Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (9): 1912006.doi: 10.3866/PKU.WHXB201912006
Special Issue: Precise Nanosynthesis
• Review • Previous Articles Next Articles
Yunyun Ling1,2, Yunsheng Xia1,*()
Received:
2019-12-02
Accepted:
2020-01-06
Published:
2020-02-14
Contact:
Yunsheng Xia
E-mail:xiayuns@mail.ahnu.edu.cn
Supported by:
Yunyun Ling, Yunsheng Xia. Gold Based Nanocomposites: Fabrication Strategies, Properties, and Tumor Theranostic Applications[J].Acta Physico-Chimica Sinica, 2020, 36(9): 1912006.
Fig 1
Epitaxial growth of Ag (a, b), Pt (c–e), Fe3O4 (f–j) on Au. (a) TEM image of the growth of a Ag-shell on a AuNR; (b) Post-mortem EDXS line scan across the core-shell structure; TEM image (c), dark-field STEM image (d), and EDXS elemental mapping image (e) of Pt@AuNPs, respectively; (f) HAADF-STEM image of a typical Au-Fe3O4 nanocrystal; (g) The overlaid fast FFT patterns of Au and Fe3O4 lobes; (h–j) EDXS elemental mapping of a single Au-Fe3O4 nanocrystal. (a, b) Adapted with permission from Ref. 39. Copyright 2019 American Chemical Society. (c–e) Adapted with permission from Ref. 40. Copyright 2018 American Chemical Society. (f–j) Adapted with permission from Ref. 43. Copyright 2019 American Chemical Society. "
Fig 2
Preparation of Au-MnO2 heterogeneous nanomaterials using ligand/surfactant as linkers. (a–j) Characterizations of the UFO-shaped AMNS-SPs. (a) Large-scale SEM, (b) large-scale TEM, (c) HRTEM and (d, e) AFM images (the diameter of the decorated MnO2 nanosheets is 230 nm). Small-scale TEM images of the AMNS-SPs decorated with MnO2 nanosheets of different diameters: (f) 0, (g) 108, (h) 151, and (i) 230 nm. (j) Extinction spectra of the AMNS-SPs decorated with MnO2 nanosheets of different diameters, and the curves 1, 2, 3, and 4 correspond to (f), (g), (h), and (i), respectively. (k-o) Characterizations of the TAMNS-SPs. (k) TEM, (l, m) AFM (the thickness and diameter of the decorated MnO2 nanosheets are 12 and 180 nm, respectively). Small-scale TEM images of the TAMNS-SPs decorated with MnO2 nanosheets of different diameters: (n) 99, (o) 180 nm. Adapted with permission from Ref. 63. Copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA."
Fig 4
Au@MOF drug carriers for combined chemo-photothermal therapy. (a) Concentration-dependent temperature increase of AuNR@ZIF-8 core@shell nanostructures in PBS solution under NIR laser irradiation (1 W·cm-2). Pure PBS solution (pH = 7.4) was used as negative control; (b) DOX release profiles from AuNR@ZIF-8-DOX complexes with and without NIR laser irradiation at different pH values; (c) In vivo infrared thermal images of 4T1 tumor-bearing mice after injection of either AuNR@ZIF-8 core-shell nanostructures or saline with different irradiation times under NIR laser at 808 nm (1 W·cm-2); (d) observation of changes in relative tumor volume from 4T1 tumor-bearing mice with different treatments; (e) representative photograph of excised tumors from euthanized mice. Adapted from Ref. 51. "
Fig 5
Au-Fe3O4 heterodimers for in vivo MR and CT multimodality imaging. Distribution of simulated magnetic field induced by (a) Fe3O4, (b) core@shell Fe3O4@Au NPs and (c) Au-Fe3O4 heterodimers (The scale bar is 20 nm.). (d) The hysteresis loop of Fe3O4 NPs and Au-Fe3O4 heterodimers. (e) The linear fitting of CT value and various concentrations of Au-Fe3O4 heterodimers with different size of Au (The sizes of Au-Fe3O4 dimers 1, 2, and 3 are 3.6 and 19.8 nm, 7.2 and 19.8 nm, and 11.3 and 19.8 nm, respectively.). (f) The linear fitting of 1/T2 and various concentrations of Au-Fe3O4 heterodimers with different sizes of Fe3O4 (The sizes of Au-Fe3O4 in dimers 4, 5, and 6 are 5.0 and 14.5 nm, 4.5 and 19.8 nm, and 12.2 and 38.0 nm, respectively.). (g–j) The MR T2-weighted images, CT images of rat liver before and after the injection of Au-Fe3O4 (4.5 and 19.8 nm) heterodimer solution: (g) MR image before injection; (h) MR image 30 min after injection; (i) CT image before injection; (j) CT image 30 min after injection. Adapted with permission from Ref. 67. Copyright 2019 American Chemical Society."
Fig 6
Schematic illustration of the anticancer effect of doxorubicin (DOX)-loaded bilayered magnetic-plasmonic vesicles (Au@PEG-Fe3O4@PLHPVP). The disassembly into monodisperse Janus Fe3O4-Au NPs in acidic environment results in ROS generation, increases oxidative stress, and releases DOX, leading to combined ROS and chemotherapy of cancer guided by PET, MRI and PA. Adapted with permission from Ref. 102. Copyright 2019 American Chemical Society."
Fig 7
Au@Cu2-xS SPs for enhanced PTT basing on the coupling LSPR effects of the Au core and Cu2-xS shell. Experimental (a) and FDTD calculated (b) LSPR bands of the Au@Cu2–xS SPs. (c) Photothermal effects of the Au@Cu2–xS SPs and the physical mixture of Au and Cu2–xS NPs. (d) Concentration-dependent extinction of the Au@Cu2–xS SPs. (e) In vivo PA images of tumor (highlighted by red circles) from a 4T1 tumor bearing mouse collected before and after tail vein injection of the SPs solution at different time points. (f) 3D in vivo CT mouse images of a tumor (indicated by the white circles) before (left) and after (right) intratumoral injection of the SPs. (g) Infrared thermal images of 4T1 tumor after the mice intravenously injected with the hybrid SPs solution (200 μL, 2.0 mg·mL-1) and then laser irradiated (808 nm, 1.5 W·cm-2) for 5 min. PBS injection is employed as control. (h) Tumor growth inhibition profiles of 4 groups of mice (n = 5) with time post-treatments. Relative tumor volume was normalized to their initial sizes. Adapted with permission from Ref. 81. Copyright 2017 American Chemical Society."
Fig 8
Lip(ASC/PFH) nanocomposites for enhanced PDT basing on the nonradiative transfer of plasmonic energy from the Au core to Cu2O shell. (a) UV-Vis absorption spectra of Au nanoparticles, Cu2O, Au@SiO2, ASC, Au@Cu2O; (b) Time-dependent degradation of DPBF at 410 nm caused by 1O2 generated by Cu2O, Au@SiO2, Au@Cu2O, and ASC under 670 nm laser irradiation; (c) Schematic illustration of Lip(ASC/PFH) for singlet oxygen generation during PDT under Laser Irradiation; (d) Photographs of the mice taken before treatment (0 day) and at 14 days with different treatments, as well as tumors collected from different groups of mice at 14 days. Adapted with permission from Ref. 112. Copyright 2018 American Chemical Society. "
1 | Shen, H. Y.; Cheng, L.; Li, L. L.; Liu, H. Y. Gold Nanoparticles and Their Bioapplications. In Nanobiomaterials: Classification, Fabrication and Biomedical Applications; Wang, X. M.; Ramalingam, M.; Kong, X. D.; Zhao; L. Y. Eds.; Wiley: San Francisco, 2017; pp. 359–377. |
2 |
Xia Y. S. Anal Bioanal Chem 2016, 408, 2813.
doi: 10.1007/s00216-015-9203-3 |
3 |
Gilroy K. D. ; Ruditskiy A. ; Peng H. C. ; Qin D. ; Xia Y. N. Chem. Rev. 2016, 116, 10414.
doi: 10.1021/acs.chemrev.6b00211 |
4 |
Jiang R. B. ; Li B. X. ; Fang C. H. ; Wang J. F. Adv. Mater. 2014, 26, 5274.
doi: 10.1002/adma.201400203 |
5 |
Huang L. ; Ao L. J. ; Hu D. H. ; Wang W. ; Sheng Z. H. ; Su W. Chem. Mater. 2016, 28 (16), 5896.
doi: 10.1021/acs.chemmater.6b02413 |
6 |
Nguyen T. T. ; Mammeri F. ; Ammar S. Nanomaterials 2018, 8, 149.
doi: 10.3390/nano8030149 |
7 |
Bertorelle F. ; Pinto M. ; Zappon R. ; Pilot R. ; Litti L. ; Fiameni S. ; Conti G. ; Gobbo M. ; Toffoli G. ; Colombatti M. ; et al Nanoscale 2018, 10, 976.
doi: 10.1039/C7NR07844G |
8 |
Loo C. ; Lowery A. ; Halas N. ; West J. ; Drezek R. Nano Lett. 2005, 5 (4), 709.
doi: 10.1021/nl050127s |
9 |
Calavia P. G. ; Bruce G. ; Pérez-García L. ; Russell D. A. Photochem. Photobiol. Sci. 2018, 17, 1534.
doi: 10.1039/C8PP00271A |
10 |
Kumar S. ; Diwan A. ; Singh P. ; Gulati S. ; Choudhary D. ; Mongia A. ; Shuklaa S. ; Gupta A. RSC Adv. 2019, 9, 23894.
doi: 10.1039/C9RA03608C |
11 |
Jeong H. H. ; Choi E. ; Ellis E. ; Lee T. C. J. Mater. Chem. B 2019, 7, 3480.
doi: 10.1039/C9TB00557A |
12 |
Yang Y. J. ; Zhong S. A. ; Wang K. M. ; Huang J. Analyst 2019, 144, 1052.
doi: 10.1039/C8AN02070A |
13 |
Sabale S. ; Kandesar P. ; Jadhav V. ; Komorek R. ; Motkuri R. K. ; Yu X. Y. Biomater. Sci. 2017, 5, 2212.
doi: 10.1039/C7BM00723J |
14 |
Goswami N. ; Luo Z. T. ; Yuan X. ; Leong D. T. ; Xie J. P. Mater. Horiz. 2017, 4, 817.
doi: 10.1039/C7MH00451F |
15 |
Zong J. Y. ; Cobb S. L. ; Cameron N. R. Biomater. Sci. 2017, 5, 872.
doi: 10.1039/C7BM00006E |
16 |
Ali M. R. K. ; Wu Y. ; El-Sayed M. A. J. Phys. Chem. C 2019, 123, 15375.
doi: 10.1021/acs.jpcc.9b01961 |
17 |
Sztandera K. ; Gorzkiewicz M. ; Klajnert-Maculewicz B. Mol. Pharmaceutics 2019, 16 (1), 1.
doi: 10.1021/acs.molpharmaceut.8b00810 |
18 |
Amendoeira A. ; García L. R. ; Fernandes A. R. ; Baptista P. V. Adv. Therap. 2019, 1900153.
doi: 10.1002/adtp.201900153 |
19 |
Riley R. S. ; Day E. S. WIREs Nanomed Nanobiotechnol. 2017, 9, e1449.
doi: 10.1002/wnan.1449 |
20 |
Jin N. ; Zhang Q. ; Yang M. Y. ; Yang M. Y. Microsc. Res. Tech. 2019, 82, 670.
doi: 10.1002/jemt.23213 |
21 |
Huang Y. ; Huang P. ; Lin J. Small Methods 2019, 3 (3), 1800394.
doi: 10.1002/smtd.201800394 |
22 |
Li X. J. ; Kono K. J. Polym. Int. 2018, 67 (7), 840.
doi: 10.1002/pi.5583 |
23 |
Luo Z. ; Xu Y. ; Ye E. Y. ; Li Z. B. ; Wu Y. L. Macromol. Rapid Commun. 2019, 40 (5), 1800029.
doi: 10.1002/marc.201800029 |
24 |
Laprise-Pelletier M. ; Simão T. ; Fortin M. A. Adv. Healthcare Mater. 2018, 7 (16), 1701460.
doi: 10.1002/adhm.201701460 |
25 |
Lopes T. S. ; Alves G. G. ; Pereira M. R. ; Granjeiro J. M. ; Leite P. E. C. J. Cell Biochem. 2019, 120, 16370.
doi: 10.1002/jcb.29044 |
26 |
Luo C. H. ; Yeh C. S. J. Chin. Chem. Soc. 2017, 64 (11), 1250.
doi: 10.1002/jccs.201700255 |
27 |
Li B. ; Lane L. A. WIREs Nanomed Nanobiotechnol. 2019, 11, e1542.
doi: 10.1002/wnan.1542 |
28 |
Park J. E. ; Kim M. ; Hwang J. H. ; Nam J. M. Small Methods 2017, 1, 1600032.
doi: 10.1002/smtd.201600032 |
29 | Bouché, M.; Hsu, J. C.; Dong, Y. X.; C. Kim, J.; Taing, K.; Cormode, D. P. Bioconjugate Chem. 2020, In press. doi: 10.1021/acs.bioconjchem.9b00669 |
30 | Nguyen-Tri, P.; Ouellet-Plamondon, C.; Rtimi, S.; Assadi, A. A.; Nguyen, T. A. Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications; Mohapatra, S.; Nguyen, T. A.; Nguyen-Tri, P. Eds.; Elsevier: Amsterdam, 2019; pp. 51–63. |
31 |
Li X. H. ; Zhu J. M. ; Wei B. Q. Chem. Soc. Rev. 2016, 45, 3145.
doi: 10.1039/c6cs00195e |
32 |
He W. W. ; Han X. N. ; Jia H. M. ; Cai J. H. ; Zhou Y. L. ; Zheng Z. Sci. Rep. 2017, 7, 40103.
doi: 10.1038/srep40103 |
33 |
Wang C. ; Yin H. F. ; Chan R. ; Peng S. ; Dai S. ; Sun S. H. Chem. Mater. 2009, 21 (3), 433.
doi: 10.1021/cm802753j |
34 |
Wei J. J. ; Guo Y. J. ; Li J. Z. ; Yuan M. K. ; Long T. F. ; Liu Z. D. Anal. Chem. 2017, 89, 9781.
doi: 10.1021/acs.analchem.7b01723 |
35 |
Shevchenko G. P. ; Zhuravkov V. A. ; Shishko G. V. SN Appl. Sci. 2019, 1, 1192.
doi: 10.1007/s42452-019-1143-7 |
36 |
Kim D. ; Resasco J. ; Yu Y. ; Asiri A. M. ; Yang P. Nat. Commun. 2014, 5, 4948.
doi: 10.1038/ncomms5948 |
37 |
Mitsudome T. ; Yamamoto M. ; Maeno Z. ; Mizugaki T. ; Jitsukawa K. ; Kaneda K. J. Am. Chem. Soc. 2015, 137, 13452.
doi: 10.1021/jacs.5b07521 |
38 |
Yin Z. ; Wang Y. ; Song C. Q. ; Zheng L.H. ; Ma N. ; Liu X. ; Li S. W. ; Lin L. L. ; Li M. Z. ; Xu Y. ; et al J. Am. Chem. Soc. 2018, 140, 864.
doi: 10.1021/jacs.7b11293 |
39 |
Hutzler A. ; Schmutzler T. ; Jank M. P. M. ; Branscheid R. ; Spiecker T. U. E. ; Frey L. Nano Lett. 2018, 18, 7222.
doi: 10.1021/acs.nanolett.8b03388 |
40 |
Kumar D. ; Lee S. B. ; Park C. H. ; Kim C. S. ACS Appl. Mater. Interfaces 2018, 10, 389.
doi: 10.1021/acsami.7b12119 |
41 |
Chen Y. ; Fan Z. X. ; Luo Z. M. ; Liu X. Z. ; Lai Z. C. ; Li B. ; Zong Y. ; Gu L. ; Zhang H. Adv. Mater. 2017, 29, 1701331.
doi: 10.1002/adma.201701331 |
42 |
Lu Q. ; Wang A. ; Gong Y. ; Hao W. ; Cheng H. ; Chen J. ; Li B. ; Yang N. ; Niu W. ; Wang J. ; et al Nat. Chem. 2018, 10, 456.
doi: 10.1038/s41557-018-0012-0 |
43 |
Liu F. ; Goyal S. ; Forrester M. ; Ma T. ; Miller K. ; Mansoorieh Y. ; Henjum J. ; Zhou L. ; Cochran E. ; Jiang S. Nano Lett. 2019, 19, 1587.
doi: 10.1021/acs.nanolett.8b04464 |
44 |
Zhang J. T. ; Tang Y. ; Lee K. ; Ouyang M. Science 2010, 327, 1634.
doi: 10.1126/science.1184769 |
45 |
Zhao Q. ; Ji M. W. ; Qian H. M. ; Dai B. S. ; Weng L. ; Gui J. ; Zhang J. T. ; Ouyang M. ; Zhu H. S. Adv. Mater. 2014, 26, 1387.
doi: 10.1002/adma.201304652 |
46 |
Gui J. ; Ji M. ; Liu J. ; Xu M. ; Zhang J. T. ; Zhu H. S. Angew. Chem. Int. Ed. 2015, 54, 3683.
doi: 10.1002/anie.201410053 |
47 |
Liu J. ; Feng J. W. ; Gui J. ; Chen T. ; Xu M. ; Wang H. Z. ; Dong H. F. ; Chen H. L. ; Li X. W. ; Wang L. ; et al Nano Energy 2018, 48, 44.
doi: 10.1016/j.nanoen.2018.02.040 |
48 |
Ji M. ; Xu M. ; Zhang W. ; Yang Z. ; Huang L. ; Liu J. ; Zhang Y. ; Gu L. ; Yu Y. ; Hao W. ; et al Adv. Mater. 2016, 28, 3094.
doi: 10.1002/adma.201503201 |
49 |
Huang L. ; Zheng J. J. ; Huang L. L. ; Liu J. ; Ji M. W. ; Yao Y. ; Xu M. ; Liu J. J. ; Zhang J. T. ; Li Y. D. Chem. Mater. 2017, 29, 2355.
doi: 10.1021/acs.chemmater.7b00046 |
50 |
Ji M. W. ; Li X. Y. ; Wang H. Z. ; Huang L. ; Xu M. ; Liu J. ; Liu J. J. ; Wang J. ; Zhang J. T. Nano Res. 2017, 10 (9), 2977.
doi: 10.1007/s12274-017-1508-4 |
51 |
Li Y. T. ; Jin J. ; Wang D. W. ; Lv J. W. ; Hou K. ; Liu Y. L. ; Chen C. Y. ; Tang Z. Y. Nano Res. 2018, 11 (6), 3294.
doi: 10.1007/s12274-017-1874-y |
52 |
Cai W. ; Wang J. Q. ; Liu H. ; Chen W. ; Wang J. ; Du L. P. ; Hu J. ; Wu C. S. J. Alloys Compd. 2018, 748, 193.
doi: 10.1016/j.jallcom.2018.03.133 |
53 |
Deng X. R. ; Liang S. ; Cai X. C. ; Huang S. S. ; Cheng Z. Y. ; Shi Y. S. ; Pang M. L. ; Ma P. A. ; Lin J. Nano Lett. 2019, 19 (10), 6772.
doi: 10.1021/acs.nanolett.9b01716 |
54 |
Deng X. R. ; Li K. ; Cai X. C. ; Liu B. ; Wei Y. ; Deng K. R. ; Xie Z. X. ; Wu Z. J. ; Ma P. A. ; Hou Z. Y. ; et al Adv. Mater. 2017, 29, 1701266.
doi: 10.1002/adma.201701266 |
55 |
Osterrieth J. W. M. ; Wright D. ; Noh H. ; Kung C. W. ; Vulpe D. ; Li A. ; Park J. E. ; Duyne R. P. V. ; Moghadam P. Z. ; Baumberg J. J. ; et al J. Am. Chem. Soc. 2019, 141, 3893.
doi: 10.1021/jacs.8b11300 |
56 |
Liu B. ; Mosa I. M. ; Song W. ; Zheng H. ; Kuo C. ; Rusling J. F. ; Suib S. L. ; He J. J. Mater. Chem. A 2016, 4, 6447.
doi: 10.1039/c6ta02017h |
57 |
Wei L. ; Li C. Q. ; Chu H. B. ; Li Y. Dalton Trans. 2011, 40, 2332.
doi: 10.1039/C0DT01073A |
58 |
Lin X. D. ; Uzayisenga V. ; Li J. F. ; Fang P. P. ; Wu D. Y. ; Ren B. ; Tian Z. Q. J. Raman Spectrosc. 2012, 43, 40.
doi: 10.1002/jrs.3007 |
59 |
Yi X. ; Chen L. ; Zhong X. Y. ; Gao R. L. ; Qian Y. T. ; Wu F. ; Song G. S. ; Chai Z. F. ; Liu Z. ; Yang K. Nano Res. 2016, 9, 3267.
doi: 10.1007/s12274-016-1205-8 |
60 |
Zhou X. ; Zhao G. F. ; Chen M. H. ; Gao W. ; Zhou X. J. ; Xie X. G. ; Yang L. ; Du G. B. ACS Sustainable Chem. Eng. 2018, 6, 3948.
doi: 10.1021/acssuschemeng.7b04313 |
61 |
Liang R. J. ; Liu L. L. ; He H. M. ; Chen Z. K. ; Han Z. Q. ; Luo Z. Y. ; Wu Z. H. ; Zheng M. B. ; Ma Y. F. ; Cai L. T. Biomaterials 2018, 177, 149.
doi: 10.1016/j.biomaterials.2018.05.051 |
62 |
Wang F. Y. ; Li Y. L. ; Han Y. M. ; Ye Z. J. ; Wei L. ; Luo H. B. ; Xiao L. H. Anal. Chem. 2019, 91, 6329.
doi: 10.1021/acs.analchem.9b01300 |
63 |
Ling Y. Y. ; Zhang D. ; Cui X. M. ; Wei M. M. ; Zhang T. ; Wang J. F. ; Xiao L. H. ; Xia Y. S. Angew. Chem. Int. Ed. 2019, 58, 10542.
doi: 10.1002/anie.201902987 |
64 |
Hu S. H. ; Liu X. Y. ; Wang C. R. ; Camargo P. H. C. ; Wang J. L. ACS Appl. Mater. Interfaces 2019, 11, 17444.
doi: 10.1021/acsami.9b03879 |
65 |
Zhu K. ; Wang C. R. ; Camargo P. H. C. ; Wang J. L. J. Mater. Chem. A 2019, 7, 925.
doi: 10.1039/c8ta09785b |
66 |
Wu R. ; Min Q. H. ; Guo J. J. ; Zheng T. T. ; Jiang L. P. ; Zhu J. J. Anal. Chem. 2019, 91, 4608.
doi: 10.1021/acs.analchem.8b05877 |
67 |
Zeng J. B. ; Gong M. F. ; Wang D. W. ; Li M. M. ; Xu W. J. ; Li Z. W. ; Li S. C. ; Zhang D. ; Yan Z. F. ; Yin Y. D. Nano Lett. 2019, 19, 3011.
doi: 10.1021/acs.nanolett.9b00171 |
68 |
Li M. J. ; Zheng Y. N. ; Liang W. B. ; Yuan R. ; Chai Y. Q. ACS Appl. Mater. Interfaces 2017, 9, 42111.
doi: 10.1021/acsami.7b13894 |
69 |
Zeng L. P. ; Li K. Z. ; Wang H. ; Yu H. ; Zhu X. ; Wei Y. G. ; Ning P. H. ; Shi C. Z. ; Luo Y. M. J. Phys. Chem. C 2017, 121, 12696.
doi: 10.1021/acs.jpcc.7b01363 |
70 |
Li D. ; Jiang L. M. ; Piper J. A. ; Maksymov I. S. ; Greentree A. D. ; Wang E. K. ; Wang Y. L. ACS Sens. 2019, 4, 2507.
doi: 10.1021/acssensors.9b01211 |
71 |
Ortiz N. ; Hong S. J. ; Fonseca F. ; Liu Y. ; Wang G. F. J. Phys. Chem. C 2017, 121, 1876.
doi: 10.1021/acs.jpcc.6b12024 |
72 |
Hinman J. G. ; Turner J. G. ; Hofmann D. M. ; Murphy C. J. Chem. Mater. 2018, 30 (20), 7255.
doi: 10.1021/acs.chemmater.8b03341 |
73 |
Zeng J. Y. ; Wang X. S. ; Zhang M. K. ; Li Z. H. ; Gong D. ; Pan P. ; Huang L. ; Cheng S. X. ; Cheng H. ; Zhang X. Z. ACS Appl. Mater. Interfaces 2017, 9, 43143.
doi: 10.1021/acsami.7b14881 |
74 |
Bao H. M. ; Zhang H. W. ; Zhou L. ; Fu H. ; Liu G. Q. ; Li Y. ; Cai W. P. ACS Appl. Mater. Interfaces 2019, 11, 28145.
doi: 10.1021/acsami.9b05878 |
75 |
Parandhaman T. ; Pentela N. ; Ramalingam B. ; Samanta D. ; Das S. K. ACS Sustainable Chem. Eng. 2017, 5, 489.
doi: 10.1021/acssuschemeng.6b01862 |
76 |
Sun H. ; He J. T. ; Wang J. Y. ; Zhang S. Y. ; Liu C. C. ; Sritharan T. ; Mhaisalkar S. ; Han M. Y. ; Wang D. ; Chen H. Y. J. Am. Chem. Soc. 2013, 135, 9099.
doi: 10.1021/ja4035335 |
77 |
Huang L. ; Ao L. J. ; Hu D. H. ; Wang W. ; Sheng Z. H. ; Su W. Chem. Mater. 2016, 28 (16), 5896.
doi: 10.1021/acs.chemmater.6b02413 |
78 |
Yang Z. Z. ; Ding X. G. ; Jiang J. Nano Res. 2016, 9 (3), 787.
doi: 10.1007/s12274-015-0958-9 |
79 |
Zhou J. J. ; Wang P. ; Wang C. X. ; Goh Y. T. ; Fang Z. ; Messersmith P. B. ; Duan H. W. ACS Nano 2015, 9 (7), 6951.
doi: 10.1021/acsnano.5b01138 |
80 |
Xia Y.S. ; Nguyen T. D. ; Yang M. ; Lee B. ; Santos A. ; Podsiadlo P. ; Tang Z. Y. ; Glotzer S. C. ; Kotov N. A. Nat. Nanotechnol. 2011, 6, 580.
doi: 10.1038/NNANO.2011.121 |
81 |
Zhu H. ; Wang Y. ; Chen C. ; Ma M.R. ; Zeng J. F. ; Li S. Z. ; Xia Y. S. ; Gao M. Y. ACS Nano 2017, 11, 8273.
doi: 10.1021/acsnano.7b03369 |
82 |
Xia Y. S. ; Song L. ; Zhu C. Q. Anal. Chem. 2011, 83, 1401.
doi: 10.1021/ac1028825 |
83 |
Chen H. D. ; Xia Y. S. Anal. Chem. 2014, 86, 11062.
doi: 10.1021/ac5031804 |
84 |
Xu J. ; Yang W. M. ; Huang S. J. ; Yin H. ; Zhang H. ; Radjenovic P. ; Yang Z. L. ; Tian Z. Q. ; Li J. F. Nano Energy 2018, 49, 363.
doi: 10.1016/j.nanoen.2018.04.048 |
85 |
Maji S. K. ; Yu S. B. ; Chung K. ; Ramasamy M. S. ; Lim J. W. ; Wang J. F. ; Lee H. ; Kim D. H. ACS Appl. Mater. Interfaces 2018, 10, 42068.
doi: 10.1021/acsami.8b15443 |
86 |
Lou L. ; Yu K. ; Zhang Z. L. ; Huang R. ; Zhu J. Z. ; Wang Y. T. ; Zhu Z. Q. Nano Res. 2012, 5, 272.
doi: 10.1007/s12274-012-0207-4 |
87 |
Qu H. N. ; Yang L. R. ; Yu J. M. ; Wang L. ; Liu H. Z. Ind. Eng. Chem. Res. 2018, 57, 9448.
doi: 10.1021/acs.iecr.8b00894 |
88 |
Zhao Y. ; Huang Y. C. ; Zhu H. ; Zhu Q. Q. ; Xia Y. S. J. Am. Chem. Soc. 2016, 138, 16645.
doi: 10.1021/jacs.6b07590 |
89 |
Zhang L. B. ; Jean S. R. ; Li X. Y. ; Sack T. J. ; Wang Z. J. ; Ahmed S. ; Chan G. ; Das J. ; Zaragoza A. ; Sargent E. H. ; Kelley S. O. Nano Lett. 2018, 18, 6222.
doi: 10.1021/acs.nanolett.8b02263 |
90 |
Sun J. F. ; Zhang X. Y. ; Li T. ; Xie J. J. ; Shao B. ; Xue D. S. ; Tang X. ; Li H. ; Liu Y. H. Anal. Chem. 2019, 91, 6454.
doi: 10.1021/acs.analchem.8b04458 |
91 |
Sun M. Z. ; Hao T. T. ; Li X. Y. ; Qu A. H. ; Xu L. G. ; Hao C. L. ; Xu C. L. ; Kuang H. Nat. Commun. 2018, 9, 4494.
doi: 10.1038/s41467-018-06946-z |
92 |
Liu T. J. ; Besteiro L. V. ; Liedl T. ; Correa-Duarte M. A. ; Wang Z. M. ; Govorov A. O. Nano Lett. 2019, 19, 1395.
doi: 10.1021/acs.nanolett.8b05179 |
93 |
Hu L. ; Liedl T. ; Martens K. ; Wang Z. M. ; Govorov A. O. ACS Photonics 2019, 6, 749.
doi: 10.1021/acsphotonics.8b01676 |
94 |
Jiang Q. ; Liu Q. ; Shi Y. F. ; Wang Z. G. ; Zhan P. F. ; Liu J. B. ; Liu C. ; Wang H. ; Shi X.H. ; Zhang L. ; et al Nano Lett. 2017, 17, 7125.
doi: 10.1021/acs.nanolett.7b03946 |
95 |
Sun M. Z. ; Qu A. H. ; Hao C. L. ; Wu X. L. ; Xu L. G. ; Xu C. L. ; Kuang H. Adv. Mater. 2018, 30, 1804241.
doi: 10.1002/adma.201804241 |
96 |
Kim Y. K. ; Bang Y. B. ; Lee A. H. ; Song Y. K. ACS Nano 2019, 13, 1183.
doi: 10.1021/acsnano.8b06170 |
97 |
Ismaili H. ; Lagugne-Labarthet F. ; Workentin M. S. Chem. Mater. 2011, 23, 1519.
doi: 10.1021/cm103284g |
98 |
Cheng X. ; Sun R. ; Yin L. ; Chai Z. ; Shi H. ; Gao M. Adv. Mater. 2017, 29, 1604894.
doi: 10.1002/adma.201604894 |
99 |
Liu Y. ; Kou Q. ; Wang D. ; Chen L. ; Sun Y. ; Lu Z. ; Zhang Y. ; Wang Y. ; Yang J. ; Xing S. G. J. Mater. Sci. 2017, 52, 10163.
doi: 10.1007/s10853-017-1200-9 |
100 |
Chen Y. ; Wu T. ; Xing G. ; Kou Y. ; Li B. ; Wang X. ; Gao M. ; Chen L. ; Wang Y. ; Yang J. ; et al Ind. Eng. Chem. Res. 2019, 58 (33), 15151.
doi: 10.1021/acs.iecr.9b02777 |
101 |
Song J. B. ; Wu B. H. ; Zhou Z. J. ; Zhu G. Z. ; Liu Y. J. ; Yang Z. ; Lin L. ; Yu G. C. ; Zhang F. W. ; Zhang G. F. ; et al Angew. Chem. Int. Ed. 2017, 56, 8110.
doi: 10.1002/anie.201702572 |
102 |
Song J. B. ; Lin L. ; Yang Z. ; Zhu R. ; Zhou Z. J. ; Li Z. W. ; Wang F. ; Chen J. Y. ; Yang H. H. ; Chen X. Y. J. Am. Chem. Soc. 2019, 141, 8158.
doi: 10.1021/jacs.8b13902 |
103 |
Klein S. ; Stiegler L. M. S. ; Harreiss C. ; Distel L. V. R. ; Neuhuber W. ; Spiecker E. ; Hirsch A. ; Kryschi C. ACS Appl. Bio. Mater. 2018, 1, 2002.
doi: 10.1021/acsabm.8b00511 |
104 |
Klein S. ; Harreiß C. ; Menter C. ; Hümmer J. L. ; Distel L. V. R. ; Meyer K. ; Hock R. ; Kryschi C. ACS Appl. Mater. Interfaces 2018, 10, 17071.
doi: 10.1021/acsami.8b03660 |
105 |
Klein S. ; Smuda M. ; Harreiß C. ; Menter C. ; Distel L. V. R. ; Kryschi C. ACS Appl. Mater. Interfaces 2019, 11, 39613.
doi: 10.1021/acsami.9b13877 |
106 |
Cui J. B. ; Jiang R. ; Guo C. ; Bai X. L. ; Xu S. Y. ; Wang L. Y. J. Am. Chem. Soc. 2018, 140, 5890.
doi: 10.1021/jacs.8b00368 |
107 |
Huang Q. ; Zhang S. H. ; Zhang H. ; Han Y. B. ; Liu H. H. ; Ren F. ; Sun Q. ; Li Z. ; Gao M. Y. ACS Nano 2019, 13, 1342.
doi: 10.1021/acsnano.8b06795 |
108 |
Li S. N. ; Zhang L. Y. ; Chen X. J. ; Wang T. T. ; Zhao Y. ; Li L. ; Wang C. G. ACS Appl. Mater. Interfaces 2018, 10, 24137.
doi: 10.1021/acsami.8b06527 |
109 |
Chen Y. W. ; Su Y. L. ; Hu S. H. ; Chen S. Y. Adv. Drug Delivery Rev. 2016, 105, 190.
doi: 10.1016/j.addr.2016.05.022 |
110 |
Younis M. R. ; Wang C. ; An R. B. ; Wang S. J. ; Younis M. A. ; Li Z. Q. ; Wang Y. ; Ihsan A. ; Ye D. J. ; Xia X. H. ACS Nano 2019, 13, 2544.
doi: 10.1021/acsnano.8b09552 |
111 |
Tang W. T. ; Dong Z. L. ; Zhang R. ; Yi X. ; Yang K. ; Jin M. L. ; Yuan C. ; Xiao Z. D. ; Liu Z. ; Cheng L. ACS Nano 2019, 13, 284.
doi: 10.1021/acsnano.8b05982 |
112 |
Liu C. H. ; Dong H. F. ; Wu N. Q. ; Cao Y. ; Zhang X. J. ACS Appl. Mater. Interfaces 2018, 10, 6991.
doi: 10.1021/acsami.8b00112 |
113 |
Chang Y. ; Cheng Y. ; Feng Y. L. ; Jian H. ; Wang L. ; Ma X. M. ; Li X. ; Zhang H. Y. Nano Lett. 2018, 18, 886.
doi: 10.1021/acs.nanolett.7b04162 |
114 |
Wang L. ; Chang Y. ; Feng Y. L. ; Li X. ; Cheng Y. ; Jian H. ; Ma X. M. ; Zheng R. X. ; Wu X. Q. ; Xu K. Q. ; Zhang H. Y. Nano Lett. 2019, 19, 6800.
doi: 10.1021/acs.nanolett.9b01869 |
115 |
Jokerst J. V. ; Lobovkina T. ; Zare R. N. ; Gambhir S. S. Nanomedicine 2011, 6 (4), 715.
doi: 10.2217/nnm.11.19 |
116 |
Fang R. H. ; Hu C. M. J. ; Luk B. T. ; Gao W. W. ; Copp J. A. ; Tai Y. Y. ; O'Connor D. E. ; Zhang L. F. Nano Lett. 2014, 14 (4), 2181.
doi: 10.1021/nl500618u |
117 |
Toy R. ; Roy K. Bioeng. Transl. Med. 2016, 1, 47.
doi: 10.1002/btm2.10005 |
118 |
Yang R. ; Xu J. ; Xu L. G. ; Sun X. Q. ; Chen Q. ; Zhao Y. H. ; Peng R. ; Liu Z. ACS Nano 2018, 12, 5121.
doi: 10.1021/acsnano.7b09041 |
119 |
Zhang Z. Q. ; Kim Y. M. ; Song S. C. ACS Appl. Mater. Interfaces 2019, 11, 34634.
doi: 10.1021/acsami.9b10182 |
120 |
Zimmermann M. ; Zimmermann-Kogadeeva M. ; Wegmann R. ; Goodman A. L. Nature 2019, 570, 462.
doi: 10.1038/s41586-019-1291-3 |
121 |
Ali M. R. K. ; Rahman M. A. ; Wu Y. ; Han T. G. ; Peng X. H. ; Mackey M. A. ; Wang D. S. ; Shin H. J. ; Chen Z. G. ; Xiao H. P. ; et al Proc. Natl. Acad. Sci. 2017, 114 (15), E3110.
doi: 10.1073/pnas.1619302114 |
122 |
Wang X. D. ; Guo L. R. ; Zhang S. H. ; Chen Y. ; Chen Y. T. ; Zheng B. B. ; Sun J. W. ; Qian Y. Y. ; Chen Y. X. ; Yan B. F. ; et al ACS Nano 2019, 13, 5720.
doi: 10.1021/acsnano.9b01154 |
[1] | YANG Xiao-Qin, LIU Xue-Jing, LIU Hai-Xiong, YUE Xiao-Ming, CAO Jing-Pei, ZHOU Min. Synergy Effect in Co-Gasification of Lignite and Char of Pine Sawdust [J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1794-1800. |
[2] | DAI Gao-Peng, LIU Su-Qin, PENG Rong, LUO Tian-Xiong. Fabrication of Bi2O3/Bi2O3 Nanotube Arrays with High Visible-Light Photocatalytic Activity by Impregnation-Decomposition Method [J]. Acta Phys. -Chim. Sin., 2012, 28(09): 2169-2174. |
[3] | YOU Hui; ZHAO Bo; WANG Zheng-Wu. Mesoscopic Simulation on Phase Behavior of Sodium Polyoxyethylene Fatty Alcohol Sulfate in Aqueous Solution [J]. Acta Phys. -Chim. Sin., 2009, 25(01): 67-73. |
[4] | Zhang Xin;Wan Hui-Lin;Weng Wei-Zheng;Yi Xiao-Dong. The Effect of MoO3 in Ag-Mo-P-O Catalysts on Oxidative Dehydrogenation of Propane [J]. Acta Phys. -Chim. Sin., 2002, 18(10): 878-883. |
[5] | Xiong Guo-Xing, Xia Xin-Rui, Chen Heng-Rong, Guo Xie-Xian. Synergetic Effect between NaCl and B2O3 in Modified FeOχ Catalysts [J]. Acta Phys. -Chim. Sin., 1994, 10(11): 971-977. |
|