Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (9): 2001041.doi: 10.3866/PKU.WHXB202001041
Special Issue: Precise Nanosynthesis
• Perspective • Previous Articles Next Articles
Yuan Zhou, Na Han(), Yanguang Li()
Received:
2020-01-19
Accepted:
2020-03-09
Published:
2020-03-16
Contact:
Na Han,Yanguang Li
E-mail:hanna@suda.edu.cn;yanguang@suda.edu.cn
Supported by:
Yuan Zhou, Na Han, Yanguang Li. Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction[J]. Acta Physico-Chimica Sinica 2020, 36(9), 2001041. doi: 10.3866/PKU.WHXB202001041
Fig 2
(a–c) TEM images of Pd nanoparticles with different sizes, (d) their corresponding potential-dependent CO Faradaic efficiency and (e) CO partial current density; (f–h) TEM images of Pd nanoparticles with different sizes, (i) dependence of formate Faradaic efficiency on the particle size under various working potentials (a–e) Adapted from ACS Publications publisher 37. (f–i) Adapted from Wiley publisher 38."
Fig 3
(a) Schematic illustration showing Pd nanocrystals with different facets for CO2 reduction to formate; (b) adsorption energy of *CO on different facets of Pd nanocrystals; (c–f) TEM images of Pd nanocrystals with different morphologies; (g) Faradic efficiency for CO and H2 on Pd cubes and Pd octahedra; (h) CO Faradic efficiency on Pd octahedra and Pd icosahedra (a, b) Adapted from ACS Publications publisher 40. (c, d, g) Adapted from Wiley publisher 41. (e, f, h) Adapted from Wiley publisher 42."
Fig 5
(a–f) TEM images of different Pd-Au core-shell nanostructures: (a, d) Pd@Pd7Au3, (b, e) Pd@Pd3Au7, (c, f) Pd@Pd1Au9; (g) CO Faradaic efficiency on different Pd-Au core-shell nanostructures; (h–k) TEM images of different Pd-Au alloy nanoparticles: (h) Au60Pd40, (i) Au75Pd25, (j) Au84Pd16, (k) Au94Pd6; (l) CO Faradaic efficiency and (m) CO partial current density on different Pd-Au alloy nanoparticles (a–g) Adapted from ACS Publications publisher 50. (h–m) Adapted from Royal Society of Chemistry publisher 51."
1 |
Reichstein M. ; Bahn M. ; Ciais P. ; Frank D. ; Mahecha M. D. ; Seneviratne S. I. ; Zscheischler J. ; Beer C. ; Buchmann N. ; Frank D. C. Nature 2013, 500, 287.
doi: 10.1038/nature12350 |
2 |
Creutzig F. ; Agoston P. ; Minx J. C. ; Canadell J. G. ; Andrew R. M. ; Le Quéré C. ; Peters G. P. ; Sharifi A. ; Yamagata Y. ; Dhakal S. Nat. Clim. Change 2016, 6, 1054.
doi: 10.1038/nclimate3169 |
3 |
Davis S. J. ; Caldeira K. Proc. Natl. Acad. Sci. 2010, 107, 5687.
doi: 10.1073/pnas.0906974107 |
4 |
Qiao J. ; Liu Y. ; Hong F. ; Zhang J. Chem. Soc. Rev. 2014, 43, 631.
doi: 10.1039/c3cs60323g |
5 | Yang Y. ; Zhang Y. ; Hu J. ; Wan L. Acta Phys. -Chim. Sin. 2019, 36, 1906085. |
杨艳; 张云; 胡劲松; 万立骏. 物理化学学报, 2019, 36, 1906085.
doi: 10.3866/PKU.WHXB201906085 |
|
6 |
Mac Dowell N. ; Fennell P. S. ; Shah N. ; Maitland G. C. Nat. Clim. Change 2017, 7, 243.
doi: 10.1038/nclimate3231 |
7 |
Keith D. W. Science 2009, 325, 1654.
doi: 10.1126/science.1175680 |
8 |
Haas T. ; Krause R. ; Weber R. ; Demler M. ; Schmid G. Nat. Catal. 2018, 1, 32.
doi: 10.1038/s41929-017-0005-1 |
9 |
Whipple D. T. ; Kenis P. J. J. Phys. Chem. C 2010, 1, 3451.
doi: 10.1021/jz1012627 |
10 | Bai X. ; Chen W. ; Wang B. ; Feng G. ; Wei W. ; Jiao Z. ; Sun Y. Acta Phys. -Chim. Sin. 2017, 33, 2388. |
白晓芳; 陈为; 王白银; 冯光辉; 魏伟; 焦正; 孙予罕. 物理化学学报, 2017, 33, 2388.
doi: 10.3866/PKU.WHXB201706131 |
|
11 |
Costentin C. ; Robert M. ; Savéant J. M. Chem. Soc. Rev. 2013, 42, 2423.
doi: 10.1039/c2cs35360a |
12 |
Wu J. ; Huang Y. ; Ye W. ; Li Y. Adv. Sci. 2017, 4, 1700194.
doi: 10.1002/advs.201700194 |
13 |
Han N. ; Ding P. ; He L. ; Li Y. ; Li Y. Adv. Energy Mater. 2019, 1902338.
doi: 10.1002/aenm.201902338 |
14 |
Kortlever R. ; Shen J. ; Schouten K. J. P. ; Calle-Vallejo F. ; Koper M. T. J. Phys. Chem. Lett. 2015, 6, 4073.
doi: 10.1021/acs.jpclett.5b01559 |
15 |
Benson E. E. ; Kubiak C. P. ; Sathrum A. J. ; Smieja J. M. Chem. Soc. Rev. 2009, 38, 89.
doi: 10.1039/B804323J |
16 |
Zhu D. D. ; Liu J. L. ; Qiao S. Z. Adv. Mater. 2016, 28, 3423.
doi: 10.1002/adma.201504766 |
17 |
Zhang Y. ; Sethuraman V. ; Michalsky R. ; Peterson A. A. ACS Catal. 2014, 4, 3742.
doi: 10.1021/cs5012298 |
18 | Hori, Y. Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry; Springer: New York, 2008; p. 89. |
19 |
Hori Y. ; Wakebe H. ; Tsukamoto T. ; Koga O. Electrochim. Acta 1994, 39, 1833.
doi: 10.1016/0013-4686(94)85172-7 |
20 |
Yang H. ; Han N. ; Deng J. ; Wu J. ; Wang Y. ; Hu Y. ; Ding P. ; Li Y. ; Li Y. ; Lu J. Adv. Energy Mater. 2018, 8, 1801536.
doi: 10.1002/aenm.201801536 |
21 |
Jia L. ; Yang H. ; Deng J. ; Chen J. ; Zhou Y. ; Ding P. ; Li L. ; Han N. ; Li Y. Chinese J. Chem. 2019, 37, 497.
doi: 10.1002/cjoc.201900010 |
22 |
Han N. ; Wang Y. ; Yang H. ; Deng J. ; Wu J. ; Li Y. ; Li Y. Nat. Commun. 2018, 9, 1320.
doi: 10.1038/s41467-018-03712-z |
23 |
Han N. ; Wang Y. ; Deng J. ; Zhou J. ; Wu Y. ; Yang H. ; Ding P. ; Li Y. J. Mater. Chem. A 2019, 7, 1267.
doi: 10.1039/c8ta10959a |
24 |
Gong Q. ; Ding P. ; Xu M. ; Zhu X. ; Wang M. ; Deng J. ; Ma Q. ; Han N. ; Zhu Y. ; Lu J. Nat. Commun. 2019, 10, 2807.
doi: 10.1038/s41467-019-10819-4 |
25 |
Ding P. ; Hu Y. ; Deng J. ; Chen J. ; Zha C. ; Yang H. ; Han N. ; Gong Q. ; Li L. ; Wang T. Mater. Today Chem. 2019, 11, 80.
doi: 10.1016/j.mtchem.2018.10.009 |
26 |
Yang H. ; Huang Y. ; Deng J. ; Wu Y. ; Han N. ; Zha C. ; Li L. ; Li Y. J. Energy Chem. 2019, 37, 93.
doi: 10.1016/j.jechem.2018.12.004 |
27 |
Jouny M. ; Luc W. ; Jiao F. Ind. Eng. Chem. Res. 2018, 57, 2165.
doi: 10.1021/acs.iecr.7b03514 |
28 |
Zhang H. ; Jin M. ; Xiong Y. ; Lim B. ; Xia Y. Acc. Chem. Res. 2012, 46, 1783.
doi: 10.1021/ar300209w |
29 |
Chen A. ; Ostrom C. Chem. Rev. 2015, 115, 11999.
doi: 10.1021/acs.chemrev.5b00324 |
30 |
Gao D. ; Zhou H. ; Cai F. ; Wang D. ; Hu Y. ; Jiang B. ; Cai W. B. ; Chen X. ; Si R. ; Yang F. Nano Res. 2017, 10, 2181.
doi: 10.1007/s12274-017-1514-6 |
31 |
Sheng W. ; Kattel S. ; Yao S. ; Yan B. ; Liang Z. ; Hawxhurst C. J. ; Wu Q. ; Chen J. G. Energy Environ. Sci. 2017, 10, 1180.
doi: 10.1039/c7ee00071e |
32 |
Ohkawa K. ; Hashimoto K. ; Fujishima A. ; Noguchi Y. ; Nakayama S. J. Electroanal. Chem. 1993, 345, 445.
doi: 10.1016/0022-0728(93)80495-4 |
33 |
Stalder C. J. ; Chao S. ; Wrighton M. S. J. Am. Chem. Soc. 1984, 106, 3673.
doi: 10.1021/ja00324a046 |
34 |
Han N. ; Wang Y. ; Ma L. ; Wen J. ; Li J. ; Zheng H. ; Nie K. ; Wang X. ; Zhao F. ; Li Y. ; et al Chem 2017, 3, 652.
doi: 10.1016/j.chempr.2017.08.002 |
35 |
Zheng T. ; Jiang K. ; Wang H. Adv. Mater. 2018, 30, 1802066.
doi: 10.1002/adma.201802066 |
36 |
Koper M. T. Nanoscale 2011, 3, 2054.
doi: 10.1039/C0NR00857E |
37 |
Gao D. ; Zhou H. ; Wang J. ; Miao S. ; Yang F. ; Wang G. ; Wang J. ; Bao X. J. Am. Chem. Soc. 2015, 137, 4288.
doi: 10.1021/jacs.5b00046 |
38 |
Rahaman M. ; Dutta A. ; Broekmann P. ChemSusChem 2017, 10, 1733.
doi: 10.1002/cssc.201601778 |
39 |
Porter N. S. ; Wu H. ; Quan Z. ; Fang J. Acc. Chem. Res. 2013, 46, 1867.
doi: 10.1021/ar3002238 |
40 |
Klinkova A. ; De Luna P. ; Dinh C. T. ; Voznyy O. ; Larin E. M. ; Kumacheva E. ; Sargent E. H. ACS Catal. 2016, 6, 8115.
doi: 10.1021/acscatal.6b01719 |
41 |
Zhu W. ; Kattel S. ; Jiao F. ; Chen J. G. Adv. Energy Mater. 2019, 9, 1802840.
doi: 10.1002/aenm.201802840 |
42 |
Huang H. ; Jia H. ; Liu Z. ; Gao P. ; Zhao J. ; Luo Z. ; Yang J. ; Zeng J. Angew. Chem. Int. Ed. 2017, 56, 3594.
doi: 10.1002/anie.201612617 |
43 |
Wang Y. ; Cao L. ; Libretto N. J. ; Li X. ; Li C. ; Wan Y. ; He C. ; Lee J. ; Gregg J. ; Zong H. J. Am. Chem. Soc. 2019, 141, 16635.
doi: 10.1021/jacs.9b05766 |
44 |
Lu L. ; Sun X. ; Ma J. ; Yang D. ; Wu H. ; Zhang B. ; Zhang J. ; Han B. Angew. Chem. Int. Ed. 2018, 57, 14149.
doi: 10.1002/anie.201808964 |
45 |
Zhu W. ; Zhang L. ; Yang P. ; Chang X. ; Dong H. ; Li A. ; Hu C. ; Huang Z. ; Zhao Z. J. ; Gong J. Small 2018, 14, 1703314.
doi: 10.1002/smll.201703314 |
46 |
Bai X. ; Chen W. ; Zhao C. ; Li S. ; Song Y. ; Ge R. ; Wei W. ; Sun Y. Angew. Chem. Int. Ed. 2017, 56, 12219.
doi: 10.1002/anie.201707098 |
47 |
Yin Z. ; Gao D. ; Yao S. ; Zhao B. ; Cai F. ; Lin L. ; Tang P. ; Zhai P. ; Wang G. ; Ma D. Nano Energy 2016, 27, 35.
doi: 10.1016/j.nanoen.2016.06.035 |
48 |
Kang Y. ; Snyder J. ; Chi M. ; Li D. ; More K. L. ; Markovic N. M. ; Stamenkovic V. R. Nano Lett. 2014, 14, 6361.
doi: 10.1021/nl5028205 |
49 |
Jiang R. ; Tung S. ; Tang Z. ; Li L. ; Ding L. ; Xi X. ; Liu Y. ; Zhang L. ; Zhang J. Energy Storage Mater. 2018, 12, 260.
doi: 10.1016/j.ensm.2017.11.005 |
50 |
Yuan X. ; Zhang L. ; Li L. ; Dong H. ; Chen S. ; Zhu W. ; Hu C. ; Deng W. ; Zhao Z. J. ; Gong J. J. Am. Chem. Soc. 2019, 141, 4791.
doi: 10.1021/jacs.8b11771 |
51 |
Zhu S. ; Qin X. ; Wang Q. ; Li T. ; Tao R. ; Gu M. ; Shao M. J. Mater. Chem. A 2019.
doi: 10.1039/c9ta05325e |
52 |
Hou Y. ; Erni R. ; Widmer R. ; Rahaman M. ; Guo H. ; Fasel R. ; Moreno-García P. ; Zhang Y. ; Broekmann P. ChemElectroChem 2019, 6, 3189.
doi: 10.1002/celc.201900752 |
53 |
Wang J. ; Kattel S. ; Hawxhurst C. J. ; Lee J. H. ; Tackett B. M. ; Chang K. ; Rui N. ; Liu C. J. ; Chen J. G. Angew. Chem. Int. Ed. 2015, 58, 6271.
doi: 10.1002/anie.201900781 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[3] | Yucui Hou, Zhuosen He, Shuhang Ren, Weize Wu. Catalytic Oxidation of Biomass to Formic Acid under O2 with Homogeneous Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212065-0. |
[4] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[5] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[6] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[7] | Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211025-0. |
[8] | Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2301023-0. |
[9] | Yifei Xu, Hanwen Yang, Xiaoxia Chang, Bingjun Xu. Introduction to Electrocatalytic Kinetics [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2210025-0. |
[10] | Ruifang Wei, Dongfeng Li, Heng Yin, Xiuli Wang, Can Li. Operando Electrochemical UV-Vis Absorption Spectroscopy with Microsecond Time Resolution [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207035-0. |
[11] | Tianran Wei, Shusheng Zhang, Qian Liu, Yuan Qiu, Jun Luo, Xijun Liu. Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207026-0. |
[12] | Jingxue Li, Yue Yu, Siran Xu, Wenfu Yan, Shichun Mu, Jia-Nan Zhang. Function of Electron Spin Effect in Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302049-. |
[13] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[14] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[15] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
|