Springer Nature publisher."
Table 2
The key materials and device performances of perovskite all-optical conversion medical sensors."
Detected substance | Key materials | Detection range | Limit of detection | Ref. |
Urea | CsPbBr3@poly (styrene/acrylamide) | 1.67 μmol∙L−1–16.67 mmol∙L−1 | 1.67 μmol∙L−1 | |
Humidity | CsPbBr3 | 33%–98% | 12% | |
Fe3+ | CsPbBr3@poly(styrene/acrylamide) | 5–150 μmol∙L−1 | 2.2 μmol∙L−1 | |
SiO2@CsPbX3@SiO2 (X = Cl−, Br−, I−) | 10–70 μmol∙L−1 | 3 μmol∙L−1 | ||
Cl− | CsPbBr3 | 10–130 mmol∙L−1 | 3 mmol∙L−1 | |
CsPbBr3/cellulose | - | 4.11 mmol∙L−1 | ||
I– | CsPbBr3/cellulose | 100 μmol∙L−1–1 mol∙L−1 | 2.56 mmol∙L−1 | |
Omethoate | Molecularly imprinted polymer@CsPbBr3 | 50–400 ng∙mL−1 | 18.8 ng∙mL−1 | |
Melittin | CsPbBr3@Phospholipid | 50 nmol∙L−1–150 μmol∙L−1 | 50 nmol∙L−1 | |
Fluoride | MAPbBr3@n-Octylamine & 6-amino-1-hexanol | 10–50 μmol∙L−1 | 3.2 μmol∙L−1 | |
Water content in herbal medicines | CsPbBr3 | 1%–17% | Seutellaria baicalensis 0.75%, Astragalus flavone 0.67% | |
Gallic acid | LaFeO3 | 0.6–36 μmol∙L−1 | 0.4 μmol∙L−1 | |
Tetracycline | 3-aminopropyltriethoxysilane @CsPbBr3 | 0.5–15.0 μmol∙L−1 | 76 nmol∙L−1 | |
CsPbBr3@BN | 0–0.44 mg∙L−1 | 6.5 ng∙mL−1 |
Fig 4
Operation mechanisms and device performances of perovskite electrocatalytic medical sensors. (a) Sensing mechanism of perovskite electrocatalytic medical sensors. (b) The operation mechanism of GdTiO3 graphene modified glassy carbon electrode (GCE) for sensing dopamine and acetaminophen 105. (c) Voltage–ampere curves of NdNiO3/GCE under different glucose concentrations, and the inset is the variation of oxidation peak current with glucose concentrations 68. (d) Differential pulse voltammetry curves of GdTiO3-graphene modified GCE at different dopamine (DA) concentrations 105. (e) The Mn 2p spectrum in the X-ray photoelectron spectroscopy of LaMnO3, which shows that Mn3+and Mn4+ coexist 22. (f) Voltage–ampere curves of LaNi0.8Co0.2O3/carbon paste electrode (CPE) at different DA concentrations, uric acid concentrations and acetaminophen concentrations28. (g) Current–time response of LaNi0.6Co0.4O3/CPE at different H2O2 concentrations 67. (h) The device appearance, device insertion path along mouse brain and experimental environment for stimulating mouse brain of the NdNiO3/Nafion heterojunction glutamate sensor 27. (b) Adapted from Elsevier publisher; (c) Adapted from Royal Society of Chemistry publisher; (d) Adapted from Elsevier publisher; (e) Adapted from Elsevier publisher; (f) Adapted from Elsevier publisher; (g) Adapted from Elsevier publisher; (h) Adapted from Elsevier publisher."
Table 3
The key materials and device performances of perovskite electrocatalysis medical sensors."
Substance | Key materials | Detection range | Limit of detection | Sensitivity | Ref. |
Glucose | NdNiO3 | 0.5 μmol∙L−1–4.6 mmol∙L−1 | 0.3 µmol∙L−1 | 1105.1 µA·L·mmol−1·cm−2 | |
La0.6Sr0.4CoO3−δ-reduced graphene oxide | 2–335 μmol∙L−1 | 0.063 μmol∙L−1 | 330 μA·L·mmol−1·cm−2 | ||
LaTiO3-Ag0.1 | 0.01 μmol∙L−1–0.10 mmol∙L−1 | 2.50 nmol∙L−1 | 780 μA·L·mmol−1·cm−2 | ||
LaNi0.6Co0.4O3 | 0.05–200 μmol∙L−1 | 8.0 nmol∙L−1 | 643.0 μA·L·mmol−1·cm−2 | ||
LaTiO3-Ag0.2 | 2.5 μmol∙L−1–4 mmol∙L−1 | 0.21 μmol∙L−1 | 784.14 mA·L·mmol−1·cm−2 | ||
LaCoO3 | 10 nmol∙L−1–407.2 μmol∙L−1 | 1.6 nmol∙L−1 | 3.279 μA·L·μmol−1·cm−2 | ||
Glucose oxidase/ SrTiO3-chitosan | 0.01–1.2 mmol∙L−1 | 3 μmol∙L−1. | 15.6 mA·L·mol−1·cm−2 | ||
Sr2Pd0.7Au0.3O3 | 0.2–100 μmol∙L−1 | 2.11 nmol∙L−1 | 14.40 mA·L·mmol−1·cm−2 | ||
Glucose oxidase/ CaTiO3-chitosan | 7 μmol∙L−1–1.49 mmol∙L−1 | 2.3 μmol∙L−1 | 14.10 ± 0.5 mA·L·mol−1·cm−2 | ||
L-cysteine | LaNi0.5Ti0.5O3 | 2.5–40 μmol∙L−1 | 0.5 μmol∙L−1 | 55 nA·L·μmol−1 | |
L-tryptophane | 5–60 μmol∙L−1 | 0.67 μmol∙L−1 | 38.2 nA·L·μmol−1 | ||
L-alanine | 50–600 μmol∙L−1 | 8 μmol∙L−1 | 3.08 nA·L·μmol−1 | ||
L-phenylalanine | 25–500 μmol∙L−1 | 3 μmol∙L−1 | 3.84 nA·L·μmol−1 | ||
Uric acid | SrPdO3 | - | - | - | |
FeTiO3 | 1–150 μmol∙L−1, 200–500 μmol∙L−1 | 30 nmol∙L−1 | - | ||
Urea | LaNixCo1−xO3 | 50 nmol∙L−1–0.08 mmol∙L−1 | 5.0 nmol∙L−1 | - | |
Dopamine | SrPdO3 | 7–70 μmol∙L−1 | 9.3 nmol∙L−1 | 0.8807 μA·L·μmol−1 | |
KTaO3 | 0.5–4.5 μmol∙L−1 | - | - | ||
FeTiO3 | 1–90 μmol∙L−1, 110–350 μmol∙L−1 | 1.3 nmol∙L−1 | 1.56 μA·L·μmol−1·cm−2 | ||
GdTiO3/graphene | 72 nmol∙L−1–1.5 μmol∙L−1 | 96.89 nmol∙L−1 | 3.357 ×10−5 A·L·nmol−1 | ||
LaMnO3 | 1–600 μmol∙L−1 | 32 nmol∙L−1 | 1 µA·L·μmol−1 | ||
LaNixCo1−xO3 | 80 nmol∙L−1–0.08 mmol∙L−1 | 3 nmol∙L−1 | - | ||
LaBO3 (B = Fe, Co, Ni) | 80 nmol∙L−1–20 μmol∙L−1 | 9 nmol∙L−1 | - | ||
L-dopa | SrPdO3 | 0.6–9 μmol∙L−1 | 1.63 nmol∙L−1 | 0.7958 μA·L·μmol−1 | |
Serotonin | LaBO3 (B = Fe, Co, Ni) | 100 nmol∙L−1–80 μmol∙L−1 | 14 nmol∙L−1 | - | |
Tyrosine | LaBO3 (B = Fe, Co, Ni) | 0.5–70 μmol∙L−1 | 56 nmol∙L−1 | - | |
Glutamate | NdNiO3/Nafion/glutamate oxidase | 1–700 μmol∙L−1。 | 16 nmol∙L−1 | – | |
H2O2 | BiFeO3/Cress peroxidase | 0.2–50 μmol∙L−1 | 80 nmol∙L−1 | 0.142 mA·L·μmol−1·cm−2 | |
LaNi0.6Co0.4O3 | 10 nmol∙L−1–100 μmol∙L−1 | 1.0 nmol∙L−1 | 1812.84 μA·L·mmol−1·cm−2 | ||
La0.6Sr0.4CoO3−δ-reduced graphene oxide | 0.2–3350 μmol∙L−1 | 0.05 μmol∙L−1 | 500 μA·L·mmol−1·cm−2 | ||
Atrazine | Al2NiCoO5 | 0.5 × 10−9–10−7 (volume fraction) | 0.3 × 10−9 (volume fraction) | 0.929 μA∙ppb−1∙cm2 | |
Amlodipine | NdFeO3/glycine/carbon nanotubes | 3 nmol∙L−1–200 μmol∙L−1 | 0.704 nmol∙L−1 | 113.2 μA·L·μmol−1 | |
Ascorbic acid | NdFeO3/glycine/ carbon nanotubes | 0.5–2.5 mmol∙L−1 | - | - | |
SrPdO3 | - | - | - | ||
Acetaminophen | GdTiO3/graphene | 50 nmol∙L−1–1.5 μmol∙L−1 | 58.85 nmol∙L−1 | 2.177 ×10−5 A·L·nmol−1 | |
LaBO3 (B = Fe, Co, Ni) | 300 nmol∙L−1–27 μmol∙L−1 | 35 nmol∙L−1 | - | ||
LaNixCo1−xO3 | 1 μmol∙L−1–0.1 mmol∙L−1 | 100.0 nmol∙L−1 | - | ||
Protocatechuic acid | EDAPbCl4@ZIF-67 | 22–337 μmol∙L−1 | 15 μmol∙L−1 | - |
Fig 5
Operation mechanisms and device performances of perovskite electrocatalytic medical sensors. (a) Mechanism of CsPbBr3 forming p-type semiconductors. (b) H+ transfer mechanism on the surface of the Cs2BiAgBr6 material 119. (c) The device structure of CsPbBr3 humidity sensor 120. (d) Increased current paths after the adsorption of H2O on the surface of the CsPbBr3 material 120. (e) Impedance spectrum of the CsPbBr3 humidity sensor under different humidities 120. (f) Physical mechanism of metal oxide perovskite for sulfide detection, in which OC is the surface absorbed oxygen. (g) Response values of LnFeO3 (Ln = La, Pr, Nd, Sm) gas sensor under different H2S concentrations (Resistance in the detected gas (Rg)/resistance the in air (Ra)) 29. (h) Device structure of the SPR glucose sensor 121. (i) Variation of reflectivity with incident angle under different glucose concentrations on the SPR glucose sensor 121. (b) Adapted from John Wiley and Sons publisher; (c–e) Adapted from Elsevier publisher; (g) Adapted from Elsevier publisher; (h, i) Adapted from Springer Nature publisher."
Table 4
The key materials, operation mechanisms and device performances of perovskite physicochemically carring medical sensors and SPR medical sensors."
Substance | Key materials | Operation mechanism | Detection range | Limit of detection | Ref. |
Humidity | CsPbBr3 | Physicochemically loading | 23%–67% | - | |
Cs2BiAgBr6 | 5%–75% | - | |||
Volatile biomarkers exhaled by colorectal cancer | SmFeO3 | Physicochemically loading | - | - | |
Carcinoembryonic antigen | LaMnO3 | Physicochemically loading | 10−4–102 ng∙mL−1 | 3.6 × 10−4 ng∙mL−1 | |
Prostate specific antigen | 10−4–102 ng∙mL−1 | 2.8 × 10−4 ng∙mL−1 | |||
Alpha fetoprotein | 10−4–102 ng∙mL−1 | 3.4 × 10 −4 ng∙mL−1 | |||
Volatile sulfur compounds | LnFeO3 (Ln = La, Pr, Nd, Sm) | Physicochemically loading | 10–102 ppm | - | |
Glucose | Ag/TiO2/MAPbX3/graphene (X = I, Br) | Surface plasmon resonance | 10–60 g∙L−1 | - |
1 |
Reiss A. L. ; Jo B. ; Arbelaez A. M. ; Tsalikian E. ; Buckingham B. ; Weinzimer S. A. ; Fox L. A. ; Cato A. ; White N. H. ; Tansey M. ; et al Nat. Commun. 2022, 13, 4940.
doi: 10.1038/s41467-022-32289-x |
2 |
Li S. ; Zhang Y. ; Liang X. P. ; Wang H. M. ; Lu H. J. ; Zhu M. J. ; Wang H. M. ; Zhang M. C. ; Qiu X. P. ; Song Y. F. ; et al Nat. Commun. 2022, 13, 5416.
doi: 10.1038/s41467-022-33133-y |
3 | Wageh S. ; Ahmed A. A.-G. ; Zhao L. Acta Phys. -Chim. Sin. 2022, 38, 2111009. |
WagehS.; Al-GhamdiA. A.; 赵丽. 物理化学学报, 2022, 38, 2111009.
doi: 10.3866/PKU.WHXB202111009 |
|
4 | Zheng C. ; Liu A. Q. ; Bi C. H. ; Tian J. J. Acta Phys. -Chim. Sin. 2021, 37, 2007084. |
郑超; 刘阿强; 毕成浩; 田建军. 物理化学学报, 2021, 37, 2007084.
doi: 10.3866/PKU.WHXB202007084 |
|
5 | Zou G. R. X. ; Chen Z. M. ; Li Z. C. ; Yip H. L. Acta Phys. -Chim. Sin. 2021, 37, 2009002. |
邹广锐兴; 陈梓铭; 黎振超; 叶轩立. 物理化学学报, 2021, 37, 2009002.
doi: 10.3866/PKU.WHXB202009002 |
|
6 | Wang Y. N. ; Ma P. ; Peng L. M. ; Zhang D. ; Fang Y. Y. ; Zhou X. W. ; Lin Y. Acta Phys. -Chim. Sin. 2017, 33, 2099. |
王亚楠; 马品; 彭路梅; 张迪; 方艳艳; 周晓文; 林原. 物理化学学报, 2017, 33, 2099.
doi: 10.3866/PKU.WHXB201705115 |
|
7 |
Bu H. ; He C. L. ; Xu Y. Q. ; Xing L. ; Liu X. M. ; Ren S. X. ; Yi S. H. ; Chen L. ; Wu H. ; Zhang G. L. ; et al Adv. Electron. Mater. 2022, 8, 2101204.
doi: 10.1002/aelm.202101204 |
8 |
Jiang J. Z. ; Xiong M. ; Fan K. ; Bao C. X. ; Xin D. Y. ; Pan Z. W. ; Fei L. F. ; Huang H. T. ; Zhou L. ; Yao K. ; et al Nat. Photonics 2022, 16, 575.
doi: 10.1038/s41566-022-01024-9 |
9 |
Choi J. ; Han J. S. ; Hong K. ; Kim S. Y. ; Jang H. W. Adv. Mater. 2018, 30, 1704002.
doi: 10.1002/adma.201704002 |
10 |
Jiang Y. ; Wang X. ; Pan A. L. Adv. Mater. 2019, 31, 1806671.
doi: 10.1002/adma.201806671 |
11 |
Stoumpos C. C. ; Malliakas C. D. ; Kanatzidis M. G. Inorg. Chem. 2013, 52, 9019.
doi: 10.1021/ic401215x |
12 |
Yuan Y. B. ; Huang J. S. Acc. Chem. Res. 2016, 49, 286.
doi: 10.1021/acs.accounts.5b00420 |
13 |
Wehrenfennig C. ; Eperon G. E. ; Johnston M. B. ; Snaith H. J. ; Herz L. M. Adv. Mater. 2014, 26, 1584.
doi: 10.1002/adma.201305172 |
14 |
Xing G. ; Mathews N. ; Sun S. ; Lim S. S. ; Lam Y. M. ; Grätzel M. ; Mhaisalkar S. ; Sum T. C. Science 2013, 342, 344.
doi: 10.1126/science.1243167 |
15 |
Dong Q. F. ; Fang Y. J. ; Shao Y. C. ; Mulligan P. ; Qiu J. ; Cao L. ; Huang J. S. Science 2015, 347, 967.
doi: 10.1126/science.aaa5760 |
16 |
Aparna T. ; Sivasubramanian R. Mater. Chem. Phys. 2019, 233, 319.
doi: 10.1016/j.matchemphys.2019.05.073 |
17 |
Song X. ; Li Q. ; Han J. ; Ma C. ; Xu Z. ; Li H. J. ; Wang P. J. ; Yang Z. ; Cui Q. Y. ; Gao L. Adv. Mater. 2021, 33, 2102190.
doi: 10.1002/adma.202102190 |
18 |
Wang Y. C. ; Huang S. K. ; Nakamura T. ; Kao Y. T. ; Chiang C. H. ; Wang D. Y. ; Chang Y. J. ; Koshida N. ; Shimada T. ; Liu S. H. ; et al NPG Asia Mater. 2020, 12, 54.
doi: 10.1038/s41427-020-00236-1 |
19 |
Wang P. ; Zhao J. J. ; Liu J. X. ; Wei L. Y. ; Liu Z. H. ; Guan L. H. ; Cao G. Z. J. Power Sources 2017, 339, 51.
doi: 10.1016/j.jpowsour.2016.11.046 |
20 |
Wu L. M. ; Chen K. Q. ; Huang W. C. ; Lin Z. T. ; Zhao J. L. ; Jiang X. T. ; Ge Y. Q. ; Zhang F. ; Xiao Q. N. ; Guo Z. N. ; et al Adv. Opt. Mater. 2018, 6, 1800400.
doi: 10.1002/adom.201800400 |
21 |
Wang Y. Y. ; Yin L. ; Wu J. ; Li N. ; He N. ; Zhao H. X. ; Wu Q. ; Li X. T. Ceram. Int. 2021, 47, 29807.
doi: 10.1016/j.ceramint.2021.07.152 |
22 |
Shafi P. M. ; Joseph N. ; Karthik R. ; Shim J. J. ; Bose A. C. ; Ganesh V. Microchem. J. 2021, 164, 105945.
doi: 10.1016/j.microc.2021.105945 |
23 |
Qin J. Q. ; Cui S. B. ; Yang X. Q. ; Yang G. ; Zhu Y. S. ; Wang Y. H. ; Qiu D. F. J. Phys. D: Appl. Phys. 2019, 52, 415101.
doi: 10.1088/1361-6463/ab3147 |
24 |
Wang T. ; Wei X. ; Zong Y. H. ; Zhang S. ; Guan W. S. J. Mater. Chem. C 2020, 8, 12196.
doi: 10.1039/d0tc02852e |
25 |
Chen L. ; Song M. X. ; Guan J. ; Shu Y. ; Jin D. Q. ; Fan G. C. ; Xu Q. ; Hu X. Y. Talanta 2021, 225, 122050.
doi: 10.1016/j.talanta.2020.122050 |
26 |
Park B. ; Kang S. M. ; Lee G. W. ; Kwak C. H. ; Rethinasabapathy M. ; Huh Y. S. Ind. Eng. Chem. Res. 2019, 59, 793.
doi: 10.1021/acs.iecr.9b05946 |
27 |
Sun Y. F. ; Nguyen T. N. ; Anderson A. ; Cheng X. ; Gage T. E. ; Lim J. ; Zhang Z. ; Zhou H. ; Rodolakis F. ; Zhang Z. ACS Appl. Mater. Interfaces 2020, 12, 24564.
doi: 10.1021/acsami.0c02826 |
28 |
Thomas J. ; Anitha P. ; Thomas T. ; Thomas N. Microchem. J. 2021, 168, 106443.
doi: 10.1016/j.microc.2021.106443 |
29 |
Zhang Z. H. ; Zhang S. D. ; Jiang C. J. ; Guo H. C. ; Qu F. D. ; Shimakawa Y. C. ; Yang M. H. J. Hazard. Mater. 2021, 413, 125380.
doi: 10.1016/j.jhazmat.2021.125380 |
30 |
Chen M. Z. ; An J. ; Hu Y. Q. ; Chen R. B. ; Lyu Y. ; Hu N. ; Luo M. F. ; Yuan M. D. ; Liu Y. F. Sensor. Actuat. B: Chem. 2020, 325, 128809.
doi: 10.1016/j.snb.2020.128809 |
31 |
Li F. ; Feng Y. ; Huang Y. ; Yao Q. ; Huang G. ; Zhu Y. ; Chen X. Microchim. Acta 2021, 188, 2.
doi: 10.1007/s00604-020-04653-5 |
32 |
Wang L. ; Li J. ; Feng M. J. ; Min L. F. ; Yang J. ; Yu S. H. ; Zhang Y. C. ; Hu X. Y. ; Yang Z. J. Biosens. Bioelectron. 2017, 96, 220.
doi: 10.1016/j.bios.2017.05.004 |
33 |
Kim C. ; Pilania G. ; Ramprasad R. J. Phys. Chem. C 2016, 120, 14575.
doi: 10.1021/acs.jpcc.6b05068 |
34 |
Wang X. Y. ; Tian H. ; Li X. ; Sang H. ; Zhong C. G. ; Liu J. M. ; Yang Y. R. Phys. Chem. Chem. Phys. 2021, 23, 3479.
doi: 10.1039/D0CP05892K |
35 |
Ji Q. Q. ; Bi L. ; Zhang J. T. ; Cao H. J. ; Zhao X. S. Energy Environ. Sci. 2020, 13, 1408.
doi: 10.1039/D0EE00092B |
36 |
Boix P. P. ; Nonomura K. ; Mathews N. ; Mhaisalkar S. G. Mater. Today 2014, 17, 16.
doi: 10.1016/j.mattod.2013.12.002 |
37 |
Zhang X. L. ; Zhao D. ; Liu X. ; Bai R. C. ; Ma X. ; Fu M. ; Zhang B. B. ; Zha G. Q. J. Phys. Chem. Lett. 2021, 12, 8685.
doi: 10.1021/acs.jpclett.1c02606 |
38 |
Alsalloum A. Y. ; Turedi B. ; Zheng X. ; Mitra S. ; Zhumekenov A. A. ; Lee K. J. ; Maity P. ; Gereige I. ; AlSaggaf A. ; Roqan I. S. ; et al ACS Energy Lett. 2020, 5, 657.
doi: 10.1021/acsenergylett.9b02787 |
39 |
Li F. C. ; Zhou S. J. ; Yuan J. Y. ; Qin C. C. ; Yang Y. G. ; Shi J. W. ; Ling X. F. ; Li Y. Y. ; Ma W. L. ACS Energy Lett. 2019, 4, 2571.
doi: 10.1021/acsenergylett.9b01920 |
40 |
Hao F. ; Stoumpos C. C. ; Chang R. P. ; Kanatzidis M. G. J. Am. Chem. Soc. 2014, 136, 8094.
doi: 10.1021/ja5033259 |
41 |
Murtaza G. ; Ahmad I. ; Maqbool M. ; Aliabad H. R. ; Afaq A. Chin. Phys. Lett. 2011, 28, 117803.
doi: 10.1088/0256-307X/28/11/117803 |
42 |
Gong M. G. ; Sakidja R. ; Goul R. ; Ewing D. ; Casper M. ; Stramel A. ; Elliot A. ; Wu J. Z. ACS Nano 2019, 13, 1772.
doi: 10.1021/acsnano.8b07850 |
43 |
Seth S. ; Mondal N. ; Patra S. ; Samanta A. J. Phys. Chem. Lett. 2016, 7, 266.
doi: 10.1021/acs.jpclett.5b02639 |
44 |
Behara S. ; Poonawala T. ; Thomas T. J. Comp. Mater. Sci. 2021, 188, 110191.
doi: 10.1016/j.commatsci.2020.110191 |
45 |
Chen J. Y. ; He Z. G. ; Li G. Y. ; An T. C. ; Shi H. X. ; Li Y. Z. Appl. Catal. B: Environ. 2017, 209, 146.
doi: 10.1016/j.apcatb.2017.02.066 |
46 |
Ahmed I. ; Shi L. ; Pasanen H. ; Vivo P. ; Maity P. ; Hatamvand M. ; Zhan Y. Q. Light Sci. Appl. 2021, 10, 174.
doi: 10.1038/s41377-021-00609-3 |
47 |
Zhao J. J. ; Kong G. L. ; Chen S. L. ; Li Q. ; Huang B. Y. ; Liu Z. H. ; San X. Y. ; Wang Y. J. ; Wang C. ; Zhen Y. C. ; et al Sci. Bull. 2017, 62, 1173.
doi: 10.1016/j.scib.2017.08.022 |
48 |
Yang B. ; Mao X. ; Hong F. ; Meng W. W. ; Tang Y. X. ; Xia X. S. ; Yang S. Q. ; Deng W. Q. ; Han K. L. J. Am. Chem. Soc. 2018, 140, 17001.
doi: 10.1021/jacs.8b07424 |
49 |
Bi E. B. ; Chen H. ; Xie F. X. ; Wu Y. Z. ; Chen W. ; Su Y. J. ; Islam A. ; Grätzel M. ; Yang X. D. ; Han L. Y. Nat. Commun. 2017, 8, 15330.
doi: 10.1038/ncomms15330 |
50 |
Wang H. L. ; Chen Y. ; Lim E. ; Wang X. D. ; Yuan S. J. ; Zhang X. ; Lu H. Z. ; Wang J. ; Wu G. J. ; Lin T. J. Mater. Chem. C 2018, 6, 12714.
doi: 10.1039/C8TC04691C |
51 |
Liu F. C. ; Liu K. ; Rafique S. ; Xu Z. Y. ; Niu W. Q. ; Li X. G. ; Wang Y. F. ; Deng L. L. ; Wang J. ; Yue X. F. ; et al Adv. Sci. 2022, 2205879.
doi: 10.1002/advs.202205879 |
52 |
Zhao Y. ; Xu Y. ; Shi L. ; Fan Y. Anal. Chem. 2021, 93, 11033.
doi: 10.1021/acs.analchem.1c02425 |
53 |
Kumawat N. K. ; Tress W. ; Gao F. Nat. Commun. 2021, 12, 4899.
doi: 10.1038/s41467-021-25016-5 |
54 |
Hao L. S. ; Zhou M. ; Song Y. B. ; Ma X. X. ; Wu J. ; Zhu Q. Z. ; Fu Z. G. ; Liu Y. H. ; Hou G. Y. ; Li T. Sol. Energy 2021, 230, 345.
doi: 10.1016/j.solener.2021.09.091 |
55 |
Daboczi M. ; Ratnasingham S. R. ; Mohan L. ; Pu C. F. ; Hamilton I. ; Chin Y. C. ; McLachlan M. A. ; Kim J. S. ACS Energy Lett. 2021, 6, 3970.
doi: 10.1021/acsenergylett.1c02044 |
56 |
Wang B. ; Li H. ; Dai Q. Q. ; Zhang M. ; Zou Z. G. ; Brédas J. L. ; Lin Z. Q. Angew. Chem. 2021, 133, 17805.
doi: 10.1002/ange.202105512 |
57 |
Zhao X. S. ; Dong J. ; Wu D. F. ; Zhou J. ; Feng J. L. ; Yao Y. Q. ; Xu C. Y. ; Zheng S. H. ; Tang X. S. ; Song Q. L. J. Phys. Chem. C 2021, 125, 11524.
doi: 10.1021/acs.jpcc.1c00554 |
58 |
Huang Q. Q. ; Yang S. M. ; Feng S. W. ; Zhen H. Y. ; Lin Z. H. ; Ling Q. D. J. Phys. Chem. Lett. 2021, 12, 1040.
doi: 10.1021/acs.jpclett.0c03538 |
59 |
Zhao Q. ; Hazarika A. ; Chen X. H. ; Harvey S. P. ; Larson B. W. ; Teeter G. R. ; Liu J. ; Song T. ; Xiao C. X. ; Shaw L. ; et al Nat. Commun. 2019, 10, 2842.
doi: 10.1038/s41467-019-10856-z |
60 |
Liu X. M. ; Ren S. X. ; Li Z. H. ; Guo J. J. ; Yi S. H. ; Yang Z. ; Hao W. Z. ; Li R. ; Zhao J. J. Adv. Funct. Mater. 2022, 32, 2202951.
doi: 10.1002/adfm.202202951 |
61 |
Zhao J. J. ; Wei L. Y. ; Jia C. M. ; Tang H. ; Su X. ; Ou Y. ; Liu Z. H. ; Wang C. ; Zhao X. Y. ; Jin H. Y. ; et al J. Mater. Chem. A 2018, 6, 20224.
doi: 10.1039/C8TA05282D |
62 |
Pan W. C. ; Yang B. ; Niu G. D. ; Xue K. H. ; Du X. Y. ; Yin L. X. ; Zhang M. Y. ; Wu H. D. ; Miao X. S. ; Tang J. Adv. Mater. 2019, 31, 1904405.
doi: 10.1002/adma.201904405 |
63 |
Tuchinda W. ; Amratisha K. ; Naikaew A. ; Pansa-Ngat P. ; Srathongsian L. ; Wattanathana W. ; Thant K. K. S. ; Supruangnet R. ; Nakajima H. ; Ruankham P. ; et al Sol. Energy 2022, 244, 65.
doi: 10.1016/j.solener.2022.07.049 |
64 |
Gkini K. ; Martinaiou I. ; Botzakaki M. ; Tsipas P. ; Theofylaktos L. ; Dimoulas A. ; Katsaros F. ; Stergiopoulos T. ; Krontiras C. ; Georga S. ; et al Mater. Today Commun. 2022, 32, 103899.
doi: 10.1016/j.mtcomm.2022.103899 |
65 |
Nie Z. Q. ; Huang L. ; Ren C. W. ; Xiong X. L. ; Zhu W. Q. ; Yang W. G. ; Wang L. J. Mater. Chem. Phys. 2022, 275, 125281.
doi: 10.1016/j.matchemphys.2021.125281 |
66 |
Solari S. F. ; Poon L. N. ; Wörle M. ; Krumeich F. ; Li Y. T. ; Chiu Y. C. ; Shih C. J. J. Am. Chem. Soc. 2022, 144, 5864.
doi: 10.1021/jacs.1c12294 |
67 |
Zhang Z. ; Gu S. Q. ; Ding Y. p. ; Jin J. D. Anal. Chim. Acta 2012, 745, 112.
doi: 10.1016/j.aca.2012.07.039 |
68 |
Sivakumar M. ; Pandi K. ; Chen S. M. ; Cheng Y. H. ; Sakthivel M. New J. Chem. 2017, 41, 11201.
doi: 10.1039/C7NJ02156A |
69 |
Atta N. F. ; Ali S. M. ; El-Ads E. H. ; Galal A. Electrochim. Acta 2014, 128, 16.
doi: 10.1016/j.electacta.2013.09.101 |
70 |
Shashank M. ; Naik H. B. ; Sumedha H. ; Nagaraju G. ; Viswanath R. Mater. Chem. Phys. 2022, 282, 125990.
doi: 10.1016/j.matchemphys.2022.125990 |
71 |
He J. ; Sunarso J. ; Zhu Y. L. ; Zhong Y. J. ; Miao J. ; Zhou W. ; Shao Z. P. Sensor. Actuat. B: Chem. 2017, 244, 482.
doi: 10.1016/j.snb.2017.01.012 |
72 |
Noel N. K. ; Stranks S. D. ; Abate A. ; Wehrenfennig C. ; Guarnera S. ; Haghighirad A.-A. ; Sadhanala A. ; Eperon G. E. ; Pathak S. K. ; Johnston M. B. ; et al Energy Environ. Sci. 2014, 7, 3061.
doi: 10.1039/C4EE01076K |
73 |
Wang N. ; Zhou Y. Y. ; Ju M. G. ; Garces H. F. ; Ding T. ; Pang S. ; Zeng X. C. ; Padture N. P. ; Sun X. W. Adv. Energy Mater. 2016, 6, 1601130.
doi: 10.1002/aenm.201601130 |
74 |
Lyu M. Q. ; Yun J. H. ; Chen P. ; Hao M. M. ; Wang L. Z. Adv. Energy Mater. 2017, 7, 1602512.
doi: 10.1002/aenm.201602512 |
75 |
Li M. L. ; Tian T. ; Zeng Y. J. ; Zhu S. ; Li C. ; Yin Y. M. ; Li G. X. Sensor. Actuat. B: Chem. 2021, 338, 129839.
doi: 10.1016/j.snb.2021.129839 |
76 |
Luo F. ; Li S. Q. ; Cui L. M. ; Zu Y. X. ; Chen Y. T. ; Huang D. ; Weng Z. Q. ; Lin Z. Y. Nanoscale 2021, 13, 14297.
doi: 10.1039/D1NR02248B |
77 |
Yan Q. B. ; Bao N. ; Ding S. N. J. Mater. Chem. B 2019, 7, 4153.
doi: 10.1039/C9TB00568D |
78 |
Lu L. Q. ; Ma M. Y. ; Tan T. ; Tian X. K. ; Zhou Z. X. ; Yang C. ; Li Y. Sensor. Actuat. B: Chem. 2018, 270, 291.
doi: 10.1016/j.snb.2018.05.038 |
79 |
Debnath T. ; Kim E. K. ; Lee K. G. ; Nath N. C. D. Adv. Energy Sustain. Res. 2020, 1, 2000028.
doi: 10.1002/aesr.202000028 |
80 |
He C. L. ; Meng Z. Q. ; Ren S. X. ; Li J. ; Wang Y. ; Hao W. ; Bu H. ; Zhang Y. ; Hao W.-Z. ; Chen S. L. ; et al Rare Met. 2023,
doi: 10.1007/s12598-022-02222-8 |
81 |
Chen Q. S. ; Wu J. ; Ou X. Y. ; Huang B. L. ; Almutlaq J. ; Zhumekenov A. A. ; Guan X. W. ; Han S. Y. ; Liang L. L. ; Yi Z. G. ; et al Nature 2018, 561, 88.
doi: 10.1038/s41586-018-0451-1 |
82 |
Long Z. ; Wang Y. ; Fu Q. ; Ouyang J. ; He L. X. ; Na N. Nanoscale 2019, 11, 11093.
doi: 10.1039/C9NR03647D |
83 |
Ruan Y. F. ; Zhang N. ; Zhu Y. C. ; Zhao W. W. ; Xu J. J. ; Chen H. Y. Anal. Chem. 2017, 89, 7869.
doi: 10.1021/acs.analchem.6b05153 |
84 |
Zhu Y. S. ; Tong X. L. ; Song H. Z. ; Wang Y. H. ; Qiao Z. P. ; Qiu D. F. ; Huang J. S. ; Lu Z. W. Dalton Trans. 2018, 47, 10057.
doi: 10.1039/C8DT01790E |
85 |
Kim H. R. ; Bong J. H. ; Park J. H. ; Song Z. Q. ; Kang M. J. ; Son D. H. ; Pyun J. C. ACS Appl. Mater. Interfaces 2021, 13, 29392.
doi: 10.1021/acsami.1c08128 |
86 |
Yang X. Y. ; Gao Y. ; Ji Z. P. ; Zhu L. B. ; Yang C. ; Zhao Y. ; Shu Y. ; Jin D. Q. ; Xu Q. ; Zhao W. W. Anal. Chem. 2019, 91, 9356.
doi: 10.1021/acs.analchem.9b01739 |
87 |
Pang X. H. ; Qi J. N. ; Zhang Y. ; Ren Y. Y. ; Su M. H. ; Jia B. X. ; Wang Y. G. ; Wei Q. ; Du B. Biosens. Bioelectron. 2016, 85, 142.
doi: 10.1016/j.bios.2016.04.099 |
88 |
Ding J. ; Zhou Y. L. ; Wang Q. ; Ai S. Y. Biosens. Bioelectron. 2021, 194, 113580.
doi: 10.1016/j.bios.2021.113580 |
89 |
Ge L. ; Xu Y. H. ; Ding L. J. ; You F. H. ; Liu Q. ; Wang K. Biosens. Bioelectron. 2019, 124–125, 33.
doi: 10.1016/j.bios.2018.09.093 |
90 |
Chen Z. L. ; Turedi B. ; Alsalloum A. Y. ; Yang C. ; Zheng X. P. ; Gereige I. ; AlSaggaf A. ; Mohammed O. F. ; Bakr O. M. ACS Energy Lett. 2019, 4, 1258.
doi: 10.1021/acsenergylett.9b00847 |
91 |
Wu Y. Z. ; Xie F. X. ; Chen H. ; Yang X. D. ; Su H. M. ; Cai M. L. ; Zhou Z. M. ; Noda T. S. ; Han L. Y. Adv. Mater. 2017, 29, 1701073.
doi: 10.1002/adma.201701073 |
92 |
Wang F. Y. ; Yang M. F. ; Zhang Y. H. ; Du J. Y. ; Yang S. ; Yang L. L. ; Fan L. ; Sui Y. R. ; Sun Y. F. ; Yang J. H. Nano Res. 2021, 14, 2783.
doi: 10.1007/s12274-021-3286-2 |
93 |
Guo E. ; Yin L. W. J. Mater. Chem. A 2015, 3, 13390.
doi: 10.1039/C5TA02556G |
94 |
Okamoto Y. ; Suzuki Y. J. Ceram. Soc. Jpn. 2015, 123, 967.
doi: 10.2109/jcersj2.123.967 |
95 |
Gholamrezaei S. ; Salavati-Niasari M. J. Mol. Liq. 2017, 243, 227.
doi: 10.1016/j.molliq.2017.08.031 |
96 |
Zhang X. S. ; Jin Z. W. ; Zhang J. R. ; Bai D. L. ; Bian H. ; Wang K. ; Sun J. ; Wang Q. ; Liu S. Z. ; Liu F. ACS Appl. Mater. Interfaces 2018, 10, 7145.
doi: 10.1021/acsami.7b18902 |
97 |
Wang P. Y. ; Zhang X. W. ; Zhou Y. Q. ; Jiang Q. ; Ye Q. F. ; Chu Z. M. ; Li X. X. ; Yang X. L. ; Yin Z. G. ; You J. B. Nat. Commun. 2018, 9, 2225.
doi: 10.1038/s41467-018-04636-4 |
98 |
Li H. ; Tong G. Q. ; Chen T. T. ; Zhu H. W. ; Li G. P. ; Chang Y. J. ; Wang L. ; Jiang Y. J. Mater. Chem. A 2018, 6, 14255.
doi: 10.1039/C8TA03811B |
99 |
An J. ; Chen M. Z. ; Liu G. Y. ; Hu Y. Q. ; Chen R. B. ; Lyu Y. ; Sharma S. ; Liu Y. F. Anal. Bioanal. Chem. 2021, 413, 1739.
doi: 10.1007/s00216-020-03144-z |
100 |
Wang W. ; Deng P. Y. ; Liu X. Q. ; Ma Y. Q. ; Yan Y. S. Microchem. J. 2021, 162, 105876.
doi: 10.1016/j.microc.2020.105876 |
101 |
Xiang X. X. ; Ouyang H. ; Li J. Z. ; Fu Z. F. Sensor. Actuat. B: Chem. 2021, 346, 130547.
doi: 10.1016/j.snb.2021.130547 |
102 |
Tan X. H. ; Huang G. B. ; Cai Z. X. ; Li F. M. ; Zhou Y. M. ; Zhang M. S. J. Anal. Test. 2021, 5, 40.
doi: 10.1007/s41664-021-00164-1 |
103 |
Huang S. Y. ; Guo M. L. ; Tan J. A. ; Geng Y. Y. ; Wu J. Y. ; Tang Y. W. ; Su C. C. ; Lin C. C. ; Liang Y. ACS Appl. Mater. Interfaces 2018, 10, 39056.
doi: 10.1021/acsami.8b14472 |
104 |
Chen L. Y. ; Yang J. ; Chen W. ; Sun S. G. ; Tang H. ; Li Y. C. Sensor. Actuat. B: Chem. 2020, 321, 128642.
doi: 10.1016/j.snb.2020.128642 |
105 |
Anancia Grace A. ; Dharuman V. ; Hahn J. H. J. Alloys Compd. 2021, 886, 161256.
doi: 10.1016/j.jallcom.2021.161256 |
106 |
Atta N. F. ; El-Ads E. H. ; Galal A. ; Galal A. E. Electroanalysis 2019, 31, 448.
doi: 10.1002/elan.201800577 |
107 |
Atta N. F. ; Galal A. ; Ekram H. E.-A. J. Electroanal. Chem. 2019, 852, 113523.
doi: 10.1016/j.jelechem.2019.113523 |
108 |
Caglar B. ; İçer F. ; Özdokur K. V. ; Caglar S. ; Özdemir A. O. ; Guner E. K. ; Beşer B. M. ; Altay A. ; Çırak Ç. ; Doğan B. ; et al Mater. Chem. Phys. 2021, 262, 124287.
doi: 10.1016/j.matchemphys.2021.124287 |
109 |
Wang Y. L. ; Luo L. Q. ; Ding Y. P. ; Zhang X. ; Xu Y. H. ; Liu X. J. Electroanal. Chem. 2012, 667, 54.
doi: 10.1016/j.jelechem.2011.12.021 |
110 |
Tamilalagan E. ; Muthumariappan A. ; Chen T. W. ; Chen S. M. ; Maheshwaran S. ; Huang P. J. J. Electrochem. Soc. 2021, 168, 086501.
doi: 10.1149/1945-7111/ac1972 |
111 |
Jia F. F. ; Zhong H. ; Zhang W. G. ; Li X. R. ; Wang G. Y. ; Song J. ; Cheng Z. P. ; Yin J. Z. ; Guo L. P. Sensor. Actuat. B: Chem. 2015, 212, 174.
doi: 10.1016/j.snb.2015.02.011 |
112 |
Dai H. ; Zhong Y. H. ; Wu X. Y. ; Hu R. X. ; Wang L. ; Zhang Y. C. ; Fan G. K. ; Hu X. Y. ; Li J. ; Yang Z. J. J. Electroanal. Chem. 2018, 810, 95.
doi: 10.1016/j.jelechem.2017.12.077 |
113 |
Wang Y. Z. ; Zhong H. ; Li X. M. ; Jia F. F. ; Shi Y. X. ; Zhang W. G. ; Cheng Z. P. ; Zhang L. L. ; Wang J. K. Biosens. Bioelectron. 2013, 48, 56.
doi: 10.1016/j.bios.2013.03.081 |
114 |
Chen W. ; Cai S. ; Ren Q. Q. ; Wen W. ; Zhao Y. D. Analyst 2012, 137, 49.
doi: 10.1039/C1AN15738H |
115 |
Durai L. ; Badhulika S. Sensor. Actuat. B: Chem. 2020, 325, 128792.
doi: 10.1016/j.snb.2020.128792 |
116 |
Zhu S. C. ; Yang Y. ; Chen K. X. ; Su Z. L. ; Wang J. J. ; Li S. J. ; Song N. N. ; Luo S. P. ; Xie A. J. J. Alloys Compd. 2022, 903, 163946.
doi: 10.1016/j.jallcom.2022.163946 |
117 |
Thomas J. ; P.K A. ; Thomas T. ; Thomas N. Sensor. Actuat. B: Chem. 2021, 332, 129362.
doi: 10.1016/j.snb.2020.129362 |
118 |
Atta N. F. ; Ali S. M. ; El-Ads E. H. ; Galal A. J. Electrochem. Soc. 2013, 160, G3144.
doi: 10.1149/2.022307jes |
119 |
Weng Z. H. ; Qin J. J. ; Umar A. A. ; Wang J. ; Zhang X. ; Wang H. L. ; Cui X. L. ; Li X. G. ; Zheng L. R. ; Zhan Y. Q. Adv. Funct. Mater. 2019, 29, 1902234.
doi: 10.1002/adfm.201902234 |
120 |
Wu Z. L. ; Yang J. ; Sun X. ; Wu Y. J. ; Wang L. ; Meng G. ; Kuang D. L. ; Guo X. Z. ; Qu W. J. ; Du B. S. ; et al Sensor. Actuat. B: Chem. 2021, 337, 129772.
doi: 10.1016/j.snb.2021.129772 |
121 |
Hakami J. ; Abassi A. ; Dhibi A. Opt. Quant. Electron. 2021, 53, 164.
doi: 10.1007/s11082-021-02822-1 |
122 |
Chen T. ; Zhou Z. L. ; Wang Y. D. Sensor. Actuat. B: Chem. 2009, 143, 124.
doi: 10.1016/j.snb.2009.09.031 |
123 |
Tomoda M. ; Okano S. ; Itagaki Y. ; Aono H. ; Sadaoka Y. Sensor. Actuat. B: Chem. 2004, 97, 190.
doi: 10.1016/j.snb.2003.08.013 |
124 |
Jayanthi G. ; Sumathi S. ; Andal V. Mater. Today Proc. 2022, 55, 201.
doi: 10.1016/j.matpr.2021.06.147 |
125 |
Wang W. H. ; Wang Q. Q. ; Xie H. Z. ; Wu D. Z. ; Gan N. Talanta 2021, 222, 121456.
doi: 10.1016/j.talanta.2020.121456 |
126 |
Gaiardo A. ; Zonta G. ; Gherardi S. ; Malagu C. ; Fabbri B. ; Valt M. ; Vanzetti L. ; Landini N. ; Casotti D. ; Cruciani G. ; et al Sensors-Basel 2020, 20, 5910.
doi: 10.3390/s20205910 |
127 |
Untereiner A. A. ; Pavlidou A. ; Druzhyna N. ; Papapetropoulos A. ; Hellmich M. R. ; Szabo C. Biochem. Pharmacol. 2018, 149, 174.
doi: 10.1016/j.bcp.2017.10.007 |
128 |
Jiao Y. N. ; Qin S. J. ; Li B. ; Hao W. Z. ; Wang Y. ; Li H. ; Yang Z. P. ; Dong D. J. ; Li X. Y. ; Zhao J. J. Adv. Electron. Mater. 2022, 8, 2200415.
doi: 10.1002/aelm.202200415 |
129 |
Liu A. ; Zhu H. H. ; Bai S. ; Reo Y. J. ; Zou T. Y. ; Kim M. G. ; Noh Y. Y. Nat. Electron. 2022, 5, 78.
doi: 10.1038/s41928-022-00712-2 |
130 |
Cao J. ; Yan F. Energy Environ. Sci. 2021, 14, 1286.
doi: 10.1039/D0EE04007J |
131 |
Yu S. H. ; Xu J. ; Shang X. Y. ; Ma E. ; Lin F. L. ; Zheng W. ; Tu D. T. ; Li R. F. ; Chen X. Y. Adv. Sci. 2021, 8, 2100084.
doi: 10.1002/advs.202100084 |
132 |
Zhang K. ; Zhao J. ; Hu Q. S. ; Yang S. J. ; Zhu X. X. ; Zhang Y. Q. ; Huang R. Q. ; Ma Y. F. ; Wang Z. X. ; Ouyang Z. W. ; et al Adv. Mater. 2021, 33, 2008225.
doi: 10.1002/adma.202008225 |
133 |
Wang B. N. ; Li N. ; Yang L. ; Dall'Agnese C. X. ; Jena A. K. ; Miyasaka T. ; Wang X. F. J. Am. Chem. Soc. 2021, 143, 14877.
doi: 10.1021/jacs.1c07200 |
134 |
Hou F. H. ; Li Y. C. ; Yan L. L. ; Shi B. ; Ren N. Y. ; Wang P. Y. ; Zhang D. K. ; Ren H. Z. ; Ding Y. ; Huang Q. ; et al Sol. RRL 2021, 5, 2100357.
doi: 10.1002/solr.202100357 |
135 |
Agha D. N. Q. ; Algwari Q. T. Coll. Basic Educ. Res. J. 2022, 18, 1127.
doi: 10.33899/berj.2022.174577 |
136 |
Luo J. Q. ; Zhang W. W. ; Yang H. B. ; Fan Q. W. ; Xiong F. Q. ; Liu S. J. ; Li D. S. ; Liu B. EcoMat 2021, 3, e12079.
doi: 10.1002/eom2.12079 |
137 |
Kim H.-J. ; Oh H. ; Kim T. ; Kim D. ; Park M. ACS Appl. Nano Mater. 2022, 5, 1308.
doi: 10.1021/acsanm.1c03875 |
138 |
Guo X. ; Huang X. P. ; Su J. ; Lin Z. H. ; Ma J. ; Chang J. J. ; Hao Y. Chem. Eng. J. 2021, 417, 129184.
doi: 10.1016/j.cej.2021.129184 |
139 |
Hong X. T. ; Huang Y. L. ; Tian Q. L. ; Zhang S. ; Liu C. ; Wang L. M. ; Zhang K. ; Sun J. ; Liao L. ; Zou X. M. Adv. Sci. 2022, 9, 2202019.
doi: 10.1002/advs.202202019 |
140 |
Yang S. ; Zhang X. D. ; Cao A. ; Luo W. Y. ; Zhang G. L. ; Peng B. ; Zhao J. J. J. Cent. South Univ. 2021, 28, 3694.
doi: 10.1007/s11771-021-4887-3 |
141 |
Zhao J. J. ; Hua Z. L. ; Liu Z. C. ; Li Y. S. ; Guo L. M. ; Bu W. B. ; Cui X. Z. ; Ruan M. L. ; Chen H. R. ; Shi J. L. Chem. Commun. 2009, 7578.
doi: 10.1039/B913920F |
142 |
Seeker L. A. ; Williams A. Acta Neuropathol. 2021, 143, 143.
doi: 10.1007/s00401-021-02390-4 |
143 |
Kumar V. ; Kumar P. ; Pournara A. ; Vellingiri K. ; Kim K. H. Trac. Trend. Anal. Chem. 2018, 106, 84.
doi: 10.1016/j.trac.2018.07.003 |
144 |
Ali M. ; Gilani S. O. ; Waris A. ; Zafar K. ; Jamil M. IEEE Access 2020, 8, 153589.
doi: 10.1109/ACCESS.2020.301816 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Muhammad Faizan, Guoqi Zhao, Tianxu Zhang, Xiaoyu Wang, Xin He, Lijun Zhang. Elastic and Thermoelectric Properties of Vacancy Ordered Double Perovskites A2BX6: A DFT Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303004-. |
[3] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[4] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[5] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[6] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[7] | Yifei Xu, Hanwen Yang, Xiaoxia Chang, Bingjun Xu. Introduction to Electrocatalytic Kinetics [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2210025-0. |
[8] | Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2301023-0. |
[9] | Ruifang Wei, Dongfeng Li, Heng Yin, Xiuli Wang, Can Li. Operando Electrochemical UV-Vis Absorption Spectroscopy with Microsecond Time Resolution [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207035-0. |
[10] | Tianran Wei, Shusheng Zhang, Qian Liu, Yuan Qiu, Jun Luo, Xijun Liu. Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207026-0. |
[11] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[12] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[13] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[14] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[15] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
|