物理化学学报 >> 2009, Vol. 25 >> Issue (04): 792-805.doi: 10.3866/PKU.WHXB20090420

综述 上一篇    下一篇

层状双金属氢氧化物微观结构与性质的理论研究进展

倪哲明 胥倩 潘国祥 毛江洪   

  1. 浙江工业大学化学工程与材料学院, 催化新材料研究室, 杭州 310032; 湖州师范学院化学系, 浙江 湖州 313000
  • 收稿日期:2008-11-09 修回日期:2009-01-16 发布日期:2009-03-31
  • 通讯作者: 倪哲明 E-mail:jchx@zjut.edu.cn

Theoretical Processing in Understanding the Structures and Properties of Layered Double Hydroxides

 NI Zhe-Ming, XU Qian, PAN Guo-Xiang, MAO Jiang-Hong   

  1. Laboratory of Advanced Catalytic Materials, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, P. R. China; Department of Chemistry, Huzhou Teachers College,Huzhou 313000, Zhejiang Province, P. R. China
  • Received:2008-11-09 Revised:2009-01-16 Published:2009-03-31
  • Contact: NI Zhe-Ming E-mail:jchx@zjut.edu.cn

摘要:

总结了近年来理论计算方法在研究层状双金属氢氧化物(LDHs)结构与功能方面的应用现状. 结合LDHs材料的结构特点, 归纳了量子力学、分子力学、几何建模及物理静电模型相结合对LDHs材料进行结构模拟的思路, 比较了各种方法在LDHs结构模拟上的优势及存在的不足. 量子力学方法能够精确获得水滑石材料的层板构成及作用机制、简单阴离子插层水滑石主客体间的超分子作用实质以及电子性质、反应机理等方面的信息. 与量子力学相比较, 分子力学方法可以快速得到插层水滑石材料的层间阴离子排布及取向、水合膨胀特性及宏观力学性质等. 几何模型和物理静电模型能构建直观、形象的数学模型, 大大简化了计算量,因此能计算接近实际LDHs尺寸的体系, 为推测LDHs结构信息提供了可能性. 随着理论方法和计算机硬件水平的发展, 使得计算机模拟技术逐渐成为获得LDHs材料微观结构参数、电子性质和动力学性质的一种有效手段.

关键词: 层状双金属氢氧化物, 结构与性质的关系, 理论研究进展

Abstract:

We review the techniques, applications, characteristics, and insights gained from the use of theoretical calculations that were applied to the study of layer double hydroxides (LDHs) materials by using a series of typical case studies. The advantages and shortcomings of different theoretical calculation methods (quantum mechanics, molecular mechanics, geometric model, and electrostatic potential energy model) for the study of the properties of LDHs minerals are compared. Based on quantum mechanics calculations, we obtained information about template effects on the construction of layered double hydroxides, super molecular interactions in LDHs containing simple anions, electronic properties, and reaction pathways etc. Compared with quantum mechanics, molecular mechanics is quicker in obtaining information about the interlayer structure, arrangement, orientation, hydration, and the swelling trajectory as well as elastic constants etc of LDHs intercalated with various anions. The geometric model and electrostatic potential energy model offer a more intuitive and visual mathematical model of LDHs minerals. The calculations were done on the verge of full size LDHs, which may allow the prediction of the crystal structure. Along with the development of theoretical methods and computer techniques, computational simulation method has become an effective adjust to experimental techniques for obtaining the microscopic structures, electronic and dynamic properties of LDHs minerals.

Key words: Layered double hydroxide, Structure-property relationship, Theoretical processing