物理化学学报 >> 2015, Vol. 31 >> Issue (9): 1741-1746.doi: 10.3866/PKU.WHXB201508031

催化和表面科学 上一篇    下一篇

氢终止金刚石表面的形成机理

刘金龙1,刘盛1,郭建超1,化称意1,陈良贤1,魏俊俊1,黑立富1,王晶晶2,冯志红2,刘青3,李成明1,*()   

  1. 1 北京科技大学新材料技术研究院,北京100083
    2 河北省半导体研究所专用集成电路重点实验室,石家庄050051
    3 北京科技大学冶金与生态工程学院,北京100083
  • 收稿日期:2015-01-07 发布日期:2015-09-06
  • 通讯作者: 李成明 E-mail:chengmli@mater.ustb.edu.cn
  • 基金资助:
    国家自然科学基金(51402013);中国博士后科学基金(2014M550022);中央高校基本科研业务费(FRF-TP-14-042A1);专用集成电路重点实验室基金

Formation Mechanism of the H-terminated Diamond Surface

Jin-Long. LIU1,Sheng. LIU1,Jian-Chao. GUO1,Chen-Yi. HUA1,Liang-Xian. CHEN1,Jun-Jun. WEI1,Li-Fu. HEI1,Jing-Jing. WANG2,Zhi-Hong. FENG2,Qing. LIU3,Cheng-Ming. LI1,*()   

  1. 1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
    2 Science and Technology on ASIC Laboratory, Hebei Semiconductor Research Institute, Shijiazhuang 050051, P. R. China
    3 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
  • Received:2015-01-07 Published:2015-09-06
  • Contact: Cheng-Ming. LI E-mail:chengmli@mater.ustb.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(51402013);China Postdoctoral Science Foundation(2014M550022);Fundamental Research Funds for the Central Universities, China(FRF-TP-14-042A1);Funds for Science and Technology onASIC Laboratory, China

摘要:

为考察金刚石形成氢终止表面的反应机制,采用微波氢等离子体处理以及电阻丝氢气气氛加热处理进行对比研究.利用光发射谱(OES)和漫反射傅里叶变换红外光谱(DRIFTS)分别表征了微波氢等离子体中的活性基团和金刚石表面氢终止浓度.结果表明,微波氢等离子体环境下,随着衬底温度、等离子体密度和能量的增加,温度至700 ℃ (800 W/3 kPa)时,等离子体中出现了明显的CH基团;相应地,金刚石表面氢终止浓度随温度、等离子体密度和能量的增加而增加.采用氢气气氛下电阻丝加热的方法同样形成了氢终止金刚石表面,表明微波等离子体处理金刚石表面形成氢终止主要源于由温度控制的表面化学反应,而非等离子体的物理刻蚀作用.氧终止金刚石表面形成氢终止的机制是表面C=O键在高于500 ℃时分解为CO,相应的悬挂键由氢原子或氢分子占据.

关键词: 微波氢等离子体, 金刚石, 氢终止, 氧终止

Abstract:

Microwave hydrogen plasma was used to introduce hydrogen termination on the diamond surface. Optical emission spectroscopy (OES) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were used to characterize the active radicals in the plasma and the concentration of H-termination on the diamond surface, respectively. Thermal hydrogenation treatment carried out by hot filament heat in a hydrogen atmosphere was also proposed for incorporation of H-termination on the diamond surface. The results showed that the CH radical content in the microwave plasma and the H-termination concentration on the diamond surface after microwave plasma treatment were both facilitated by increasing the substrate temperature, plasma density, and input power. Interestingly, thermal hydrogenation treatment can produce Htermination on the diamond surface compared with to a similar extent to microwave plasma treatment. These observations show that the crucial factor for forming the H-terminated diamond surface is the surface chemical reaction controlled by temperature, rather than the plasma etching effect. When the temperature is above 500 ℃, C=O bonds on the O-terminated diamond surface decompose to CO and leave dangling bonds, which then connect with atomic or molecular hydrogen.

Key words: Microwave hydrogen plasma, Diamond, H-termination, O-termination