物理化学学报 >> 2020, Vol. 36 >> Issue (1): 1906087.doi: 10.3866/PKU.WHXB201906087
所属专题: 庆祝唐有祺院士百岁华诞专刊
收稿日期:
2019-06-27
录用日期:
2019-08-19
发布日期:
2019-08-22
通讯作者:
马丁
E-mail:dma@pku.edu.cn
作者简介:
马丁教授,2001年在中国科学院大连化学物理研究所取得博士学位,2009年加入北京大学化学与分子工程学院物理学研究所,从事多相催化研究,着力于发展新的催化体系,结合原位表征手段来解决催化过程中的重要科学问题
基金资助:
Received:
2019-06-27
Accepted:
2019-08-19
Published:
2019-08-22
Contact:
Ding Ma
E-mail:dma@pku.edu.cn
Supported by:
摘要:
铁碳化物,特别是χ-Fe5C2,因在多个不同领域的应用长期以来受到研究者的密切关注。事实上,χ-Fe5C2已经被认定为铁基费托合成催化剂的活性相。除了作为催化剂外,χ-Fe5C2在电化学、磁成像和治疗等方面也有应用价值。自发现以来,人们对χ-Fe5C2的结构、稳定性、催化性能等物理化学性质开展了研究。χ-Fe5C2的C2/c结构在上世纪60年代初次得到解析,但是受限于样品中常常混合其他氧化铁和碳化铁,在结构方面还存在争议。研究者仍致力于结合先进表征技术和理论方法,利用高纯度的样品来建立更加准确的模型。作为一种亚稳态结构,传统合成方法很难制备高纯度的χ-Fe5C2。经过对合成方法的不断探索,物相单一和尺寸形貌可控的合成已经实现。多种铁和碳的前驱体可以用来合成χ-Fe5C2,而固-固、固-气和固-液相的碳化过程均能够用来制备不同粒度和形貌的χ-Fe5C2。合成方法方面的成果来了对χ-Fe5C2物相形成机理的新认识。利用原位表征方法,研究者已经揭示了气固相和液固相制备过程中物相形成的一些细节。无定形的Fe-C复合物的形成与晶化有可能是关键步骤。在新的制备方法基础上,出现了多种调控χ-Fe5C2催化活性的新手段。低钴含量的有钴纳米粒子和χ-Fe5C2组成的复合体具有非常高的低温费托合成活性。通过第二组分的修饰后可以使χ-Fe5C2突破传统的费托合成反应的局限,成为制备低碳烯烃、长链α烯烃、芳烃和含氧化物的新型催化剂。在这篇综述中,我们将回顾自上世纪中期以来对χ-Fe5C2物相的研究成果,聚焦于对结构解析,制备方法,生成机制以及在催化性能调控等方面的进展。我们总结了一系列用于制备χ-Fe5C2的方法以及控制催化性质的路径。合成方法的突破是更好认识χ-Fe5C2物理化学的关键。
赵华博, 马丁. χ-Fe5C2:结构,合成与催化性质调控[J]. 物理化学学报, 2020, 36(1), 1906087. doi: 10.3866/PKU.WHXB201906087
Huabo Zhao, Ding Ma. χ-Fe5C2: Structure, Synthesis, and Tuning of Catalytic Properties[J]. Acta Physico-Chimica Sinica 2020, 36(1), 1906087. doi: 10.3866/PKU.WHXB201906087
表1
χ-Fe5C2合成方法"
Iron source | Carbon source | Temperature/℃ | Composition & feature | Ref. |
Solid-Solid Phase Carburization | ||||
Zn3[Fe(CN)6]2 | – | 600–1000 | Fe/Fe5C2@N-doped carbon | |
Fe(CP)2/g-C3N4 | – | 650 | Fe/Fe5C2/N-doped graphene | |
α-Fe | graphite | ball milling | 54% Fe5C2 | |
amorphous Fe-C | – | 300–400 | Fe5C2 like compound | |
Solid-Gas Phase Carburization * | ||||
α-Fe | CO | 200–275 | Fe5C2 | |
Fe/Al2O3 | CO/H2 | 160–200 | Fe5C2 | |
α-Fe2O3 & Fe3O4 | CO | 350–375 | single phase Fe5C2 | |
iron oxalate dihydrate cubes | CO | 350 | micrometer-sized assembled by Fe5C2@C | |
Iron nitrate/CMK-3 | CO | 350 | Fe5C2 NPs @C | |
Fe-MIL88 MOF | CO/H2 | 270–300 | Fe3O4@Fe5C2@N-doped carbon | |
Fe-BTC MOF | CO/H2 | 340 | Fe5C2/Fe2.2C@C | |
β-Fe2O3 | CO | 700 | 95% Fe5C2, 5% Fe3C | |
α-Fe | CO/CO2/H2 | 300/450 | single phase Fe5C2 | |
Fe-g-C3N4 | CO/H2 | 340 | single phase Fe5C2 | |
Solid-Liquid Phase Carburization * | ||||
α-Fe | CO/H2 | 260 | 87.4%(w) Fe5C2 | |
α-Fe | toluene | ball milling | single phaseFe5C2 | |
α-Fe, Fe(CO)5 | – | 150 | mono-dispersed Fe5C2/Fe2.2NPs | |
Fe(CO)5 | octadecylamine | 350 | Single phase Fe5C2NPs | |
amorphous Fe NPS | oleyl amine | 330 | Fe5C2NPs |
1 |
Jack D. H. ; Jack K. H. Mater. Sci. Eng. 1973, 11 (1), 1.
doi: 10.1016/0025-5416(73)90055-4 |
2 |
De Smit E. ; Weckhuysen B. M. Chem. Soc. Rev. 2008, 37 (12), 2758.
doi: 10.1039/b805427d |
3 |
Fang C. M. ; Sluiter M. H. ; Van Huis M. A. ; Zandbergen H. W. Phys. Rev. Lett. 2010, 105 (5), 055503.
doi: 10.1103/PhysRevLett.105.055503 |
4 |
Amelse J. A. ; Grynkewich G. ; Butt J. B. ; Matyi R. J. ; Schwartz L. H. ; Shapiro A. J. Phys. Chem. 1981, 85 (17), 2484.
doi: 10.1021/j150606a020 |
5 |
Rao K. R. P. M. ; Huggins F. E. ; Ganguly B. ; Mahajan V. ; Huffman G. P. ; Davis B. ; O'Brien R. J. ; Xu L. G. ; Rao V. U. S. Hyperfine Interact. 1994, 93 (1), 1755.
doi: 10.1007/BF02072941 |
6 |
Cubeiro M. L. ; Morales H. ; Goldwasser M. R. ; Pérez-Zurita M. J. ; González-Jiménez F. ; Urbina de N. C. Appl. Catal. A 1999, 189 (1), 87.
doi: 10.1016/S0926-860X(99)00262-8 |
7 |
Schulz H. ; Riedel T. ; Schaub G. Top. Catal 2005, 32 (3), 117.
doi: 10.1007/s11244-005-2883-8 |
8 |
Du Plessis H. E. ; De Villiers J. P. R. ; Kruger G. J. Zeitschrift für Kristallographie 2007, 222 (5), 211.
doi: 10.1524/zkri.2007.222.5.211 |
9 |
Leineweber A. ; Shang S. ; Liu Z. K. ; Widenmeyer M. Zeitschrift für Kristallographie 2012, 227 (4), 207.
doi: 10.1524/zkri.2012.1490 |
10 |
Yang C. ; Zhao H. B. ; Hou Y. L. ; Ma D. J. Am. Chem. Soc. 2012, 134 (38), 15814.
doi: 10.1021/ja305048p |
11 |
Xie J. X. ; Yang J. ; DugulanA. I. ; Holmen A. ; Chen D. ; de Jong K. P. ; Louwerse M. J. ACS Catal. 2016, 6 (5), 3147.
doi: 10.1021/acscatal.6b00131 |
12 |
He Y. R. ; Zhao P. ; Meng Y. ; Guo W. P. ; Yang Y. ; Li Y. W. ; Huo C. F. ; Wen X. D. J. Phys. Chem. C. 2018, 122 (5), 2806.
doi: 10.1021/acs.jpcc.7b11430 |
13 |
He Y. R. ; Zhao P. ; Yin J. P. ; Guo W. P. ; Yang Y. ; Li Y. W. ; Huo C. F. ; Wen X. D. J. Phys. Chem. C. 2018, 122 (36), 20907.
doi: 10.1021/acs.jpcc.8b06988 |
14 |
Broos R. J. P. ; Zijlstra B. ; Filot I. A. W. ; Hensen E. J. M. J. Phys. Chem. C. 2018, 122 (18), 9929.
doi: 10.1021/acs.jpcc.8b01064 |
15 |
Yang C. ; Zhao B. ; Gao R. ; Yao S. Y. ; Zhai P. ; Li S. W. ; Yu J. ; H ou. ; Y. L. ; Ma D. ACS Catal. 2017, 7 (9), 5661.
doi: 10.1021/acscatal.7b01142 |
16 |
Gao W. ; Gao R. ; Zhao Y. F. ; Peng M. ; Song C. Q. ; Li M. Z. ; Li S. W. ; Liu J. J. ; Li W. Z. ; Deng Y. C. ; et al Chem. 2018, 4 (12), 2917.
doi: 10.1016/j.chempr.2018.09.017 |
17 |
Tang W. ; Zhen Z. P. ; Yang C. ; Wang L. ; Cowger T. ; Chen H. M. ; Todd T. ; Hekmatyar K. ; Zhao Q. ; Hou Y. L. ; Xie J. Small. 2014, 10 (7), 1245.
doi: 10.1002/smll.201303263 |
18 |
Yu J. ; Yang C. ; Li J. D. S. ; Ding Y. C. ; Zhang L. ; Yousaf M. Z. ; Lin J. ; Pang R. ; Wei L. B. ; Xu L. L. ; et al Adv. Mater. 2014, 26 (24), 4114.
doi: 10.1002/adma.201305811 |
19 |
Li P. ; Qiu Y. ; Liu S. G. ; Li H. L. ; Zhao S. ; Diao J. X. ; Guo X. H. Eur. J. Inorg. Chem. 2019, 27, 3253.
doi: 10.1002/ejic.201900390 |
20 |
Wang D. ; Chen B. X. ; Duan X. Z. ; Chen D. ; Zhou X. G. J. Energy Chem. 2016, 25 (6), 911.
doi: 10.1016/j.jechem.2016.11.002 |
21 |
Wilson D. V. Nature. 1951, 167 (4257), 899.
doi: 10.1038/167899b0 |
22 |
Jack K. H. ; Wild S. Nature. 1966, 212 (5059), 248.
doi: 10.1038/212248b0 |
23 |
Retief J. J. Powder Diffr. 1999, 14 (2), 130.
doi: 10.1017/S0885715600010435 |
24 |
Du Plessis H. E. ; De Villiers J. P. ; Kruger G. J. ; Steuwer A. ; Brunelli M. J. Synchrotron Rad. 2011, 18 (Pt 2), 266.
doi: 10.1107/S0909049510048958 |
25 |
Li X. N. ; Zhu K. Y. ; Pang J. F. ; Tian M. ; Liu J. Y. ; Rykov A. I. ; Zheng M. Y. ; Wang X. D. ; Zhu X. F. ; Huang Y. Q. ; et al Appl. Catal. B. 2018, 224, 518.
doi: 10.1016/j.apcatb.2017.11.004 |
26 |
Niemantsverdriet J. W. ; Van Der Kraan A. M. ; Van Dijk W. L. ; Van der Baan H. S. J. Phys. Chem. 1980, 84 (25), 3363.
doi: 10.1021/j100462a011 |
27 |
Raupp G. B. ; Delgass W. N. J. Catal. 1979, 58 (3), 348.
doi: 10.1016/0021-9517(79)90274-4 |
28 |
Pijolat M. ; Perrichon V. ; Bussière P. J. Catal. 1987, 107 (1), 82.
doi: 10.1016/0021-9517(87)90274-0 |
29 |
Liu X. W. ; Cao Z. ; Zhao S. ; Gao R. ; Meng Y. ; Zhu J. X. ; Rogers C. ; Huo C. F. ; Yang Y. ; Li Y. W. ; Wen X. D. J. Phys. Chem. C. 2017, 121 (39), 21390.
doi: 10.1021/acs.jpcc.7b06104 |
30 |
De Smit E. ; Beale A. M. ; Nikitenko S. ; Weckhuysen B. M. J. Catal. 2009, 262 (2), 244.
doi: 10.1016/j.jcat.2008.12.021 |
31 |
Ribeiro M. C. ; Jacobs G. ; Davis B. H. ; Cronauer D. C. ; Kropf A. ; Jeremy M. ; Christopher L. J. Phys. Chem. C. 2010, 114 (17), 7895.
doi: 10.1021/jp911856q |
32 |
Pham T. H. ; Duan X. Z. ; Qian G. ; Zhou X. G. ; Chen D. J. Phys. Chem. C. 2014, 118 (19), 10170.
doi: 10.1021/jp502225r |
33 |
Zhao S. ; Liu X. W. ; Huo C. F. ; Li Y. W. ; Wang J. G. ; Jiao H. J. J. Catal. 2012, 294, 47.
doi: 10.1016/j.jcat.2012.07.003 |
34 |
Zhao S. ; Liu X. W. ; Huo C. F. ; Guo W. P. ; Cao D. B. ; Yang Y. ; Li Y. W. ; Wang J. G. ; Jiao H. J. Catal. Today. 2016, 261, 93.
doi: 10.1016/j.cattod.2015.07.035 |
35 |
Song L. ; Wang T. ; Li L. ; Wu C. ; He J. Appl. Catal. B. 2019, 244, 197.
doi: 10.1016/j.apcatb.2018.11.005 |
36 |
Hu E. ; Yu X. Y. ; Chen F. ; Wu Y. ; Hu Y. ; Lou X. W. Adv. Energy Mater. 2018, 8 (9), 1702476.
doi: 10.1002/aenm.201702476 |
37 |
Lodya J. A. L. ; Gericke H. ; Ngubane J. ; Dlamini T. H. Hyperfine Interact. 2009, 190 (1–3), 37.
doi: 10.1007/s10751-009-9919-6 |
38 |
Bauer-Grosse E. ; Le Caer G. Mater. Sci. Eng. 1988, 97, 273.
doi: 10.1016/0025-5416(88)90056-0 |
39 |
Bauer-Grosse E. Solid State Phenom. 2011, 172-174, 959.
doi: 10.4028/www.scientific.net/SSP.172-174.959 |
40 |
Podgurski H. H. ; Kummer J. T. ; Dewitt T. W. ; Emmett P. H. J. Am. Chem. Soc. 1950, 72 (12), 5382.
doi: 10.1021/ja01168a006 |
41 |
Hirano S. I. ; Tajima S. J. Mater. Sci. 1990, 25 (10), 4457.
doi: 10.1007/BF00581108 |
42 |
Hong S. Y. ; Chun D. H. ; Yang J.I. ; Jung H. ; Lee H. T. ; Hong S. ; Jang S. ; Lim J. T. ; Kim C. S. ; Park J. C. Nanoscale. 2015, 7 (40), 16616.
doi: 10.1039/C5NR04546K |
43 |
Kang S. W. ; Kim K. ; Chun D. H. ; Yang J. I. ; Lee H. T. ; Jung H. ; Lim J. T. ; Jang S. ; Kim C. S. ; Lee C. W. ; et al J. Catal. 2017, 349, 66.
doi: 10.1016/j.jcat.2017.03.004 |
44 |
An B. ; Cheng K. ; Wang C. ; Wang Y. ; Lin W. B. ACS Catal. 2016, 6 (6), 3610.
doi: 10.1021/acscatal.6b00464 |
45 |
Wezendonk T. A. ; Santos V. P. ; Nasalevich M. A. ; Warringa Q. S. E. ; Dugulan A. I. ; Chojecki A. ; Koeken A. C. J. ; Ruitenbeek M. ; Meima G. ; Islam H. -U. ; et al ACS Catal. 2016, 6 (5), 3236.
doi: 10.1016/j.jcat.2018.03.034 |
46 |
Wezendonk T. A. ; Sun X. H. ; Dugulan A. I. ; van Hoof A. J. F. ; Hensen E. J. M. ; Kapteijn F. ; Gascon J. J. Catal. 2018, 362, 106.
doi: 10.1016/j.jcat.2018.03.034 |
47 |
Malina O. ; Jakubec P. ; Kašlík J. ; Tuček J. ; Zbořil R. Nanoscale. 2017, 9 (29), 10440.
doi: 10.1039/c7nr02383a |
48 |
Wang R. X. ; Wu B. S. ; Li Y. W. Chin. J. Catal. 2013, 33 (5), 863.
doi: 10.3724/sp.J.1088.2012.11204 |
49 |
Park H. ; Youn D. H. ; Kim J. Y. ; Kim W. Y. ; Choi Y. H. ; Lee Y. H. ; Choi S. H. ; Lee J. S. ChemCatChem. 2015, 7 (21), 3488.
doi: 10.1002/cctc.201500794 |
50 |
Mansker L. D. ; Jin Y. ; Bukur D. B. ; Datye A. K. Appl. Catal. A. 1999, 186 (1), 277.
doi: 10.1016/S0926-860X(99)00149-0 |
51 |
Bukur D. B. ; Sivaraj C. Appl. Catal. A. 2012, 231 (1), 201.
doi: 10.1016/S0926-860X(02)00053-4 |
52 |
Barinov V. A. ; Protasov A.V. ; Surikov V. T. Phys. Met. Metallogr. 2015, 116 (8), 791.
doi: 10.1134/S0031918X15080025 |
53 |
Meffre A. ; Mehdaoui B. ; Kelsen V. ; Fazzini P. F. ; Carrey J. ; Lachaize S. ; Respaud M. ; Chaudret B. Nano Lett. 2012, 12 (9), 4722.
doi: 10.1021/nl302160d |
54 |
Ge W. ; Gao W. ; Zhu J. ; Li Y. J. Alloy. Compd. 2019, 1069
doi: 10.1016/j.jallcom.2018.12.154 |
55 |
Matteazzi P. ; Le Caë r G. J. Am. Ceram. Soc. 1991, 74 (6), 1382.
doi: 10.1016/j.jallcom.2018.12.154 |
56 |
de Smit E. ; Cinquini F. ; Beale A. M. ; Safonova O. V. ; van Beek W. ; Sautet P. ; Weckhuysen B. M. J. Am. Chem. Soc. 2010, 132 (42), 14928.
doi: 10.1021/ja105853q |
57 |
Liu X. ; Zhang C. H. ; Li Y. W. ; Niemantsverdriet J. W. ; Wagner J. B. ; Hansen T. W. ACS Catal. 2017, 7 (7), 4867.
doi: 10.1021/acscatal.7b00946 |
58 |
Yao S. Y. ; Yang C. ; Zhao H. B. ; Li S. W. ; Lin L. L. ; Wen W. ; Liu J. X. ; Hu G. ; Li W. X. ; Hou Y. L. ; et al J. Phys. Chem. C. 2017, 121 (9), 5154.
doi: 10.1021/acs.jpcc.7b00198 |
59 |
Li Y. J. ; Li Z. S. ; Ahsen A. ; Lammich L. ; Mannie G. J. A. ; Niemantsverdriet J. W. H. ; Lauritsen J. V. ACS Catal. 2018, 9 (2), 1264.
doi: 10.1021/acscatal.8b03684 |
60 |
Zhou X. ; Mannie G. J. A. ; Yin J. Q. ; Yu X. ; Weststrate C. J. ; Wen X. D. ; Wu K. ; Yang Y. ; Li Y. W. ; Niemantsverdriet J. W. H. ACS Catal. 2018, 8 (8), 7326.
doi: 10.1021/acscatal.8b02076 |
61 |
Torres Galvis H. M. ; Bitter J. H. ; Khare C. B. ; Ruitenbeek M. ; Dugulan A. I. ; de Jong K. P. Science. 2012, 335 (6070), 835.
doi: 10.1126/science.1215614 |
62 |
Zhai P. ; Xu C. ; Gao R. ; Liu X. ; Li M. Z. ; Li W. Z. ; Fu X. P. ; Jia C. J. ; Xie J.. L. ; Zhao M. ; et al Angew. Chem. Int. Ed. 2016, 55 (34), 9902.
doi: 10.1002/anie.201603556 |
63 |
Zhao B. ; Zhai P. ; Wang P. F. ; Li J. Q. ; Li T. ; Peng M. ; Zhao M. ; Hu G. ; Yang Y. ; Li Y. -W. ; et al Chem. 2017, 3 (2), 323.
doi: 10.1016/j.chempr.2017.06.017 |
64 |
Lu Y. W. ; Zhang R. G. ; Cao B. B. ; Ge B. H.. ; Tao F. F. ; Shan J. J. ; Nguyen L. ; Bao Z. H. ; Wu T. P. ; Pote J. W. ; et al ACS Catal. 2017, 7 (8), 5500.
doi: 10.1021/acscatal.7b01469 |
65 |
Xu K. ; Sun B. ; Lin J. ; Wen W. ; Pei Y. ; Yan S. W. ; Qiao M. H. ; Zhang X. X. ; Zong B. N. Nat. Commun. 2014, 5, 5783.
doi: 10.1038/ncomms6783 |
66 |
Wang P. ; Chen W. ; Chiang F. K. ; Dugulan A. I. ; Song Y. ; Pestman R. ; Zhang K. ; Yao J. S. ; Miao B. ; Feng P. ; et al Sci. Adv. 2018, 4 (10), 2947.
doi: 10.1126/sciadv.aau2947 |
[1] | 冀连连, 王现鹏, 张莹莹, 申学礼, 薛娣, 王璐, 王滋, 王文冲, 黄丽珍, 迟力峰. 有机-有机界面效应的原位及非原位研究[J]. 物理化学学报, 2024, 40(1): 2304002 - . |
[2] | 刘若娟, 刘冰之, 孙靖宇, 刘忠范. 气相助剂辅助绝缘衬底上石墨烯生长:现状与展望[J]. 物理化学学报, 2023, 39(1): 2111011 -0 . |
[3] | 郎雪玲, 雷淑桃, 李愽龙, 李晓红, 马冰, 赵晨. 高熔点蜡合成技术的研究进展[J]. 物理化学学报, 2022, 38(10): 2204045 - . |
[4] | 史永超, 唐明学. 可充电池的磁共振研究[J]. 物理化学学报, 2020, 36(4): 1905004 - . |
[5] | 王琴,薛珉敏,张助华. 硼烯化学合成进展与展望[J]. 物理化学学报, 2019, 35(6): 565 -571 . |
[6] | 刘治华, 余长春, 杨盼, 李然家, 周红军, 徐春明. 钍对浸渍型和蛋壳型钴基催化剂Co/SiO2费托合成性能的影响[J]. 物理化学学报, 2015, 31(Suppl): 90 -94 . |
[7] | 许可, 程义, 孙博, 裴燕, 闫世润, 乔明华, 张晓昕, 宗保宁. 用于费托合成的骨架Co@HZSM-5核壳催化剂[J]. 物理化学学报, 2015, 31(6): 1137 -1144 . |
[8] | 王保伟, 刘思含, 胡宗元, 李振花, 马新宾. 耐硫甲烷化中H2S浓度对MoO3/Al2O3和CoO-MoO3/Al2O3催化剂的影响[J]. 物理化学学报, 2015, 31(3): 545 -551 . |
[9] | 邢建东,敬方梨,储伟,孙红丽,喻磊,张欢,罗仕忠. CeO2对CuCl/活性炭吸附剂C2H4/C2H6吸附分离性能促进作用[J]. 物理化学学报, 2015, 31(11): 2158 -2164 . |
[10] | 陈维苗, 丁云杰, 薛飞, 宋宪根. CO加氢制C2含氧化合物Rh基催化剂中常见助剂的作用[J]. 物理化学学报, 2015, 31(1): 1 -10 . |
[11] | 董文达, 朱何俊, 丁云杰, 裴彦鹏, 杜虹, 王涛. 微量Li助剂对Co/AC催化剂合成高碳醇性能的影响[J]. 物理化学学报, 2014, 30(9): 1745 -1751 . |
[12] | 高鹏, 李枫, 赵宁, 王慧, 魏伟, 孙予罕. 以类水滑石为前驱体的Cu/Zn/Al/(Zr)/(Y)催化剂制备及其催化CO2加氢合成甲醇的性能[J]. 物理化学学报, 2014, 30(6): 1155 -1162 . |
[13] | 郭章龙, 黄丽琼, 储伟, 罗仕忠. 助剂对NiMgAl催化剂的结构和甲烷二氧化碳重整反应性能的影响[J]. 物理化学学报, 2014, 30(4): 723 -728 . |
[14] | 李江兵, 马宏方, 张海涛, 孙启文, 应卫勇, 房鼎业. FeMn、FeMnNa和FeMnK催化剂上合成气制低碳烯烃的比较[J]. 物理化学学报, 2014, 30(10): 1932 -1940 . |
[15] | 曹崇江, 刘晓庚, 鞠兴荣, 陈晓荣. Pt/Fe双金属Fischer-Tropsch催化剂的设计、合成及表征[J]. 物理化学学报, 2013, 29(11): 2475 -2480 . |
|