Acta Phys. -Chim. Sin. ›› 2020, Vol. 36 ›› Issue (8): 1906026.doi: 10.3866/PKU.WHXB201906026
• Article • Previous Articles Next Articles
Kunfang Tu, Guang Li, Yanxia Jiang()
Received:
2019-06-26
Accepted:
2019-07-23
Published:
2020-05-19
Contact:
Yanxia Jiang
E-mail:yxjiang@xmu.edu.cn
Supported by:
Kunfang Tu, Guang Li, Yanxia Jiang. Effect of Temperature on the Electrocatalytic Oxidation of Ethanol[J]. Acta Phys. -Chim. Sin. 2020, 36(8), 1906026. doi: 10.3866/PKU.WHXB201906026
Fig 2
Schematic diagram of the electrode potential temperature coefficient measuring device. WE: working electrode; RE: reference electrode; 1: constant temperature water bath; 2, 3: electrolyte; T1, T2, T3: thermometer. Th: temperature of the heating piece of temperature controlled electrode; Ts: surface temperature of the electrode."
Fig 3
(a–c) Open circuit electrode potentials (OCP) measured at different temperatures in 5 mmol?L?1 K3[Fe(CN)6] + 5 mmol?L?1 K4[Fe(CN)6] + 0.5 mol?L?1 KCl solution; (d) relationship between heating temperature (Th) and electrode surface temperature (TS). inset: the linear relationship between OCP and T."
Table 2
The various vibration frequencies of ethanol oxidation in the infrared spectrum."
Wavenumber/cm?1 | Assignment |
2341–2345 | O―C―O asymmetric stretching |
2040–2060 | linearly adsorbed COL |
1713–1723 | C―O stretching of acetaldehyde and acetic acid in solution |
1640–1650 1274–1284 | H―O―H bending coupling C―O stretching and OH deformation of acetic acid |
1 |
Chen X. B. ; Li C. ; Gratzel M. ; Kostecki R. ; Mao S. S. Chem. Soc. Rev. 2012, 41, 7909.
doi: 10.1039/C2CS35230C |
2 |
Antolini E. J. Power Sources 2007, 170, 1.
doi: 10.1016/j.jpowsour.2007.04.009 |
3 |
An L. ; Zhao T. S. ; Li Y. S. Renew. Sust. Energ. Rev 2015, 50, 1462.
doi: 10.1016/j.rser.2015.05.074 |
4 |
Yajima T. ; Uchida H. ; Watanabe M. J. T. J. Phys. Chem. B 2004, 108 (8), 2654.
doi: 10.1021/jp037215q |
5 |
Ye J. Y. ; Jiang Y. X. ; Sheng T. ; Sun S. G. Nano Energy 2016, 29, 414.
doi: 10.1016/j.nanoen.2016.06.023 |
6 |
Watanabe M. ; Sato T. ; Kunimatsu K. ; Uchida H. Electrochim. Acta 2008, 53 (23), 6928.
doi: 10.1016/j.electacta.2008.02.023 |
7 |
Wang J. Anal. Chim. Acta 1999, 396, 33.
doi: 10.1016/S0003-2670(99)00355-4 |
8 |
Zhou Z. Y. ; Wang Q. ; Lin J. L. ; Tian N. ; Sun S. G. Electrochim. Acta 2010, 55 (27), 7995.
doi: 10.1016/j.electacta.2010.02.071 |
9 |
Jenkins D. M. ; Song C. Y. ; Fares S. ; Cheng H. ; Barrettino D. Sens Actu B: Chem. 2009, 137, 222.
doi: 10.1016/j.snb.2008.09.046 |
10 |
Compton R. G. ; Coles B. A. ; Marken F. Chem. Commun 1998, 2595, 2595.
doi: 10.1039/A806511J |
11 |
Yuan Q. ; Zhou Z. Y. ; Zhuang J. ; Wang X. Chem. Mater 2010, 22, 2395.
doi: 10.1021/cm903844t |
12 |
Hitmi H. ; Belgsir E. M. ; Léger J. M. ; Lamy C. ; Lezna R. O. Electrochim. Acta 1994, 39, 407.
doi: 10.1016/0013-4686(94)80080-4 |
13 |
Rao L. ; Jiang Y. X. ; Zhang B. W. ; Cai Y. R. ; Sun S. G. Phys. Chem. Chem. Phys. 2014, 16, 13662.
doi: 10.1039/C3CP55059A |
14 |
Iwasita T. ; Pastor E. Electrochim. Acta 1994, 39, 531.
doi: 10.1016/0013-4686(94)80097-9 |
15 |
Rasch B. ; Iwasita T. Electrochim. Acta 1990, 35, 989.
doi: 10.1016/0013-4686(90)90032-U |
16 |
Colmati F. ; Tremiliosi-Filho G. ; Gonzalez E. R. ; Berná A. ; Herrero E. ; Feliu ; J M. Faraday Discuss 2008, 140, 379.
doi: 10.1039/B802160K |
17 |
Liu H. X. ; Tian N. ; Brandon M. P. ; Zhou Z. Y. ; Lin J. L. ; Hardacre C. ; Lin W. F. ; Sun S. G. ACS Catal 2012, 2, 708.
doi: 10.1021/cs200686a |
18 |
Lu G. Q. ; Sun S. G. ; Cai L. R. ; Chen S. P. ; Tian Z. W. Langmuir 2000, 16, 778.
doi: 10.1021/la990282k |
19 |
Tian N. ; Xiao J. ; Zhou Z. Y. ; Liu H. X. ; Xu B. B. ; Sun S. G. Faraday Discuss. 2013, 162, 77.
doi: 10.1039/C3FD20146E |
20 |
Ghumman A. ; Pickup P. G. J. Power Sources 2008, 179, 280.
doi: 10.1016/j.jpowsour.2007.12.071 |
21 |
Rao V. ; Cremers C. ; Stimming U. J. Eletrochem. Soc 2007, 154, 1138.
doi: 10.1149/1.2777108 |
22 |
Camara G.A. ; Iwasita T. J. Eletrochem. Soc. 2005, 578, 315.
doi: 10.1016/j.jelechem.2005.01.013 |
23 |
Severson M. W. ; Stuhlmann C. ; Villegas I. ; Weaver M. J. J. Chem Phys. 1995, 103, 9832.
doi: 10.1063/1.469950 |
24 |
Zhang B. W. ; Sheng T. ; Wang Y. X. ACS Catal. 2017, 7 (1), 892.
doi: 10.1021/acscatal.6b03021 |
25 |
Wang H. F ; Liu Z. P. J. Am. Chem. Soc 2008, 130 (33), 10996.
doi: 10.1021/ja801648h |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[3] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[4] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[5] | Meng Li, Fulin Yang, Jinfa Chang, Alex Schechter, Ligang Feng. MoP-NC Nanosphere Supported Pt Nanoparticles for Efficient Methanol Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2301005-0. |
[6] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[7] | Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211025-0. |
[8] | Yifei Xu, Hanwen Yang, Xiaoxia Chang, Bingjun Xu. Introduction to Electrocatalytic Kinetics [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2210025-0. |
[9] | Yonggang Lei, Tianyu Zhao, Kim Hoong Ng, Yingzhen Zhang, Xuerui Zang, Xiao Li, Weilong Cai, Jianying Huang, Jun Hu, Yuekun Lai. Metallic Tungsten Carbide Coupled with Liquid-Phase Dye Photosensitizer for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2206006-0. |
[10] | Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2301023-0. |
[11] | Ruifang Wei, Dongfeng Li, Heng Yin, Xiuli Wang, Can Li. Operando Electrochemical UV-Vis Absorption Spectroscopy with Microsecond Time Resolution [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207035-0. |
[12] | Tianran Wei, Shusheng Zhang, Qian Liu, Yuan Qiu, Jun Luo, Xijun Liu. Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207026-0. |
[13] | Jie Wang, Guigao Liu, Qinbai Yun, Xichen Zhou, Xiaozhi Liu, Ye Chen, Hongfei Cheng, Yiyao Ge, Jingtao Huang, Zhaoning Hu, Bo Chen, Zhanxi Fan, Lin Gu, Hua Zhang. Epitaxial Growth of Unconventional 4H-Pd Based Alloy Nanostructures on 4H-Au Nanoribbons towards Highly Efficient Electrocatalytic Methanol Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2305034-. |
[14] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[15] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
|