物理化学学报 >> 2013, Vol. 29 >> Issue (06): 1123-1144.doi: 10.3866/PKU.WHXB201304014
李建昌, 吴隽稚, 周成, 宫兴
收稿日期:
2013-01-29
修回日期:
2013-04-01
发布日期:
2013-05-17
通讯作者:
李建昌
E-mail:jcli@mail.neu.edu.cn
基金资助:
中央高校基本科研业务费专项资金(N110403001)资助项目
LI Jian-Chang, WU Jun-Zhi, ZHOU Cheng, GONG Xing
Received:
2013-01-29
Revised:
2013-04-01
Published:
2013-05-17
Supported by:
The project was supported by the Fundamental Research Funds for Central Universities of China (N110403001).
摘要:
有机功能分子是新型纳光电器件研究热门材料之一, 多用金属-分子-金属结方法研究其荷电输运特性.本文从无损制备、微纳尺度及可寻址性等方面, 综述了金属-分子-金属结器件研究进展. 将制备方法归为软接触法、扫描探针显微镜法、对电极法、交叉线法、角沉积法和纳米孔法等六大类, 并分析了不同方法及实验参数对荷电输运特性的影响. 总的来说, 扫描探针法可用于分子电学特性的快速统计分析, 但可寻址性差; 纳米孔分子结具有良好的可寻址性, 可用于分子输运特性的变温研究, 但上电极沉积可导致分子层破坏或界面特性不确定; 角度沉积法和软接触法可有效减少电极热沉积对分子层的烧蚀, 但器件尺度较大; 对电极法可获得纳米级可寻址分子结, 若结合模板压印交叉纳米线法制备电极, 则在无损分子器件研究及其集成方面有很好的前景.
李建昌, 吴隽稚, 周成, 宫兴. 金属-分子-金属结器件研究进展[J]. 物理化学学报, 2013, 29(06), 1123-1144. doi: 10.3866/PKU.WHXB201304014
LI Jian-Chang, WU Jun-Zhi, ZHOU Cheng, GONG Xing. Latest Studies on Metal-Molecule-Metal Junctions[J]. Acta Phys. -Chim. Sin. 2013, 29(06), 1123-1144. doi: 10.3866/PKU.WHXB201304014
(1) Thompson, S. E.; Parthasarathy, S. Mater. Today 2006, 9, 20. (2) Boussaad, S.; Tao, N. J. Appl. Phys. Lett. 2002, 80, 2398. doi: 10.1063/1.1465128 (3) Slowinski, K.; Majda, M. J. Electroanal. Chem. 2000, 491,139. doi: 10.1016/S0022-0728(00)00305-3 (4) Li, J. C.; Blackstock, S. C.; Szulczewski, G. J. J. Phys. Chem. B 2006, 10, 17493. (5) Vilan, A.; Cahen, D. Adv. Funct. Mater. 2002, 11-12, 795. (6) Liu, Y. H.; Fan, X. L.; Yang, D. L.;Wang, C.;Wan, L. J.; Bai,C. L. Chem. Phys. Lett. 2003, 380, 767. doi: 10.1016/j.cplett.2003.09.080 (7) Ruppel, L.; Birkner, A.;Witte, G.; Busse, C.; Lindner, T.;Paasch, G.;Wöll, C. J. Appl. Phys. 2007, 102, 033708. doi: 10.1063/1.2764027 (8) Jung, T. A.; Gimzewski, S. J. K.; Tang, H.; Joachim, C.Science 1996, 271, 181. doi: 10.1126/science.271.5246.181 (9) Choi, S. H.; Kim, B. S.; Frisbie, C. D. Science 2008, 320,1482. doi: 10.1126/science.1156538 (10) Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.;Moore, A. L.; Moore, T. A.; Gust, D.; Nagahara, L. A.;Lindsay, S. M. J. Phys. Chem. B 2002, 106, 8609. (11) Zhou, J. F.; Chen, F.; Xu, B. Q. J. Am. Chem. Soc. 2009, 131,10439. doi: 10.1021/ja900989a (12) Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P.L. Appl. Phys. Lett. 1999, 75, 301. doi: 10.1063/1.124354 (13) Lortscher, E.;Weber, H. B.; Riel, H. Phys. Rev. Lett. 2007, 98,176807. doi: 10.1103/PhysRevLett.98.176807 (14) Li, C. Z.; He, H. X.; Tao, N. J. Appl. Phys. Lett. 2000, 77,3995. doi: 10.1063/1.1332406 (15) Mbindyo, J. K. N.; Mallouk, T. E.; Mattzela, J. B.;Kratochvilova, I.; Razavi, B.; Jackson, T. N.; Mayer, T. S.J. Am. Chem. Soc. 2002, 124, 4020. doi: 10.1021/ja016696t (16) Qin, L.; Park, S.; Huang, L.; Mirkin, C. A. Science 2005, 309,113. doi: 10.1126/science.1112666 (17) Amlani, I.; Rawlett, A. M.; Nagahara, L. A.; Tsui, R. K. J. Vac. Sci. Technol. B 2002, 20, 2802. doi: 10.1116/1.1523025 (18) Blum, A. S.; Kushmerick, J. G.; Pollack, S. K.; Yang, J. C.;Moore, M.; Naciri, J.; Shashidhar, R.; Ratna, B. R. J. Phys. Chem. B 2004, 108, 18124. doi: 10.1021/jp0480854 (19) Katsia, E.; Tallarida, G.; Kutrzeba-Kotowska, B.; Ferrari, S.;Bundgaard, E.; Søndergaard, R.; Krebs, F. C. Org. Electron.2008, 9, 1044. doi: 10.1016/j.orgel.2008.08.010 (20) Li, J. C. Chem. Phys. Lett. 2009, 473, 189. doi: 10.1016/j.cplett.2009.03.044 (21) Austin, M. D.; Chou, S. Y. Nano Lett. 2003, 3, 1687. doi: 10.1021/nl034831p (22) Nijhuis, C. A.; Reus,W. F.; Barber, J. R.; Dickey, M. D.;Whitesides, G. M. Nano Lett. 2010, 10, 3611. doi: 10.1021/nl101918m (23) Bonifas, A. P.; McCreery, R. L. Nat. Nanotechnol. 2010, 115,612. (24) Shamai, T.; Ophir, A.; Selzer, Y. Appl. Phys. Lett. 2007, 91,102108. doi: 10.1063/1.2780057 (25) Zhitenev, N. B.; Meng, H.; Bao, Z. Phys. Rev. Lett. 2002, 88,226801. doi: 10.1103/PhysRevLett.88.226801 (26) Zhou, C.; Deshpande, M. R.; Reed, M. A.; Jones, L.; Tour, J.M. Appl. Phys. Lett. 1997, 71, 611. doi: 10.1063/1.120195 (27) Martin, Z. L.; Majumdar, N.; Cabral, M. J.; Gergel-Hackettn,N.; Camacho-Alanis, F.; Swami, N.; Bean, J. C.; Lloyd, R. H.;Yao, Y.; Tour, J. M.; Long, D.; Shashidhar, R. IEEE Trans. Nanotechnol. 2009, 8, 574. doi: 10.1109/TNANO.2009.2021161 (28) Kim, T.W.;Wang, G.; Lee, H.; Lee, T. Nanotechnology 2007,18, 315204. doi: 10.1088/0957-4484/18/31/315204 (29) He, J. L.; Chen, B.; Flatt, A. K.; Stephenson, J. J.; Doyle, C.D.; Tour, J. S. Nat. Mater. 2006, 5, 61. (30) Martin, C. A.; Ding, D. P.; van der Zant, H. S. J.; vanRuitenbeek, J. M. New J. Phys. 2008, 10, 065008. doi: 10.1088/1367-2630/10/6/065008 (31) Kervennic, Y. V.; Vanmaekelbergh, D.; Kouwenhoven, L. P.;van der Zant, H. S. J. Appl. Phys. Lett. 2003, 83, 3782. doi: 10.1063/1.1623317 (32) Yoon, H. P.; Maitani, M. M.; Cabarcos, O. M.; Cai, L.; Mayer,T. S.; Allara, D. L. Nano Lett. 2010, 10, 2897. doi: 10.1021/nl100982q (33) Majumdar, N.; Gergel, N.; Routenberg, D.; Bean, J. C.;Harriott, L. R.; Li, B.; Pu, L.; Yao, Y.; Tour, J. M. J. Vac. Sci. Technol. B 2005, 23, 1417. doi: 10.1116/1.1935528 (34) Slowinki, K.; Fong, H. K. Y.; Majda, M. J. Am. Chem. Soc.1999, 121, 7257. doi: 10.1021/ja991613i (35) Selzer, Y.; Salomon, A.; Cahen, D. J. Am. Chem. Soc. 2002,124, 2886. doi: 10.1021/ja0177511 (36) Selzer, Y.; Cahen, D. Adv. Mater. 2001, 13, 508. (37) Itoh, E.; Iwamoto, M. J. Appl. Phys. 1999, 85, 7239. doi: 10.1063/1.370538 (38) Selzer, Y.; Salomon, A.; Cahen, D. J. Phys. Chem. B 2002,106, 10432. doi: 10.1021/jp026324m (39) Galperin, M.; Nitzan, A.; Sek, S.; Majda, M. J. Electroanal. Chem. 2003, 550-551, 337. (40) Race, H. H.; Reynolds, S. I. J. Am. Chem. Soc. 1939, 61, 1425.doi: 10.1021/ja01875a030 (41) vonWrochem, F.; Gao, D. Q.; Scholz, F.; Nothofer, H. G.;Nelles, G.;Wessels, J. M. Nat. Nanotechnol. 2010, 119, 618. (42) Tran, E.; Duati, M.; Ferri, V.; Müllen, K.; Zharnikov, M.;Whitesides, G. M.; Rampi, M. A. Adv. Mater. 2006, 18, 1323. (43) Tran, E.; Cohen, A. E.; Murray, R.W.; Rampi, M. A.;Whitesides, G. M. J. Am. Chem. Soc. 2009, 131, 2141. doi: 10.1021/ja804075y (44) Haag, R.; Rampi, M. A.; Holmlin, R. E.; George, M.W. J. Am. Chem. Soc. 1999, 121, 7895. doi: 10.1021/ja990230h (45) Vilan, A.; Ghabboun, J.; Cahen, D. J. Phys. Chem. B 2003,107, 6360. (46) Moons, E.; Bruening, M.; Shanzer, A.; Beier, J.; Cahen, D.Synth. Met. 1996, 76, 245. doi: 10.1016/0379-6779(95)03463-T (47) Wu, D. G.; Ghabboun, J.; Martin, J. M. L.; Cahen, D. J. Phys. Chem. B 2001, 105, 12011. doi: 10.1021/jp012708l (48) Shimizu, K. T.; Fabbri, J. D.; Jelincic, J. J.; Melosh, N. A. Adv. Mater. 2006, 18, 1499. (49) Mohamed Ikram, I.; Rabinal, M. K.; Kalasad, M. N.;Mulimani, B. G. Langmuir 2009, 25, 3305. doi: 10.1021/la8035488 (50) Fan, X. L.;Wang, C.; Yang, D. L .;Wan, L. J.; Bai, C. L.Chem. Phys. Lett. 2002, 361, 465. doi: 10.1016/S0009-2614(02)00983-1 (51) Liu, Y. H.; Fan, X. L.; Yang, D. L.;Wang, C.;Wan, L. J.; Bai,C. L. Langmuir 2004, 20, 855. doi: 10.1021/la0353529 (52) Dhirani, A.; Lin, P. H.; Guyot-Sionnest, P.; Zehner, R.W.; Sita,L. R. J. Chem. Phys. 1997, 106, 5249. doi: 10.1063/1.473523 (53) Kelley, T.W.; Granstrom, E. L.; Frisbie, C. D. Adv. Mater.1999, 11, 261. (54) Jackel, F.;Watson, M. D.; Mullen, K.; Rabe, J. P. Phys. Rev. Lett. 2002, 92, 188303. (55) Wold, D. J.; Frisbie, D. F. J. Am. Chem. Soc. 2001, 123, 5549.doi: 10.1021/ja0101532 (56) Reuter, M. G.; Sukharev, M.; Seideman, T. Phys. Rev. Lett.2008, 101, 208303. doi: 10.1103/PhysRevLett.101.208303 (57) He, H. X.; Li, C. Z.; Tao, N. J. Appl. Phys. Lett. 2001, 78, 811.doi: 10.1063/1.1335551 (58) Mativetsky, J. M.; Pace, G.; Elbing, M., Rampi, M. A.; Mayor,M.; Samor, P. J. Am. Chem. Soc. 2008, 130, 9192. doi: 10.1021/ja8018093 (59) Kamenetska, M.; Koentopp, M.; Whalley, A. C.; Park, Y. S.;Steigerwald, M. L.; Nuckolls, C.; Hybertsen, M. S.;Venkataraman, L. Phys. Rev. Lett. 2009, 102, 126803. doi: 10.1103/PhysRevLett.102.126803 (60) Xia, J. L.; Diez-Perez, I.; Tao, N. J. Nano Lett. 2008, 8, 1960.doi: 10.1021/nl080857a (61) Weibel, N.; B?aszczyk, A.; von Hänisch, C.; Mayor, M.;Pobelov, I.;Wandlowski, T.; Chen, F.; Tao, N. J. Eur. J. Org. Chem. 2008, 136. (62) Hihath, J.; Chen, F.; Zhang, P.; Tao, N. J. J. Phys. Condes. Matter. 2007, 202, 215202. (63) Li, X. L.; Hihath, J.; Chen, F.; Masuda, T.; Zang, L.; Tao, N. J.J. Am. Chem. Soc. 2007, 129, 11535. doi: 10.1021/ja072990v (64) Fatemi, V.; Kamenetska, M.; Neaton, J. B.; Venkataraman, L.Nano Lett. 2011, 11, 1988. doi: 10.1021/nl200324e (65) Zhou, J. F.; Chen, G. J.; Xu, B. Q. J. Phys. Chem. C 2010, 114,8587. doi: 10.1021/jp101257y (66) Dulic, D.; van der Molen, S. J.; Kudernac, T.; Jonkman, H. T.;de Jong, J. J. D.; Bowden, T. N.; van Esch, J.; Feringa, B. L.;vanWees, B. J. Phys. Rev. Lett. 2003, 91, 207402. doi: 10.1103/PhysRevLett.91.207402 (67) Marquardt, C.W.; Grunder, S.; B?aszczyk, A.; Dehm, S.;Hennrich, F.; Lohneysen, H. v.; Mayor, M.; Krupke, R. Nat. Nanotechnol. 2010, 230, 1. (68) Hu,W. P.; Jiang, J.; Nakashima, H.; Luo, Y.; Kashimura, Y.;Chen, K. Q.; Shuai, Z.; Furukawa, K.; Lu,W.; Liu, Y. Q.; Zhu,D. B.; Torimitsu, T. Phys. Rev. Lett. 2006, 96, 027801. doi: 10.1103/PhysRevLett.96.027801 (69) Moreland, J.; Ekin, J.W. J. Appl. Phys. 1998, 58, 3888. (70) Muller, C. J.; Vleeming, B.; Reed, M. A.; Lambaz, J. J. S.;Haraz, R.; Jones, L.; Tour, J. M. Nanotechnology 1996, 7, 409.doi: 10.1088/0957-4484/7/4/019 (71) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M.Science 1997, 278, 252. doi: 10.1126/science.278.5336.252 (72) Smit, R. H. M.; Noat, Y.; Untiedt, C.; Lang, N. D.; vanHemert, M. C.; van Ruitenbeek, J. M. Nature 2002, 419, 906.doi: 10.1038/nature01103 (73) van Ruitenbeek, J. M.; Alvarez, A.; Pineyro, I.; Grahmann, C.;Joyez, P.; Devoret, M. H.; Esteve, D.; Urbina, C. Rev. Sci. Instrum. 1995, 67, 108. (74) Wu, S. M.; Gonzalez, M. T.; Huber, R.; Grunder, S.; Mayor,M.; Shonenberger, C.; Calame, M. Nat. Nanotechnol. 2008,237, 569. (75) Kiguchi, M.; Murakoshi, K. Thin Solid Films 2009, 518, 466.doi: 10.1016/j.tsf.2009.07.024 (76) Kiguchi, M.; Tal, O.;Wohlthat, S.; Pauly, F.; Krieger, M.;Djukic, D.; Cuevas, J. C.; van Ruitenbeek, J. M. Phys. Rev. Lett. 2008, 101, 046801. doi: 10.1103/PhysRevLett.101.046801 (77) Dolan, G. J. Appl. Phys. Lett. 1977, 31, 337. doi: 10.1063/1.89690 (78) Durkan, C.;Welland, M. E. Ultramicroscopy 2008, 82, 125. (79) Hadeed, F. O.; Durkan, C. Appl. Phys. Lett. 2007, 91, 123120.doi: 10.1063/1.2785982 (80) Demarchi, D.; Civera, P.; Piccinini, G.; Cocuzza, M.; Perrone,D. Electrochim. Acta 2009, 54, 6003. doi: 10.1016/j.electacta.2009.02.070 (81) Asghar,W.; Ramachandran, P. P.; Adewumi, A.; Noor, M. R.;Iqba, S. M. J. Manuf. Sci. Eng.-Trans. ASME 2010, 132,030911. doi: 10.1115/1.4001664 (82) Khondaker, S. I.; Yao, Z.; Cheng, L.; Henderson, J. C.; Yao, Y.X.; Tour, J. M. Appl. Phys. Lett. 2004, 85, 645. doi: 10.1063/1.1773915 (83) Trouwborst, M. L.; van Der Molen, S. J.; vanWees, B. J. J. Appl. Phys. 2006, 99, 114316. doi: 10.1063/1.2203410 (84) Heersche, H. B.; de Groot, Z.; Folk, J. A.; Kouwenhoven, L.P.; van Der Zant, H. S. J.; Houck, A. A.; Labaziewicz, J.;Chuang, I. L. Phys. Rev. Lett. 2006, 96, 017205. doi: 10.1103/PhysRevLett.96.017205 (85) Taychatanapat, T.; Bolotin, T. K. I.; Kuemmeth, F.; Ralph, D.C. Nano Lett. 2007, 7, 652. doi: 10.1021/nl062631i (86) Sutanto, J.; Smith, R. L.; Collins, S. D. J. Micromech. Microeng. 2010, 20, 045016. doi: 10.1088/0960-1317/20/4/045016 (87) Cai, L. T.; Skulason, H.; Kushmerick, J. G.; Pollack, S. K.;Naciri, J.; Shashidhar, R.; Allara, D. L.; Mallouk, T. E.; Mayer,T. S. J. Phys. Chem. B 2004, 108, 2827. doi: 10.1021/jp0361273 (88) Li, C. Z.; Bogozi, A.; Huang,W.; Tao, N. J. Nanotechnology1999, 10, 221. doi: 10.1088/0957-4484/10/2/320 (89) Zhou,W. J.;Wei, Z. X.; Yao, J. L.; Gu, R. A. Chem. J. Chin. Univ. 2009, 30, 178. [邹文君, 魏志祥, 姚建林, 顾仁敖. 高等学校化学学报, 2009, 30, 178.] (90) Morpurgo, A. F.; Marcus, C. M.; Robinson, D. B. Appl. Phys. Lett. 1999, 74, 2084. doi: 10.1063/1.123765 (91) Kashimura, Y.; Nakashima, H.; Furukawa, K.; Torimitsu, K.Thin Solid Films 2003, 438-439, 317. (92) Kim, B.; Ahn, S. J.; Park, J. G.; Lee, S. H.; Park, Y.W.;Campbell, E. E. B. Thin Solid Films 2006, 499, 196. doi: 10.1016/j.tsf.2005.06.072 (93) Kim, B.; Ahn, S. J.; Park, J. G.; Lee, S. H.; Park, Y.W. Appl. Phys. Lett. 2004, 85, 4756. doi: 10.1063/1.1821657 (94) He, H. X.; Zhu, J. S.; Tao, N. J.; Nagahara, L. A.; Amlani, I.;Tsui, R. J. Am. Chem. Soc. 2001, 123, 7730. doi: 10.1021/ja016264i (95) Qu, D. Y.; Uosaki, K. J. Phys. Chem. B 2006, 110, 17570. doi: 10.1021/jp0632135 (96) Garno, J. C.; Zangmeister, C. D.; Batteas, J. D. Langmuir2007, 23, 7874. doi: 10.1021/la070015b (97) Bechelany, M.; Brodard, P.; Elias, J.; Brioude, A.; Michler, J.;Philippe, L. Langmuir 2010, 26, 14364. doi: 10.1021/la1016356 (98) Zangmeister, C. D.; van Zee, R. D. Langmuir 2003, 19, 8065.doi: 10.1021/la026801s (99) Zhu, P. X.; Masuda, Y.; Koumoto, K. J. Mater. Chem. 2004,14, 976. doi: 10.1039/b311061c (100) Garno, J. C.; Yang, Y. Y.; Amro, N. A.; Cruchon-Dupeyrat, S.;Chen, S.W.; Liu, G. Y. Nano Lett. 2003, 3, 389. doi: 10.1021/nl025934v (101) Martin, B. R.; Dermody, D. J.; Reiss, B. D.; Fang, M. M.;Lyon, L. A.; Natan, M. J.; Mallouk, T. E. Adv. Mater. 1999, 11,1021. (102) Smith, P. A.; Nordquist, C. D.; Jackson, T. N.; Mayer, T. S.;Martin, B. R.; Mbindyo, J.; Mallouk, T. E. Appl. Phys. Lett.2000, 77, 1399. doi: 10.1063/1.1290272 (103) Menon, V. P.; Martin, C. R. Anal. Chem. 1995, 67, 1920. doi: 10.1021/ac00109a003 (104) Cai, L. T.; Cabassi, M. A.; Yoon, H.; Cabarcos, O. M.;McGuiness, C. L.; Flatt, A. K.; Allara, D. L.; Tour, J. M.;Mayer, T. S. Nano Lett. 2005, 5, 2365. doi: 10.1021/nl051219k (105) Salem, A. K.; Chen, M.; Hayden, J.; Leong, K.W.; Searson, P.C. Nano Lett. 2004, 4, 1163. doi: 10.1021/nl049462r (106) Chen, X. D.; Yeganeh, S.; Qin, L. D.; Li, S. Z.; Xue, C.;Braunschweig, A. B.; Schatz, G. C.; Ratner, M. A.; Mirkin, C.A. Nano Lett. 2009, 9, 3974. doi: 10.1021/nl9018726 (107) Osberg, K. D.; Schmucker, A. L.; Senesi, A. J.; Mirkin, C. A.Nano Lett. 2011, 11, 820. doi: 10.1021/nl1041534 (108) Lee, B. Y.; Heo, K.; Schmucker, A. L.; Jin, H. J.; Lim, J. K.;Kim, T.; Lee, H.; Jeon, K. S.; Suh, Y. D.; Mirkin, C. A.; Hong,S. Nano Lett. 2012, 12, 1879. doi: 10.1021/nl204259t (109) Chen, X. D.; Jeon, Y. M.; Jang, J.W.; Qin, L. D.; Huo, F.W.;Wei,W.; Mirkin, C. A. J. Am. Chem. Soc. 2008, 130, 8166.doi: 10.1021/ja800338w (110) Klein, D. L.; McEuen, P. L.; Katari, J. E. B.; Roth, R.;Alivisatos, A. P. Appl. Phys. Lett. 1996, 68 , 2574. (111) Amlani, I.; Rawlett, A. M.; Nagahara, L. A.; Tsui, R. K. Appl. Phys. Lett. 2002, 80, 2761. doi: 10.1063/1.1469655 (112) Choi, J.; Zhao, Y. H.; Zhang, D. Y.; Chien, S.; Lo, Y. H. Nano Lett. 2003, 3, 995. doi: 10.1021/nl034106e (113) Long, D. P.; Patterson, C. H.; Moore, M. H.; Seferos, D. S.;Bazan, G. C.; Kushmerick, J. G. Appl. Phys. Lett. 2005, 86,153105. doi: 10.1063/1.1899772 (114) Dadosh, T.; Gordin, Y.; Krahne, R.; Khivrich, I.; Mahalu, D.;Frydman, V.; Sperling, J.; Yacoby, A.; Bar-Joseph, I. Nature2005, 436, 677. doi: 10.1038/nature03898 (115) Kushmerick, J. G.; Holt, D. B.; Pollack, S. K.; Ratner, M. A.;Yang, J. C.; Schull, T. L.; Naciri, J.; Moore, M. H.; Shashidhar,R. J. Am. Chem. Soc. 2002, 124, 10654. doi: 10.1021/ja027090n (116) Kushmerick, J. G.; Naciri, J.; Yang, J. C.; Shashidhar, R. Nano Lett. 2003, 3, 897. doi: 10.1021/nl034201n (117) Francis, T. L.; Mermer, O.; Veeraraghavan, G.;Wohlgenannt,M. New J. Phys. 2004, 6, 185. doi: 10.1088/1367-2630/6/1/185 (118) De Valladares, L. L. S.; Felix, L. L.; Dominguez, A. B.;Mitrelias, T.; Sfigakis, F.; Khondaker, S. I.; Wbarnes, C. H.;Majima, Y. Nanotechnology 2010, 21, 445304. doi: 10.1088/0957-4484/21/44/445304 (119) Li, C.; Zhang, D. H.; Liu, X. L.; Han, S.; Tang, T.; Zhou, C.W.; Fan,W.; Koehne, J.; Han, J.; Meyyappan, M.; Rawlett, A.M.; Price, D.W.; Tour, J. M. Appl. Phys. Lett. 2003, 82, 645.doi: 10.1063/1.1541943 (120) Chen, Y.; Ohlberg, D. A. A.; Li, X. M.; Stewart, D. R.;Williams, R. S.; Jeppesen, J. O.; Nielsen, K. A.; Stoddart, J. F.;Deirdre, L. O.; Anderson, E. Appl. Phys. Lett. 2003, 82, 1610.doi: 10.1063/1.1559439 (121) Chen, Y.; Jung, G. Y.; Ohlberg, D. A. A.; Li, X. M.; Stewart, D.R.; Jeppesen, J. O.; Nielsen, K. A.; Stoddart, J. F.;Williams, R.S. Nanotechnology 2003, 14, 462. doi: 10.1088/0957-4484/14/4/311 (122) Jung, G. Y.; Ganapathiappan, S.; Ohlberg, D. A. A.; Olynick,D. L.; Chen, Y.; Tong,W. M.;Williams, R. S. Nano Lett. 2004,4, 1225. doi: 10.1021/nl049487q (123) Xia, Q. F.; Yang, J. J.;Wu,W.; Li, X. M.;Williams, R. S. Nano Lett. 2010, 10, 2909. doi: 10.1021/nl1017157 (124) Li, J. C.;Wang, D.; Ba, D. C. J. Phys. Chem. C 2012, 116,10986. doi: 10.1021/jp300467c (125) Shen, Q.; Cao, Y.; Liu, S.; Steigerwald, M. L.; Guo, X. F. J. Phys. Chem. C 2009, 113, 10807. (126) Ioffe, Z.; Shama, T.; Ophir, A.; Noy, G.; Yutsis, I.; Kfir, K.;Cheshnovsky, O.; Selzer, Y. Nat. Nanotechnol. 2008, 304, 727. (127) Zhitenev, N. B.; Erbe, A.; Bao, Z. Phys. Rev. Lett. 2004, 92,186805. doi: 10.1103/PhysRevLett.92.186805 (128) Wang,W. Y.; Lee, T.; Reed, M. A. Phys. Rev. B 2003, 68,035416. doi: 10.1103/PhysRevB.68.035416 (129) Reed, M. A.; Chen, J.; Rawlett, A. M.; Price, D.W.; Tour, J. M.Appl. Phys. Lett. 2001, 78, 3735. doi: 10.1063/1.1377042 (130) Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science1999, 286, 1550. doi: 10.1126/science.286.5444.1550 (131) Majumdar, N.; Gergel-Hackettn, N.; Bean, J. C.; Harriott, L.R.; Pattanaik, G.; Zangrai, G.; Yao, Y.; Tour, J. M. Journal of Electronic Materials 2006, 35, 140. doi: 10.1007/s11664-006-0196-8 (132) Gergel, N.; Majumdar, N.; Keyvanfar, K.; Swami, N.; Harriott,L. R.; Bean, J. C.; Gyana, P.; Giovanni, Z.; Yao, Y.; Tour, J. M.J. Vac. Sci. Technol. A 2005, 23, 880. doi: 10.1116/1.1931687 (133) Kalinowski, J. J. Phys. D-Appl. Phys. 1999, 32, 179. (134) Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 16866. doi: 10.1021/ja0533996 (135) Chen, J.; Calvet, L. C.; Reed, M. A.; Carr, D.W.; Grubisha, D.S.; Bennett, D.W. Chem. Phys. Lett. 1999, 313, 741. doi: 10.1016/S0009-2614(99)01060-X (136) DiBenedetto, S. A.; Facchetti, A.; Ratner, M. A.; Marks, T. J.J. Am. Chem. Soc. 2009, 131, 7158. doi: 10.1021/ja9013166 (137) Nijhuis, C. A.; Reus,W. F.; Barber, J. R.; Whitesides, G. M.J. Phys. Chem. C 2012, 116, 14139. doi: 10.1021/jp303072a (138) Pakoulev, A. V.; Burtman, V. J. Phys. Chem. C 2009, 113,21413. (139) Conklin, D.; Nanayakkara, S.; Park, T. H.; Lagadec, M. F.;Stecher, J. T.; Therien, M. J.; Bonnell, D. A. Nano Lett. 2012,12, 2414. doi: 10.1021/nl300400a (140) Lu, Q.; Yao, C.;Wang, X. H.;Wang. F. S. J. Phys. Chem. C2012, 116, 17853. doi: 10.1021/jp2119923 (141) Fadjie-Djomkam, A. B.; Ababou-Girard, S.; Hiremath, R.;Herrier, C.; Fabre, B.; Solal, F.; Godet, C. J. Appl. Phys. 2011,110, 083708. doi: 10.1063/1.3651401 (142) Salomon, A.; Shpaisman, H.; Seitz, O.; Boecking, T.; Cahen,D. J. Phys. Chem. C 2008, 112, 3969. doi: 10.1021/jp710985b (143) Chu, C.W.; Na, J. S.; Parsons, G. N. J. Am. Chem. Soc. 2007,129, 2287. doi: 10.1021/ja064968s (144) Wold, D. J.; Haag, R.; Rampi, M. A.; Frisbie, C. D. J. Phys. Chem. B 2002, 106, 2813. doi: 10.1021/jp013476t (145) Holmlin, R. E.; Haag, R.; Chabinyc, M. L.; Ismagilov, R. F.;Cohen, A. E.; Terfort, A.; Rampi, M. A.; Whitesides, G. M.J. Am. Chem. Soc. 2001, 123, 5075. doi: 10.1021/ja004055c (146) York, R. L.; Nguyen, P. T.; Slowinski, K. J. Am. Chem. Soc.2003, 125, 5948. doi: 10.1021/ja0211353 (147) Slowinski, K.; Chamberlain, R. V.; Miller, C. J.; Majda, M.J. Am. Chem. Soc. 1997, 119, 11910. doi: 10.1021/ja971921l (148) Thuo, M. M.; Reus,W. F.; Nijhuis, C. A.; Barber, J. R.; Kim,C.; Schulz, M. D.; Whitesides, G. M. J. Am. Chem. Soc. 2011,133, 2962. doi: 10.1021/ja1090436 (149) Chiechi, R. C.;Weiss, E. A.; Dickey, M. D.; Whitesides, G. M.Angew. Chem. Int. Edit. 2008, 47, 142. (150) Chen, F.; Li, X. L.; Hihath, J.; Huang, Z. F.; Tao, N. J. J. Am. Chem. Soc. 2006, 128, 15874. doi: 10.1021/ja065864k (151) Li, X. L.; He, J.; Hihath, J.; Xu, B. Q.; Lindsay, S. M.; Tao, N.J. J. Am. Chem. Soc. 2006, 128, 2135. doi: 10.1021/ja057316x (152) Cui, X. D.; Zarate, X.; Tomfohr, J.; Sankey1, O. F.; Primak, A.;Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S.M. Nanotechnology 2002, 13, 5. doi: 10.1088/0957-4484/13/1/302 (153) Engelkes, V. B.; Beebe, J. M.; Frisbie, C. D. J. Am. Chem. Soc.2004, 126, 14287. doi: 10.1021/ja046274u (154) Smaali, K.; Cle'ment, N.; Patriarche, G.; Vuillaume, D. ACS Nano 2012, 6, 4639. doi: 10.1021/nn301850g (155) Song, H.; Kim, Y.; Jeong, H.; Reed, M. A.; Lee, T. J. Phys. Chem. C 2010, 114, 20431. doi: 10.1021/jp104760b (156) Creager, S.; Yu, C. J.; Bamdad, C.; Connor, S. O.; MacLean,T.; Lam, E.; Chong, Y.; Olsen, G. T.; Luo, J. Y.; Gozin, M.;Kayyem, J. F. J. Am. Chem. Soc. 1999, 121, 1059. doi: 10.1021/ja983204c (157) Wang,W. Y.; Lee, T.; Reed, M. A. J. Phys. Chem. B 2004, 108,18398. doi: 10.1021/jp048904k (158) Lee, T.;Wang,W. Y.; Zhang, J. J.; Su, J.; Klemic, J. F.; Reed,M. A. Curr. Appl. Phys. 2005, 5, 213. doi: 10.1016/j.cap.2003.11.088 (159) Bonifas, A. P.; McCreery, R. L. Nano Lett. 2011, 11, 4725. doi: 10.1021/nl202495k (160) Kim, B. S.; Choi, S. H.; Zhu, X. Y.; Frisbie, C. D. J. Am. Chem. Soc. 2011, 133, 19864. doi: 10.1021/ja207751w (161) Liu, K.; Li, G. R.;Wang, X. H.;Wang, F. S. J. Phys. Chem. C2008, 112, 4342. (162) He, J.; Chen, F.; Li, J.; Sankey, O. F.; Terazono, Y.; Herrero,C.; Gust, D.; Moore, T. A.; Moore, A. L.; Lindsay, S. M. J. Am. Chem. Soc. 2005, 127, 1384. doi: 10.1021/ja043279i (163) Sakaguchi, H.; Hirai, A.; Iwata, F.; Sasaki, A.; Nagamura, T.Appl. Phys. Lett. 2001, 79, 3708. doi: 10.1063/1.1421233 (164) Kaliginedi, V.; Moreno-García, P.; Valkenier, H.; Hong,W. J.;García-Suarez, V. M.; Otten, J. L. H.; Buiter, P.; Hummelen, J.C.; Lambert, C. J.;Wandlowski, T. J. Am. Chem. Soc. 2012,134, 5262. doi: 10.1021/ja211555x (165) Liu, K.;Wang, X. H.;Wang, F. S. ACS Nano 2008, 2, 2315.doi: 10.1021/nn800475a (166) Akkerman, H. B.; de Boer, B. J. Condens. Matter Phys. 2008,20, 013001. doi: 10.1088/0953-8984/20/01/013001 (167) Moth-Poulsen, K.; Patrone, L.; Stuhr-Hansen, N.; Christensen,J. B.; Bourgoin, J. P.; Bjørnholm, T. Nano Lett. 2005, 5, 783.doi: 10.1021/nl050032q (168) Guo, X. F.; Small, J. P.; Klare, J. E.;Wang, Y. L.; Purewal, M.S.; Tam, I.W.; Hong, B. H.; Caldwell, R.; Huang, L. M.;O'Brien, S.; Yan, J. M.; Breslow, R.;Wind, S. J.; Hone, J.;Kim, P.; Nuckolls, C. Science 2006, 311, 356. doi: 10.1126/science.1120986 (169) Feldmen, A.; Steigerwald, M. L.; Guo, X. F.; Nuckolls, C.Accounts Chem. Res. 2008, 41, 1731. (170) Qian, S.; Guo, X. F.; Steigerwald, M. L.; Nuckolls, C. Chem. Asian J. 2010, 5, 1040. doi: 10.1002/asia.200900565 (171) Cao, Y.; Liu, S.; Shen, Q.; Yan, K.; Li, P. J.; Xu, J.; Yu, D. P.;Steigerwald, M. L.; Nuckolls, C.; Liu, Z. F.; Guo, X. F. Adv. Funct. Mater. 2009, 19, 2743. doi: 10.1002/adfm.v19:17 (172) Cao, Y.;Wei, Z. M.; Liu, S.; Shen, Q.; Gan, L.; Shi, S. J.; Guo,X. F.; Xu,W.; Steigerwald, M. L.; Liu, Z. F.; Zhu, D. B.Angew. Chem. Int. Edit. 2010, 49, 6319. doi: 10.1002/anie.201001683 |
[1] | 林锦亮, 张雅敏, 张浩力. 单分子器件中的新颖静电场效应[J]. 物理化学学报, 2021, 37(12): 2005010 - . |
[2] | 孙汉涛, 廖建辉, 侯士敏. 基于吡嗪连接的石墨烯电极单分子场效应晶体管[J]. 物理化学学报, 2021, 37(10): 1906027 - . |
[3] | 余培锴, 冯安妮, 赵世强, 魏珺颖, 杨扬, 师佳, 洪文晶. 基于裂结技术的单分子尺度化学反应研究进展[J]. 物理化学学报, 2019, 35(8): 829 -839 . |
[4] | 艾勇, 张浩力. 单分子结的构筑及分子电导性质的测试[J]. 物理化学学报, 2012, 28(10): 2237 -2248 . |
[5] | 邹斌;李宗良;宋秀能;刘兰峰;王传奎. 电极距离对4,4’-联苯二硫酚分子器件非弹性电子隧穿谱的影响[J]. 物理化学学报, 2007, 23(10): 1577 -1582 . |
|