Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (10): 1911036.doi: 10.3866/PKU.WHXB201911036
• REVIEW • Previous Articles Next Articles
Tiantian Dai1,2,3, Zanhong Deng1,3, Gang Meng1,3,*(), Bin Tong1,2,3, Hongyu Liu1,2,3, Xiaodong Fang1,3,*()
Received:
2019-11-19
Accepted:
2019-12-27
Published:
2020-01-17
Contact:
Gang Meng,Xiaodong Fang
E-mail:menggang@aiofm.ac.cn;xdfang@aiofm.ac.cn
About author:
Email: xdfang@aiofm.ac.cn (X.F.); +86-551-65593661 (X.F.)Supported by:
Tiantian Dai, Zanhong Deng, Gang Meng, Bin Tong, Hongyu Liu, Xiaodong Fang. Controllable Synthesis and Gas Sensing Properties of Bridged Tungsten Oxide Nanowires[J]. Acta Phys. -Chim. Sin. 2021, 37(10), 1911036. doi: 10.3866/PKU.WHXB201911036
Table 1
Summary of synthesis conditions of WO3-x nanowires by hydrothermal and solvothermal method."
W source | Growth mechanism | Solvent | T/℃ | t/h | Product | Length | Diameter/nm | Ref. |
H2WO4·nH2O | Hydrothermal | (NH4)2SO4 | 200 | 48 | h-WO3 | 10–100 μm | 25 | |
Na2WO4 | Hydrothermal | Rb2SO4 | 180 | 2–72 | h-WO3 | 10–100 μm | 25 | |
Na2WO4·2H2O | Hydrothermal | Na2SO4, K2SO4 | 180 | 24 | h-WO3 | 2.5 μm | 80 | |
H2WO4 | Hydrothermal | K2SO4 | 180 | 12 | WO3 | 10–100 μm | 10–20 | |
Na2WO4·2H2O | Hydrothermal | Na2SO4 | 180 | 12 | h-WO3 | 1.5–2.5 μm | 20 | |
Li2WO4 | Hydrothermal | Li2SO4 | 180 | 24–48 | h-WO3 | 0.1–1 μm | 25~50 | |
W(CO)6 | Solvothermal | 1-Octadecanol/1-Octadecene | 200 | 0.33 | W20O58 | 100 nm | 5 | |
WCl6, W(C2H5O)6 | Solvothermal | Ethanol/propanol | 200 | 24 | W18O49 | < 50 nm | 10 | |
WCl6 | Solvothermal | cyclohexanol | 200 | 5–7 | W18O49 | – | < 5 | |
H2WO4 | Solvothermal | Ethanol/oleylamine | 220 | 12 | W18O49 | 50 nm | < 3 | |
WCl6 | Solvothermal | 1-propanol | 200 | 9 | W18O49 | 500–1000 nm | 10 | |
WCl6 | Solvothermal | Ethanol | 180 | 24 | W18O49 | – | 5 |
Table 2
Summary of synthesis conditions of WO3-x nanowires obtained by vapor method."
W source | Growth method | Catalyst | T/℃ | t | Product | Ref. |
W film | Vapor-liquid-solid | Ni | 470 | 2–6 h | WO2 | |
W film | Vapor-liquid-solid | Au | 500 | 3 h | WO3 | |
W plate | Vapor-liquid-solid | KOH | 610 | 2 h | W3O8 | |
W plate | Vapor-liquid-solid | KI | 650 | 2 h | WO3 | |
WO2.9 powder | Vapor-solid | – | 900 | 1.5 h | WO3 | |
W rod | Vapor-solid | – | 850 | 2 h | W18O49 | |
WO3 powder | Vapor-solid | – | 900 | 3 h | W18O49 | |
W film | Vapor-solid | – | 800 | 10 min | WO3 | |
W film | Vapor-solid | – | 850 | 1–3 h | W18O49 | |
W film | Vapor-solid | – | 650 | 4–10 h | WO3 | |
W powder | Vapor-solid | – | 1000 | 1 h | WO3 | |
W wire | Vapor-solid | – | 1445 | 10 min | WO2.9 | |
W spiral coil | Thermal oxidation | – | 437 | – | WO2.9 | |
W film | Thermal oxidation | – | 650 | 1 h | W18O49 | |
W film | Thermal oxidationThermal oxidation | – | 550 | 1 h | WO3 | |
W film | Thermal oxidation | – | 600 | 30 min | WO3 | |
W film | Thermal oxidation | – | 680 | 1 h | WO2.9 |
Fig 8
(a) Single nanowire76 (Adapted from American Physical Society); (b) WO3-x nanowire film 65 (Adapted from Royal Society of Chemistry); (c) WO3-x bridged nanowires 77 (Adapted from Elsevier); (d) Self heating gas sensor of single nanowire 102 (Adapted from AIP Publishing); (e) Self heating gas sensing response of assembled W18O49 nanowires 24 (Adapted from Elsevier); (f) Self heating gas sensor of bridged nanowires 104 (Adapted from American Chemical Society)."
Table 3
Response of WO3-x thin film, WO3-x nanowires, bridged WO3-x nanowires to NO2."
Materials | T/℃ | Gas | C/ppm | Response | Ref. |
WO3 thin film | 300 | NO2 | 10 | 70 | |
WO3 thin film | 350 | NO2 | 10 | 9 | |
WO3 thin film | 250 | NO2 | 10 | 8 | |
WO3 nanofibers | 250 | NO2 | 5 | 12 | |
WO3 nanotubes | 300 | NO2 | 10 | 8.8 | |
WO3 nanorods | 200 | NO2 | 5 | 8 | |
Bridged W18O49 nanowires | 250 | NO2 | 10 | 144.3 |
1 |
Adgate J. L. ; Goldstein B. D. ; McKenzie L. M. Environ. Sci. Technol. 2014, 48 (15), 8307.
doi: 10.1021/es404621d |
2 |
Tian Y. ; Yang X. ; Guo T. ; Peng L. ; Gan H. ; Xu N. ; Chen H. ; Chen J. ; Liu F. ; Deng S. Adv. Mater. Technol. 2017, 2 (8), 1700029.
doi: 10.1002/admt.201700029 |
3 |
Bhattacharya M. ; Paramati S. R. ; Ozturk I. ; Bhattacharya S. Appl. Energy 2016, 162, 733.
doi: 10.1016/j.apenergy.2015.10.104 |
4 |
Comini E. ; Faglia G. ; Sberveglieri G. ; Pan Z. ; Wang Z. L. Appl. Phys. Lett. 2002, 81 (10), 1869.
doi: 10.1063/1.1504867 |
5 |
Ma S. ; Hu M. ; Zeng P. ; Li M. ; Yan W. ; Qin Y. Sens. Actuators B 2014, 192, 341.
doi: 10.1016/j.snb.2013.10.121 |
6 |
Qin Y. ; Li X. ; Wang F. ; Hu M. J. Alloys Compd. 2011, 509 (33), 8401.
doi: 10.1016/j.jallcom.2011.05.100 |
7 |
Zheng H. ; Ou J. Z. ; Strano M. S. ; Kaner R. B. ; Mitchell A. ; Kalantar-zadeh K. Adv. Funct. Mater. 2011, 21 (12), 2175.
doi: 10.1002/adfm.201002477 |
8 |
Dey A. Mater. Sci. Eng. B 2018, 229, 206.
doi: 10.1016/j.mseb.2017.12.036 |
9 |
Shen Y. ; Yamazaki T. ; Liu Z. ; Meng D. ; Kikuta T. ; Nakatani N. Thin Solid Films 2009, 517 (6), 2069.
doi: 10.1016/j.tsf.2008.10.021 |
10 |
Kuang Q. ; Lao C. ; Wang Z. L. ; Xie Z. ; Zheng L. J. Am. Chem. Soc. 2007, 129 (19), 6070.
doi: 10.1021/ja070788m |
11 |
Qin Y. ; Xie W. ; Liu Y. ; Ye Z. Sens. Actuators B 2016, 223, 487.
doi: 10.1016/j.snb.2015.09.113 |
12 |
Yang X. ; Salles V. ; Kaneti Y. V. ; Liu M. ; Maillard M. ; Journet C. ; Jiang X. ; Brioude A. Sens. Actuators B 2015, 220, 1112.
doi: 10.1016/j.snb.2015.05.121 |
13 |
Huang Z. F. ; Song J. ; Pan L. ; Zhang X. ; Wang L. ; Zou J. J. Adv. Mater. 2015, 27 (36), 5309.
doi: 10.1002/adma.201501217 |
14 |
Minh Vuong N. ; Kim D. ; Kim H. Sci. Rep. 2015, 5 (1), 11040.
doi: 10.1038/srep11040 |
15 | Song C. ; Zhang J. ; Gao Y. ; Lu Y. ; Wang F. Acta Phys. -Chim. Sin. 2017, 33 (9), 1891. |
宋春冬; 张静; 高莹; 卢圆圆; 王芳芳. 物理化学学报, 2017, 33 (9), 1891.
doi: 10.3866/PKU.WHXB201705111 |
|
16 |
Ngoc T. M. ; Van Duy N. ; Duc Hoa N. ; Manh Hung C. ; Nguyen H. ; Van Hieu N. Sens. Actuators B 2019, 295, 144.
doi: 10.1016/j.snb.2019.05.074 |
17 |
Ahmadi M. ; Sahoo S. ; Younesi R. ; Gaur A. P. S. ; Katiyar R. S. ; Guinel M. J. F. J. Mater. Sci. 2014, 49 (17), 5899.
doi: 10.1007/s10853-014-8304-2 |
18 |
Wang H. ; Ding R. ; Wang C. ; Ren X. ; Wang L. ; Lv B. CrystEngComm 2017, 19 (28), 3979.
doi: 10.1039/c7ce00774d |
19 |
Gullapalli S. K. ; Vemuri R. S. ; Ramana C. V. Appl. Phys. Lett. 2010, 96 (17), 171903.
doi: 10.1063/1.3421540 |
20 |
Migas D. B. ; Shaposhnikov V. L. ; Borisenko V. E. J. Appl. Phys. 2010, 108 (9), 093714.
doi: 10.1063/1.3505689 |
21 |
Kaiser F. ; Simon P. ; Burkhardt U. ; Kieback B. ; Grin Y. ; Veremchuk I. Crystals 2017, 7 (9), 271.
doi: 10.3390/cryst7090271 |
22 |
Viswanathan K. ; Brandt K. ; Salje E. J. Solid State Chem. 1981, 36 (1), 45.
doi: 10.1016/0022-4596(81)90190-0 |
23 |
Aguir K. ; Lemire C. ; Lollman D. B. B. Sens. Actuators B 2002, 84, 1.
doi: 10.1016/S0925-4005(02)00003-5 |
24 |
Zhu L. F. ; She J. C. ; Luo J. Y. ; Deng S. Z. ; Chen J. ; Ji X. W. ; Xu N. S. Sens. Actuators B 2011, 153 (2), 354.
doi: 10.1016/j.snb.2010.10.047 |
25 |
Al Mohammad A. ; Gillet M. Thin Solid Films 2002, 408 (1-2), 302.
doi: 10.1016/s0040-6090(02)00090-1 |
26 |
Jiménez I. ; Arbiol J. ; Dezanneau G. ; Cornet A. ; Morante J. R. Sens. Actuators B 2003, 93 (1-3), 475.
doi: 10.1016/s0925-4005(03)00198-9 |
27 |
Tong B. ; Deng Z. ; Xu B. ; Meng G. ; Shao J. ; Liu H. ; Dai T. ; Shan X. ; Dong W. ; Wang S. ; et al ACS Appl. Mater. Interfaces 2018, 10 (40), 34727.
doi: 10.1021/acsami.8b10485 |
28 |
Tong B. ; Meng G. ; Deng Z. ; Horprathum M. ; Klamchuen A. ; Fang X. Chem. Commun. 2019, 55 (78), 11691.
doi: 10.1039/c9cc05881h |
29 |
Hong K. ; Xie M. ; Hu R. ; Wu H. Nanotechnology 2008, 19 (8), 085604.
doi: 10.1088/0957-4484/19/8/085604 |
30 |
Li N. ; Zheng Y. ; Wei L. ; Teng H. ; Zhou J. Green Chem. 2017, 19 (3), 682.
doi: 10.1039/c6gc01327a |
31 |
Lei T. ; Deng Q. ; Zhang S. ; Cai S. ; Xie C. Sens. Actuators B 2016, 232, 506.
doi: 10.1016/j.snb.2016.04.001 |
32 |
Liu W. ; Xu L. ; Sheng K. ; Chen C. ; Zhou X. ; Dong B. ; Bai X. ; Zhang S. ; Lu G. ; Song H. J. Mater. Chem. A 2018, 6 (23), 10976.
doi: 10.1039/c8ta02452a |
33 |
Lu C. H. ; Hon M. H. ; Leu I. C. J. Electron. Mater. 2016, 46 (4), 2080.
doi: 10.1007/s11664-016-5132-y |
34 |
Kunyapat T. ; Xu F. ; Neate N. ; Wang N. ; Sanctis A. ; Russo S. ; Zhang S. ; Xia Y. ; Zhu Y. Nanoscale 2018, 10 (10), 4718.
doi: 10.1039/c7nr08385h |
35 |
Liu I. P. ; Chang C. H. ; Chou T. C. ; Lin K. W. Sens. Actuators B 2019, 291, 148.
doi: 10.1016/j.snb.2019.04.046 |
36 |
Lu J. ; Xu C. ; Cheng L. ; Jia N. ; Huang J. ; Li C. Mater. Sci. Semicond. Process. 2019, 101, 214.
doi: 10.1016/j.mssp.2019.05.038 |
37 |
Gao L. ; Wang X. ; Xie Z. ; Song W. ; Wang L. ; Wu X. ; Qu F. ; Chena D. ; Shen G. J. Mater. Chem. A 2013, 1, 7167.
doi: 10.1039/c3ta10831g |
38 |
Sarkar D. ; Mukherjee S. ; Pal S. ; Sarma D. D. ; Shukla A. J. Electrochem. Soc. 2018, 165, 2108.
doi: 10.1149/2.0451810jes |
39 |
Xiao Z. ; Zhang L. ; Tian X. ; Fang X. Nanotechnology 2005, 16 (11), 2647.
doi: 10.1088/0957-4484/16/11/029 |
40 |
Shim H. S. ; Kim J. W. ; Sung Y. E. ; Kim W. B. Sol. Energy Mater. Sol. Cells 2009, 93 (12), 2062.
doi: 10.1016/j.solmat.2009.02.008 |
41 |
Miao B. ; Zeng W. ; Hussain S. ; Mei Q. ; Xu S. ; Zhang H. ; Li Y. ; Li T. Mater. Lett. 2015, 147, 12.
doi: 10.1016/j.matlet.2015.02.020 |
42 |
Guo C. ; Yin S. ; Yan M. ; Kobayashi M. ; Kakihana M. ; Sato T. Inorg. Chem. 2012, 51 (8), 4763.
doi: 10.1021/ic300049j |
43 |
Liu J. ; Margeat O. ; Dachraoui W. ; Liu X. ; Fahlman M. ; Ackermann J. Adv. Funct. Mater. 2014, 24 (38), 6029.
doi: 10.1002/adfm.201401261 |
44 |
Phuruangrat A. ; Yayapao O. ; Thongtem T. ; Thongtem S. Russ. J. Phys. Chem. A 2017, 91 (12), 2441.
doi: 10.1134/s0036024417120019 |
45 |
Gu Z. ; Zhai T. ; Gao B. ; Sheng X. ; Wang Y. ; Fu H. ; Ma Y. ; Yao J. J. Phys. Chem. B 2006, 110, 23829.
doi: 10.1021/jp065170y |
46 |
Song X. C. ; Zheng Y. F. ; Yang E. ; Wang Y. Mater. Lett. 2007, 61 (18), 3904.
doi: 10.1016/j.matlet.2006.12.055 |
47 |
Ha J. H. ; Muralidharan P. ; Kim D. K. J. Alloys Compd. 2009, 475 (1-2), 446.
doi: 10.1016/j.jallcom.2008.07.048 |
48 |
Gu Z. ; Li H. ; Zhai T. ; Yang W. ; Xia Y. ; Ma Y. ; Yao J. J. Solid State Chem. 2007, 180 (1), 98.
doi: 10.1016/j.jssc.2006.09.020 |
49 |
Moshofsky B. ; Mokari T. Chem. Mater. 2012, 25 (8), 1384.
doi: 10.1021/cm302015z |
50 |
Hassan M. ; Wang Z. H. ; Huang W. R. ; Li M. Q. ; Liu J. W. ; Chen J. F. Sensors 2017, 17 (10)
doi: 10.3390/s17102245 |
51 |
Zhao Y. M. ; Hu W. B. ; Xia Y. D. ; Smith E. F. ; Zhu Y. Q. ; Dunnill C. W. ; Gregory D. H. J. Mater. Chem. 2007, 17 (41), 4436.
doi: 10.1039/b709486h |
52 |
Qin Y. ; Hu M. ; Zhang J. Sens. Actuators B 2010, 150 (1), 339.
doi: 10.1016/j.snb.2010.06.063 |
53 |
Hong K. ; Xie M. ; Hu R. ; Wu H. Appl. Phys. Lett. 2007, 90 (17), 173121.
doi: 10.1063/1.2734175 |
54 |
Langmuir I. Phys. Rev. 1913, 2 (5), 329.
doi: 10.1103/PhysRev.2.329 |
55 |
Chapman D. M. Appl. Catal. A 2011, 392 (1-2), 143.
doi: 10.1016/j.apcata.2010.11.005 |
56 |
Ponzoni A. ; Comini E. ; Sberveglieri G. ; Zhou J. ; Deng S. Z. ; Xu N. S. ; Ding Y. ; Wang Z. L. Appl. Phys. Lett. 2006, 88 (20), 203101.
doi: 10.1063/1.2203932 |
57 |
Zhou J. ; Ding Y. ; Deng S. Z. ; Gong L. ; Xu N. S. ; Wang Z. L. Adv. Mater. 2005, 17 (17), 2107.
doi: 10.1002/adma.200500885 |
58 |
Van Hieu N. ; Van Vuong H. ; Van Duy N. ; Hoa N. D. Sens. Actuators B 2012, 171-172, 760.
doi: 10.1016/j.snb.2012.05.069 |
59 |
Chi L. ; Xu N. ; Deng S. ; Chen J. ; She J. Nanotechnology 2006, 17 (22), 5590.
doi: 10.1088/0957-4484/17/22/011 |
60 |
Mandl B. ; Stangl J. ; Hilner E. ; Zakharov A. A. ; Hillerich K. ; Dey A. W. ; Samuelson L. ; Bauer G. ; Deppert K. ; Mikkelsen A. Nano Lett. 2010, 10 (11), 4443.
doi: 10.1021/nl1022699 |
61 |
Liu F. ; Li L. ; Mo F. ; Chen J. ; Deng S. ; Xu N. Cryst. Growth Des. 2010, 10 (12), 5193.
doi: 10.1021/cg100995f |
62 |
Hu R. ; Wu H. ; Hong K. J. Cryst. Growth 2007, 306 (2), 395.
doi: 10.1016/j.jcrysgro.2007.05.007 |
63 |
Hong K. ; Yiu W. ; Wu H. ; Gao J. ; Xie M. Nanotechnology 2005, 16 (9), 1608.
doi: 10.1088/0957-4484/16/9/034 |
64 |
Klinke C. ; Hannon J. B. ; Gignac L. ; Reuter K. ; Avouris P. J. Phys. Chem. B 2005, 109, 17787.
doi: 10.1021/jp0533224 |
65 |
Smith A. M. ; Kast M. G. ; Nail B. A. ; Aloni S. ; Boettcher S. W. J. Mater. Chem. A 2014, 2 (17), 6121.
doi: 10.1039/c3ta14163b |
66 |
Dellasega D. ; Pietralunga S. M. ; Pezzoli A. ; Russo V. ; Nasi L. ; Conti C. ; Vahid M. J. ; Tagliaferri A. ; Passoni M. Nanotechnology 2015, 26 (36), 365601.
doi: 10.1088/0957-4484/26/36/365601 |
67 |
Wu W. ; Yu Q. ; Lian J. ; Bao J. ; Liu Z. ; Pei S. S. J. Cryst. Growth 2010, 312 (21), 3147.
doi: 10.1016/j.jcrysgro.2010.07.057 |
68 |
Huang R. ; Zhu J. ; Yu R. Chin. Phys. B 2009, 18, 3024.
doi: 10.1088/1674-1056/18/7/068 |
69 |
Kojima Y. ; Kasuya K. ; Ooi T. ; Nagato K. ; Takayama K. ; Nakao M. Jpn. J. Appl. Phys. 2007, 46, 6250.
doi: 10.1143/JJAP.46.6250 |
70 |
Liu F. ; Mo F. Y. ; Jin S. Y. ; Li L. ; Chen Z. S. ; Sun R. ; Chen J. ; Deng S. Z. ; Xu N. S. Nanoscale 2011, 3 (4), 1850.
doi: 10.1039/c0nr01007c |
71 |
Cao B. ; Chen J. ; Tang X. ; Zhou W. J. Mater. Chem. A 2009, 19, 2323.
doi: 10.1039/b816646c |
72 |
Xu F. ; Tse S. D. ; Al-Sharab J. F. ; Kear B. H. Appl. Phys. Lett. 2006, 88 (24), 243115.
doi: 10.1063/1.2213181 |
73 |
Galléa F. ; Li Z. ; Zhang Z. Appl. Phys. Lett. 2006, 89 (19), 193111.
doi: 10.1063/1.2387883 |
74 |
Kojima Y. ; Kasuya K. ; Nagato K. ; Hamaguchi T. ; Nakao M. J. Vac. Sci. Technol., B 2008, 26 (6), 1942.
doi: 10.1116/1.2990783 |
75 |
Lin Z. ; Xie P. ; Zhan R. ; Chen D. ; She J. ; Deng S. ; Xu N. ; Chen J. ACS Appl. Nano Mater. 2019, 2 (8), 5206.
doi: 10.1021/acsanm.9b01074 |
76 |
Hernandez-Ramirez F. ; Tarancon A. ; Casals O. ; Pellicer E. ; Rodriguez J. ; Romano-Rodriguez A. ; Morante J. R. ; Barth S. ; Mathur S. Phys. Rev. B 2007, 76 (8)
doi: 10.1103/PhysRevB.76.085429 |
77 |
Van P. T. H. ; Dai D. D. ; Van Duy N. ; Hoa N. D. ; Van Hieu N. Sens. Actuators B 2016, 227, 198.
doi: 10.1016/j.snb.2015.12.054 |
78 |
Meng G. ; Zhuge F. ; Nagashima K. ; Nakao A. ; Kanai M. ; He Y. ; Boudot M. ; Takahashi T. ; Uchida K. ; Yanagida T. ACS Sensors 2016, 1 (8), 997.
doi: 10.1021/acssensors.6b00364 |
79 |
Nguyet Q. T. M. ; Van Duy N. ; Manh Hung C. ; Hoa N. D. ; Van Hieu N. Appl. Phys. Lett. 2018, 112 (15), 153110.
doi: 10.1063/1.5023851 |
80 |
Takahashi T. ; Nichols P. ; Takei K. ; Ford A. C. ; Jamshidi A. ; Wu M. C. ; Ning C. Z. ; Javey A. Nanotechnology 2012, 23 (4), 045201.
doi: 10.1088/0957-4484/23/4/045201 |
81 |
Zhuang X. ; Ning C. Z. ; Pan A. Adv. Mater. 2012, 24 (1), 13.
doi: 10.1002/adma.201103191 |
82 |
Xiong X. ; Jaberansari L. ; Hahm M. G. ; Busnaina A. ; Jung Y. J. Small 2007, 3 (12), 2006.
doi: 10.1002/smll.200700292 |
83 |
Wu S. ; Huang K. ; Shi E. ; Xu W. ; Fang Y. ; Yang Y. ; Cao A. ACS Nano 2014, 8 (4), 3522.
doi: 10.1021/nn406610d |
84 |
Hu H. ; Wang Z. ; Ye Q. ; He J. ; Nie X. ; He G. ; Song C. ; Shang W. ; Wu J. ; Tao P. ; et al ACS Appl. Mater. Interfaces 2016, 8 (31), 20483.
doi: 10.1021/acsami.6b06334 |
85 |
Nguyen H. ; Quy C. T. ; Hoa N. D. ; Lam N. T. ; Duy N. V. ; Quang V. V. ; Hieu N. V. Sens. Actuators B 2014, 193, 888.
doi: 10.1016/j.snb.2013.11.043 |
86 |
Hung C. M. ; Le D. T. T. ; Van Hieu N. J. Sci.: Adv. Mater. Devices 2017, 2 (3), 263.
doi: 10.1016/j.jsamd.2017.07.009 |
87 |
Lee K. ; Baek D. H. ; Na H. ; Choi J. ; Kim J. Sens. Actuators B 2018, 265, 522.
doi: 10.1016/j.snb.2018.03.100 |
88 |
Xiong Y. ; Zhu Z. ; Guo T. ; Li H. ; Xue Q. J. Hazard. Mater. 2018, 353, 290.
doi: 10.1016/j.jhazmat.2018.04.020 |
89 |
Kruefu V. ; Wisitsoraat A. ; Tuantranont A. ; Phanichphant S. Sens. Actuators B 2015, 215, 630.
doi: 10.1016/j.snb.2015.03.037 |
90 |
Van Tong P. ; Hoa N. D. ; Van Duy N. ; Van Hieu N. RSC Adv. 2015, 5 (32), 25204.
doi: 10.1039/c5ra00916b |
91 |
Zhao X. ; Ji H. ; Jia Q. ; Wang M. J. Mater. Sci.: Mater. Electron. 2015, 26 (10), 8217.
doi: 10.1007/s10854-015-3484-3 |
92 |
Park J. Y. ; Choi S. W. ; Kim S. S. J. Phys. Chem. C 2011, 115 (26), 12774.
doi: 10.1021/jp202113x |
93 |
Lee D. S. ; Nam K. H. ; Lee D. D. Thin Solid Films 2000, 375, 142.
doi: 10.1016/S0040-6090(00)01261-X |
94 |
Sun H. T. ; Cantalini C. ; Lozzi L. ; Passacantando M. ; Santucci S. ; Pelino M. Thin Solid Films 1996, 287, 258.
doi: 10.1016/S0040-6090(96)08745-7 |
95 |
Penza M. ; Tagliente M. A. ; Mirenghi L. ; Gerardi C. ; Martucci C. ; Cassano G. Sens. Actuators B 1998, 50, 9.
doi: 10.1016/S0925-4005(98)00149-X |
96 |
Jaroenapibal P. ; Boonma P. ; Saksilaporn N. ; Horprathum M. ; Amornkitbamrung V. ; Triroj N. Sens. Actuators B 2018, 255, 1831.
doi: 10.1016/j.snb.2017.08.199 |
97 |
An S. ; Park S. ; Ko H. ; Lee C. Ceram. Int. 2014, 40 (1), 1423.
doi: 10.1016/j.ceramint.2013.07.025 |
98 |
Wu Y. Q. ; Hu M. ; Wei X. Y. Chin. Phys. B 2014, 23 (4), 040704.
doi: 10.1088/1674-1056/23/4/040704 |
99 |
Ngoc T. M. ; Van Duy N. ; Hung C. M. ; Hoa N. D. ; Nguyen H. ; Tonezzer M. ; Van Hieu N. Anal. Chim. Acta 2019, 1069, 108.
doi: 10.1016/j.aca.2019.04.020 |
100 |
Park W. J. ; Choi K. J. ; Kim M. H. ; Koo B. H. ; Lee J. L. ; Baik J. M. ACS Appl. Mater. Interfaces 2013, 5 (15), 6802.
doi: 10.1021/am401635e |
101 |
Sysoev V. V. ; Schneider T. ; Goschnick J. ; Kiselev I. ; Habicht W. ; Hahn H. ; Strelcov E. ; Kolmakov A. Sens. Actuators B 2009, 139 (2), 699.
doi: 10.1016/j.snb.2009.03.065 |
102 |
Prades J. D. ; Jimenez-Diaz R. ; Hernandez-Ramirez F. ; Barth S. ; Cirera A. ; Romano-Rodriguez A. ; Mathur S. ; Morante J. R. Appl. Phys. Lett. 2008, 93 (12), 123110.
doi: 10.1063/1.2988265 |
103 |
Zhao D. ; Huang H. ; Chen S. ; Li Z. ; Li S. ; Wang M. ; Zhu H. ; Chen X. Nano Lett. 2019, 19 (6), 3448.
doi: 10.1021/acs.nanolett.8b04846 |
104 |
Tan H. M. ; Manh Hung C. ; Ngoc T. M. ; Nguyen H. ; Duc Hoa N. ; Van Duy N. ; Hieu N. V. ACS Appl. Mater. Interfaces 2017, 9 (7), 6153.
doi: 10.1021/acsami.6b14516 |
105 |
Liu H. ; He Y. ; Nagashima K. ; Meng G. ; Dai T. ; Tong B. ; Deng Z. ; Wang S. ; Zhu N. ; Yanagida T. ; et al Sens. Actuators B 2019, 293, 342.
doi: 10.1016/j.snb.2019.04.078 |
[1] | Jianqiao Chang, Huimin Xu, Wenjing Xie, Yang Zhang, Ling Qi, Louzhen Fan, Yong Li. Fluorescent Carbon Dots for Rapid and Highly Sensitive Detection of Nucleic Acids [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301034-. |
[2] | Taihong Liu, Rong Miao, Haonan Peng, Jing Liu, Liping Ding, Yu Fang. Adlayer Chemistry on Film-based Fluorescent Gas Sensors [J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1908025-. |
[3] | Shuang LIANG,Ran GAO,Mengying ZHANG,Ning XUE,Zhimei QI. Gold-Silver Alloy Film Based Spectral Surface Plasmon Resonance Imaging Sensor with High Sensitivity [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 630-636. |
[4] | Li WANG,Dan-Feng LU,Ran GAO,Jin CHENG,Zhe ZHANG,Zhi-Mei QI. Theoretical Analyses and Chemical Sensing Application of Surface Plasmon Resonance Effect of Nanoporous Gold Films [J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1223-1229. |
[5] | DU Hai-Ying, WANG Jing, QIAO Qiao, SUN Yan-Hui, SHAO Qiang, LI Xiao-Gan. Synthesis and Characterization of ZnO/PPy Hetero-Nanocomposites and Their Gas Sensing Properties [J]. Acta Phys. -Chim. Sin., 2015, 31(4): 800-806. |
[6] | Rui-Jin. HU,Jing. WANG,Hui-Chao. ZHU. Preparation and Gas Sensing Properties of PdO, Au, CdO Coatings on SnO2 Nanofibers [J]. Acta Phys. -Chim. Sin., 2015, 31(10): 1997-2004. |
[7] | ZHANG Zhe, LU Dan-Feng, QI Zhi-Mei. Surface Plasmon Resonance Sensing Properties of Nanoporous Gold Thin Films [J]. Acta Phys. -Chim. Sin., 2013, 29(04): 867-873. |
[8] | SUN Peng, HU Ming, LI Ming-Da, MA Shuang-Yun. Microstructure, Electrical and Gas Sensing Properties of Meso-Porous Silicon and Macro-Porous Silicon [J]. Acta Phys. -Chim. Sin., 2012, 28(02): 489-493. |
[9] | Hui Chun;Xu Ai-Lan. Properties and Mechanism of Nanostructure Thick Film Materials Based on ( Sn,Sb )O2-x [J]. Acta Phys. -Chim. Sin., 2001, 17(09): 832-835. |
|