Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (9): 977-988.doi: 10.3866/PKU.WHXB201811045
Special Issue: C–H Activation
• Review • Previous Articles Next Articles
Received:
2018-11-30
Accepted:
2019-01-15
Published:
2019-01-18
Contact:
Wenjun LU
E-mail:luwj@sjtu.edu.cn
Supported by:
Mengdi ZHAO,Wenjun LU. Alkanes Functionalization via C―H Activation[J]. Acta Physico-Chimica Sinica 2019, 35(9), 977-988. doi: 10.3866/PKU.WHXB201811045
1 |
Arndtsen B. A. ; Bergman R. G. ; Mobley T. A. ; Peterson T. H. Acc. Chem. Res. 1995, 28, 154.
doi: 10.1021/ar00051a009 |
2 |
Shilov A. E. ; Shul'pin G.B. Chem. Rev. 1997, 97, 2879.
doi: 10.1021/cr9411886 |
3 |
Jia C. ; Kitamura T. ; Fujiwara Y. Acc. Chem. Res. 2001, 34, 633.
doi: 10.1021/ar000209h |
4 |
Crabtree R. H. J. Chem. Soc., Dalton Trans. 2001, 2437
doi: 10.1039/b103147n |
5 |
Labinger J. A. ; Bercaw J. E. Nature 2002, 417, 507.
doi: 10.1038/417507a |
6 | Lu, W.; Zhou, L. Oxidation of C‒H Bonds; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017. |
7 | Luo, Y. -R. Comprehensive Handbook of Chemical Bond Energies; CRC Press.: Boca Raton, FL, USA, 2007. |
8 |
Egloff G. ; Schaad R. E. ; Lowry C. D. Jr Chem. Rev. 1931, 8, 1.
doi: 10.1021/cr60029a001 |
9 |
Lin R. ; Amrute A. P. ; Pérez-Ramírez J. Chem. Rev. 2017, 117, 4182.
doi: 10.1021/acs.chemrev.6b00551 |
10 |
Zhao M. ; Lu W. Org. Lett. 2017, 19, 4560.
doi: 10.1021/acs.orglett.7b02153 |
11 |
Zhao M. ; Lu W. Org. Lett. 2018, 20, 5264.
doi: 10.1021/acs.orglett.8b02208 |
12 |
Olah G. A. Acc. Chem. Res. 1987, 20, 422.
doi: 10.1021/ar00143a006 |
13 |
Olah G. A. Angew. Chem. Int. Edit. 1995, 34, 1393.
doi: 10.1002/anie.199513931 |
14 | Olah, G. A.; Klumpp, D. A. Superelectrophiles and Their Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. |
15 |
Zhou L. ; Lu W. Acta Chim. Sin. 2015, 73, 1250.
doi: 10.6023/A15040278 |
周励宏; 陆文军. 化学学报, 2015, 73, 1250.
doi: 10.6023/A15040278 |
|
16 |
Zhou L. ; Lu W. Org. Lett. 2014, 16, 508.
doi: 10.1021/ol403393w |
17 |
Zhao R. ; Lu W. Org. Lett. 2017, 19, 1768.
doi: 10.1021/acs.orglett.7b00536 |
18 |
Zhao R. ; Lu W. Organometallics 2018, 37, 2188.
doi: 10.1021/acs.organomet.8b00325 |
19 |
Labinger J. A. ; Bercaw J. E. J. Organomet. Chem. 2015, 793, 47.
doi: 10.1016/j.jorganchem.2015.01.027 |
20 |
Garnett J. L. ; Hodges R. J. J. Am. Chem. Soc. 1967, 89, 4546.
doi: 10.1021/ja00993a067 |
21 |
Labinger J. A. ; Herring A. M. ; Bercaw J. E. J. Am. Chem. Soc. 1990, 112, 5628.
doi: 10.1021/ja00170a031 |
22 |
Sen A. ; Benvenuto M. A. ; Lin M. ; Hutson A. C. ; Basickes N. J. Am. Chem. Soc. 1994, 116, 998.
doi: 10.1021/ja00082a022 |
23 |
Dangel B. D. ; Johnson J. A. ; Sames D. J. Am. Chem. Soc. 2001, 123, 8149.
doi: 10.1021/ja016280f |
24 |
Weinberg D. R. ; Labinger J. A. ; Bercaw J. E. Organometallics 2007, 26, 167.
doi: 10.1021/om060763g |
25 |
Lee M. ; Sanford M. S. J. Am. Chem. Soc. 2015, 137, 12796.
doi: 10.1021/jacs.5b09099 |
26 |
Periana R. A. ; Taube D. J. ; Evitt E. R. ; Löffler D. G. ; Wentrcek P. R. ; Voss G. ; Masuda T. Science 1993, 259, 340.
doi: 10.1126/science.259.5093.340 |
27 |
Periana R. A. ; Taube D. J. ; Gamble S. ; Taube H. ; Satoh T. ; Fujii H. Science 1998, 280, 560.
doi: 10.1126/science.280.5363.560 |
28 |
Gunsalus N. J. ; Konnick M. M. ; Hashiguchi B. G. ; Periana R. A. Isr. J. Chem. 2014, 54, 1467.
doi: 10.1002/ijch.201300130 |
29 |
Gunsalus N. J. ; Koppaka A. ; Park S. H. ; Bischof S. M. ; Hashiguchi B. G. ; Periana R. A. Chem. Rev. 2017, 117, 8521.
doi: 10.1021/acs.chemrev.6b00739 |
30 |
Curto J. M. ; Kozlowski M. C. J. Am. Chem. Soc. 2015, 137, 18.
doi: 10.1021/ja5093166 |
31 |
Sakakura T. ; Tanaka M. J. Chem. Soc. Chem. Commun. 1987, 758
doi: 10.1039/C39870000758 |
32 |
Sakakura T. ; Sodeyama T. ; Sasaki K. ; Wada K. ; Tanaka M. J. Am. Chem. Soc. 1990, 112, 7221.
doi: 10.1021/ja00176a022 |
33 |
Lin M. ; Sen A. Nature 1994, 368, 613.
doi: 10.1038/368613a0 |
34 |
Waltz K. M. ; Hartwig J. F. Science 1997, 277, 211.
doi: 10.1126/science.277.5323.211 |
35 |
Chen H. ; Hartwig J. F. Angew. Chem. Int. Edit. 1999, 38, 3391.
doi: 10.1002/(SICI)1521-3773(19991115)38:22<3391::AID-ANIE3391>3.0.CO;2-N |
36 |
Chen H. ; Schlecht S. ; Semple T. C. ; Hartwig J. F. Science 2000, 287, 1995.
doi: 10.1126/science.287.5460.1995 |
37 |
Cook A. K. ; Schimler S. D. ; Matzger A. J. ; Sanford M. S. Science 2016, 351, 1421.
doi: 10.1126/science.aad9289 |
38 |
Smith K. T. ; Berritt S. ; González-Moreiras M. ; Ahn S. ; Smith M. R.Ⅲ ; Baik M.-H. ; Mindiola D. J. Science 2016, 351, 1424.
doi: 10.1126/science.aad9730 |
39 |
Crabtree R. H. ; Mihelcic J. M. ; Quirk J. M. J. Am. Chem. Soc. 1979, 101, 7738.
doi: 10.1021/ja00520a030 |
40 |
Baudry D. ; Ephritikhine M. ; Felkin H. ; Holmes-Smith R. J. Chem. Soc. Chem. Commun. 1983, 788.
doi: 10.1039/C39830000788 |
41 |
Burk M. J. ; Crabtree R. H. ; McGrath D. V. J. Chem. Soc. Chem. Commun. 1985, 1829.
doi: 10.1039/C39850001829 |
42 |
Burk M. J. ; Crabtree R. H. J. Am. Chem. Soc. 1987, 109, 8025.
doi: 10.1021/ja00260a013 |
43 |
Fujii T. ; Saito Y.J. Chem. Soc. Chem. Commun. 1990, 757.
doi: 10.1039/C39900000757 |
44 |
Aoki T. ; Crabtree R. H. Organometallics 1993, 12, 294.
doi: 10.1021/om00026a013 |
45 |
Liu F. ; Pak E. B. ; Singh B. ; Jensen C. M. ; Goldman A. S. J. Am. Chem. Soc. 1999, 121, 4086.
doi: 10.1021/ja983460p |
46 |
Dobereiner G. E. ; Crabtree R. H. Chem. Rev. 2010, 110, 681.
doi: 10.1021/cr900202j |
47 |
Kumar A. ; Bhatti T. M. ; Goldman A. S. Chem. Rev. 2017, 117, 12357.
doi: 10.1021/acs.chemrev.7b00247 |
48 |
Chowdhury A. D. ; Weding N. ; Julis J. ; Franke R. ; Jackstell R. ; Beller M. Angew. Chem. Int. Edit. 2014, 53, 6477.
doi: 10.1002/anie.201402287 |
49 |
Sommer H. ; Juliá-Hernández F. ; Martin R. ; Marek I. ACS Cent. Sci. 2018, 4, 153.
doi: 10.1021/acscentsci.8b00005 |
50 |
van Leeuwen P. W. N. M. ; Kamer P. C. ; Reek J. N. H. ; Dierkes P. Chem. Rev. 2000, 100, 2741.
doi: 10.1021/cr9902704 |
51 |
Seayad A. ; Ahmed M. ; Klein H. ; Jackstell R. ; Gross T. ; Beller M. Science 2002, 297, 1676.
doi: 10.1126/science.1074801 |
52 |
Tang X. ; Jia X. ; Huang Z. J. Am. Chem. Soc. 2018, 140, 4157.
doi: 10.1021/jacs.8b01526 |
53 |
Goldman A. S. ; Roy A. H. ; Huang Z. ; Ahuja R. ; Schinski W. ; Brookhart M. Science 2006, 312, 257.
doi: 10.1126/science.1123787 |
54 |
Dupuy S. ; Zhang K.-F. ; Goutierre A.-S. ; Baudoin O. Angew. Chem. Int. Edit. 2016, 55, 14793.
doi: 10.1002/anie.201608535 |
55 |
Juliá-Hernández F. ; Moragas T. ; Cornella J. ; Martin R. Nature 2017, 545, 84.
doi: 10.1038/nature22316 |
[1] | Yuehan Cao, Rui Guo, Minzhi Ma, Zeai Huang, Ying Zhou. Effects of Electron Density Variation of Active Sites in CO2 Activation and Photoreduction: A Review [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303029-. |
[2] | Meng Li, Fulin Yang, Jinfa Chang, Alex Schechter, Ligang Feng. MoP-NC Nanosphere Supported Pt Nanoparticles for Efficient Methanol Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2301005-0. |
[3] | Qian Wu, Qingping Gao, Bin Shan, Wenzheng Wang, Yuping Qi, Xishi Tai, Xia Wang, Dongdong Zheng, Hong Yan, Binwu Ying, Yongsong Luo, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun. Recent Advances in Self-Supported Transition-Metal-Based Electrocatalysts for Seawater Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303012-. |
[4] | Yingjie Ma, Linjie Zhi. Functionalized Graphene Materials: Definition, Classification, and Preparation Strategies [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2101004-. |
[5] | Rui Qin, Pengyan Wang, Can Lin, Fei Cao, Jinyong Zhang, Lei Chen, Shichun Mu. Transition Metal Nitrides: Activity Origin, Synthesis and Electrocatalytic Applications [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009099-. |
[6] | Leiduan Hao, Zhenyu Sun. Metal Oxide-Based Materials for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009033-. |
[7] | Yichen Meng, Siyu Kuang, Hai Liu, Qun Fan, Xinbin Ma, Sheng Zhang. Recent Advances in Electrochemical CO2 Reduction Using Copper-Based Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006034-. |
[8] | Kaimin Hua, Xiaofang Liu, Baiyin Wei, Shunan Zhang, Hui Wang, Yuhan Sun. Research Progress Regarding Transition Metal-Catalyzed Carbonylations with CO2/H2 [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2009098-. |
[9] | Cheng Chang, Wei Chen, Ye Chen, Yonghua Chen, Yu Chen, Feng Ding, Chunhai Fan, Hong Jin Fan, Zhanxi Fan, Cheng Gong, Yongji Gong, Qiyuan He, Xun Hong, Sheng Hu, Weida Hu, Wei Huang, Yuan Huang, Wei Ji, Dehui Li, Lain-Jong Li, Qiang Li, Li Lin, Chongyi Ling, Minghua Liu, Nan Liu, Zhuang Liu, Kian Ping Loh, Jianmin Ma, Feng Miao, Hailin Peng, Mingfei Shao, Li Song, Shao Su, Shuo Sun, Chaoliang Tan, Zhiyong Tang, Dingsheng Wang, Huan Wang, Jinlan Wang, Xin Wang, Xinran Wang, Andrew T. S. Wee, Zhongming Wei, Yuen Wu, Zhong-Shuai Wu, Jie Xiong, Qihua Xiong, Weigao Xu, Peng Yin, Haibo Zeng, Zhiyuan Zeng, Tianyou Zhai, Han Zhang, Hui Zhang, Qichun Zhang, Tierui Zhang, Xiang Zhang, Li-Dong Zhao, Meiting Zhao, Weijie Zhao, Yunxuan Zhao, Kai-Ge Zhou, Xing Zhou, Yu Zhou, Hongwei Zhu, Hua Zhang, Zhongfan Liu. Recent Progress on Two-Dimensional Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2108017-. |
[10] | Ruirui Xing, Qianli Zou, Xuehai Yan. Peptide-based Supramolecular Colloids [J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1909048-. |
[11] | Yan Yang,Yun Zhang,Jin-Song Hu,Li-Jun Wan. Progress in the Mechanisms and Materials for CO2 Electroreduction toward C2+ Products [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1906085-. |
[12] | Yuanyuan HU,Congyang WANG. Bimetallic C―H Activation in Homogeneous Catalysis [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 913-922. |
[13] | Chunhui SHAN,Ruopeng BAI,Yu LAN. Theoretical Advances of Transition Metals Mediated C―H Bonds Cleavage [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 940-953. |
[14] | Shihao CHEN,Ming WANG,Xuefeng JIANG. C―H Functionalization Strategies for the Construction of Thioethers [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 954-967. |
[15] | Zhen WANG,En LI,Zhiqi HE,Jiean CHEN,Yong HUANG. Dehydrogenative Annulation of γ, δ-Unsaturated Amides and Alkynes via Double C―H Activation [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 906-912. |
|