物理化学学报 >> 2018, Vol. 34 >> Issue (1): 11-21.doi: 10.3866/PKU.WHXB201706301

专论 上一篇    下一篇

单个等离子体纳米颗粒在生化分析和生物成像中的应用

雷刚,何彦*()   

  • 收稿日期:2017-05-02 发布日期:2017-11-01
  • 通讯作者: 何彦 E-mail:yanhe2021@mail.tsinghua.edu.cn
  • 作者简介:何彦,1995年于北京大学化学系获学士学位,2001年于美国爱荷华大学获分析化学博士学位,2002–2005年在美国艾姆斯国家实验室从事博士后研究,2005–2015年任湖南大学化学化工学院教授、博士生导师,2015年9月起任清华大学化学系教授、博士生导师。主要研究方向为单分子单细胞光谱及成像技术的开发与应用
  • 基金资助:
    国家自然科学基金(21425519)

Applications of Single Plasmonic Nanoparticles in Biochemical Analysis and Bioimaging

Gang LEI,Yan HE*()   

  • Received:2017-05-02 Published:2017-11-01
  • Contact: Yan HE E-mail:yanhe2021@mail.tsinghua.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(21425519)

摘要:

等离子体纳米颗粒(PNPs)因其独特的物理、化学、光学和生物学特性而被广泛地应用于材料科学、生物学和医药学等研究领域。PNPs的光学性质是可以通过改变其组成、形状和大小来进行调控的,所以利用可控合成的方式能够筛选出适合的光散射探针。在单分子水平上实时研究PNPs的动态行为对于理解细胞及活体组织的生命活动机制、制备功能型纳米材料和开发新型化学生物传感器等有着重要的意义。基于传统的暗场显微镜(DFM),通过对光源、检测器及其它光学元件的择优组装和调试,我们开发出了一系列具有高灵敏度、高时空分辨率和高通量的等离子体光散射成像技术,并将其应用于单分子检测、多颗粒传感、单细胞成像以及生物过程示踪等领域。基于具有光学各向异性的PNPs,我们还研制出了活细胞三维扫描成像系统和超连续激光光片成像与高速毛细管电泳联用系统,推进了单分子光谱方面的研究。本文将总结近十年来本课题组在PNP单颗粒分析及成像中的工作,并为该领域未来的发展提出一些新的思路。

关键词: 等离子体纳米颗粒, 暗场显微镜, 等离子体光散射成像, 单分子光谱, 单颗粒分析

Abstract:

Owing to the unique physical, chemical, optical, and biological properties, plasmonic nanoparticles (PNPs) have been widely used in various research fields such as materials science, biology, and medicine. The optical properties of PNPs can be regulated by changing their composition, shape, and size, so that a suitable light-scattering probe can be screened by means of controllable synthesis. Real-time study of the dynamic behavior of PNPs at the single molecule level is of great significance for understanding the biological behaviors of living cells and tissues, fabricating functional nanomaterials, and developing new chemical biosensors. Starting from the traditional dark-field microscopy (DFM), we have developed a series of plasmonic light-scattering imaging techniques with high sensitivity, high temporal-spatial resolution, and high throughput through optimizing the assembly of light sources, detectors, and other optical components, and applied these techniques to single molecule detection, multi-particle sensing, single cell imaging, biological process tracing, and so on. Based on the PNPs with optical anisotropy, we have also developed a three-dimensional scanning imaging system for living cells and asupercontinuum laser light-sheet imaging system coupled with high-speed capillary electrophoresis system, advancing the study of single molecule spectroscopy. This paper will summarize the work on PNP single particle analysis and imaging in our research group during the past ten years, and put forward some new ideas for further development in this field.

Key words: Plasmonic nanoparticles, Dark-field microscopy, Plasmonic light-scattering imaging, Single molecule spectroscopy, Single particle analysis