Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (3): 2002017.doi: 10.3866/PKU.WHXB202002017
• ARTICLE • Previous Articles Next Articles
Ying Liu1,2, Xiaofang Liu1, Lin Xia1, Chaojie Huang1,2, Zhaoxuan Wu1, Hui Wang1,2,*(), Yuhan Sun1,2,3,*()
Received:
2020-02-17
Accepted:
2020-03-27
Published:
2020-03-31
Contact:
Hui Wang,Yuhan Sun
E-mail:wanghh@sari.ac.cn;sunyh@sari.ac.cn
About author:
Email: sunyh@sari.ac.cn (Y.S.); +86-21-20325009 (Y.S.)Supported by:
Ying Liu, Xiaofang Liu, Lin Xia, Chaojie Huang, Zhaoxuan Wu, Hui Wang, Yuhan Sun. Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture[J]. Acta Phys. -Chim. Sin. 2022, 38(3), 2002017. doi: 10.3866/PKU.WHXB202002017
"
Catalyst | Binding energy (eV) | Atomic fraction (%) | |||
Cu2+ | Cu+ + Cu0 | Cu2+ | Cu+ + Cu0 | ||
CHT-CZA | 936.61 | 934.13 | 77.15 | 22.85 | |
CHT-CO-0% | 936.13 | 933.93 | 77.04 | 22.97 | |
CHT-CO-50% | 936.44 | 933.77 | 76.49 | 23.51 | |
CHT-CO-85% | 936.36 | 933.59 | 73.79 | 26.21 | |
CNP-CZA | 936.95 | 933.75 | 76.04 | 23.96 | |
CNP-CO-0% | 936.82 | 933.87 | 74.70 | 24.34 | |
CNP-CO-50% | 936.63 | 933.82 | 70.80 | 29.20 | |
CNP-CO-85% | 936.43 | 933.81 | 68.72 | 31.28 |
1 |
Song C. S. Catal. Today 2017, 115, 2.
doi: 10.1016/j.cattod.2006.02.029 |
2 |
Aas N. ; Li Y. X. ; Bowker M. Phys. Condes. Matter 1991, 3, S281.
doi: 10.1088/0953-8984/3/S/044 |
3 |
Choi E. J. ; Lee Y. H. ; Lee D. W. ; Moon D. J. ; Lee K. Y. Mol. Catal. 2017, 434, 146.
doi: 10.1016/j.mcat.2017.02.005 |
4 |
Ortelli E. E. ; Wambach J. ; Wokaun A. Appl. Catal. A: Gen. 2001, 216, 227.
doi: 10.1016/s0926-860x(01)00569-5 |
5 |
Liu X. M. ; Lu G. Q. Ind. Eng. Chem. Res. 2003, 42, 6518.
doi: 10.1021/ie020979s |
6 |
Ol ah ; G A. Appl. Catal. A: Gen. 2005, 44, 2636.
doi: 10.1002/anie.200462121 |
7 |
Melián-Cabrera I. ; Granados M. L. ; Fierro J. L. G. Catal. Lett. 2002, 79, 165.
doi: 10.1023/A:1015316610657 |
8 |
Jadhav S. G. ; Vaidya P. D. ; Bhanage B. M. ; Joshi J. B. Chem. Eng. Res. Des. 2014, 92, 2557.
doi: 10.1016/j.cherd.2014.03.005 |
9 |
Gao P. ; Li F. ; Xiao F. K. ; Zhao N. ; Sun N. N. ; Wei W. ; Zhong L. S. ; Sun Y. H. Catal. Sci. Technol. 2012, 2, 1447.
doi: 10.1039/C2CY00481J |
10 |
Alejandre A. ; Medina F. ; Rodriguez X. ; Salagre P. ; Sueiras J. E. J. Catal. 1999, 188, 311.
doi: 10.1006/jcat.1999.2625 |
11 |
Bhattacharyya A. ; Chang V. W. ; Schumacher D. J. Appl. Clay Sci. 1998, 13, 317.
doi: 10.1016/S0169-1317(98)00030-1 |
12 |
Cavani F. ; Trifiro F. ; Vaccari A. Catal. Today 1991, 11, 173.
doi: 10.1016/0920-5861(91)80068-K |
13 |
Climent M. J. ; Corma A. ; Iborra S. ; Primo J. J. Catal. 1995, 151, 60.
doi: 10.1006/jcat.1995.1008 |
14 |
Constantino V. R. L. ; Pinnavaia T. J. Inorg. Chem. 1995, 34, 883.
doi: 10.1021/ic00108a020 |
15 |
Corma A. ; Fornes V. ; Martinaranda R. M. ; Rey F. J. Catal. 1992, 134, 58.
doi: 10.1016/0021-9517(92)90209-Z |
16 |
Fornasari G. ; Gazzano M. ; Matteuzzi D. ; Trifiro F. Appl. Clay Sci. 1995, 10, 69.
doi: 10.1016/0169-1317(95)00022-V |
17 | Gao P. ; Li F. ; Zhao N. ; Wang H. ; Wei W. ; Sun Y. H. Acta Phys. -Chim. Sin. 2014, 30, 1155. |
高鹏; 李枫; 赵宁; 王慧; 魏伟; 孙予罕; 物理化学学报, 2014, 30, 1155.
doi: 10.3866/PKU.WHXB201401252 |
|
18 |
Gao P. ; Li F. ; Xiao F. K. ; Zhao N. ; Wei W. ; Zhong L. S. ; Sun Y. H. Catal. Today 2012, 194, 9.
doi: 10.1016/j.cattod.2012.06.012 |
19 |
Gao P. ; Li F. ; Zhan H. J. ; Zhao N. ; Xiao F. K. ; Wei W. ; Zhong L. S. ; Wang H. ; Sun Y. H. J. Catal. 2013, 298, 51.
doi: 10.1016/j.jcat.2012.10.030 |
20 |
Gao P. ; Li F. ; Zhan H. J. ; Zhao N. ; Xiao F. K. ; Wei W. ; Zhong L. S. ; Sun Y. H. Catal. Commun. 2014, 50, 78.
doi: 10.1016/j.catcom.2014.03.006 |
21 |
Gao P. ; Li F. ; Zhao N. ; Xiao F. K. ; Wei W. ; Zhong L. S. ; Sun Y. H. Appl. Catal. A: Gen. 2013, 468, 442.
doi: 10.1016/j.apcata.2013.09.026 |
22 |
Gao P. ; Zhong L. S. ; Zhang L. N. ; Wang H. ; Zhao N. ; Wei W. ; Sun Y. H. Catal. Sci. Technol. 2015, 5, 4365.
doi: 10.1039/C5CY00372E |
23 |
Sahibzada M. ; Metcalfe I. S. ; Chadwick D. J. Catal. 1998, 174, 111.
doi: 10.1006/jcat.1998.1964 |
24 |
Lee J. S. ; Lee K. H. ; Lee S. Y. J. Catal. 1993, 144, 414.
doi: 10.1006/jcat.1993.1342 |
25 |
Yuan Z. ; Wang L. ; Wang J. ; Xia S. ; Chen P. ; Hou Z. ; Zheng X. Appl. Catal. B: Environ. 2011, 101, 431.
doi: 10.1016/j.apcatb.2010.10.013 |
26 |
Evans J. W. ; Wainwright M. S. ; Bridgewater A. J. ; Young D. J. Appl. Catal. 1983, 7, 75.
doi: 10.1016/0166-9834(83)80239-5 |
27 |
Cheng J. ; Wang X. ; Yu J. ; Hao Z. ; Xu Z. P. J. Phys. Chem. C 2011, 115, 6651.
doi: 10.1021/jp112031e |
28 |
Xiao S. ; Zhang Y. F. ; Gao P. ; Zhong L. S. ; Li X. P. ; Zhang Z. Z. ; Wang H. ; Wei W. ; Sun Y. H. Catal. Today 2017, 281, 327.
doi: 10.1016/j.cattod.2016.02.004 |
29 | Liao P. Y. ; Zhang C. ; Zhang L. J. ; Yang Y. Z. ; Zhong L. S. ; Guo X. Y. ; Wang H. ; Sun Y. H. Acta Phys. -Chim. Sin. 2017, 33, 1672. |
廖珮懿; 张辰; 张丽君; 杨彦章; 钟良枢; 郭晓亚; 王慧; 孙予罕; 物理化学学报, 2017, 33, 1672.
doi: 10.3866/PKU.WHXB201704143 |
|
30 |
Velu S. ; Sabde D. P. ; Shah N. ; Sivasanker S. Chem. Mater. 1998, 10, 3451.
doi: 10.1021/cm980185x |
31 |
Zhang C. ; Yang H. Y. ; Gao P. ; Zhu H. ; Zhong L. S. ; Wang H. ; Wei W. ; Sun Y. H. J. CO2 Util. 2017, 17, 263.
doi: 10.1016/j.jcou.2016.11.015 |
32 |
Guo X. ; Mao D. ; Lu G. ; Wang S. ; Wu G. J. Catal. 2010, 271, 178.
doi: 10.1016/j.jcat.2010.01.009 |
33 |
Zhang L. H. ; Li F. ; Evans D. G. ; Duan X. Mater. Chem. Phys. 2004, 87, 402.
doi: 10.1016/j.matchemphys.2004.06.010 |
34 |
Kuhl S. ; Tarasov A. ; Zander S. ; Kasatkin I. ; Behrens M. Chem. Eur. J. 2014, 20, 3782.
doi: 10.1002/chem.201302599 |
35 |
Wu G. D. ; Wang X. L. ; Wei W. ; Sun Y. H. Appl. Catal. A: Gen. 2010, 377, 107.
doi: 10.1016/j.apcata.2010.01.023 |
36 |
Di Cosimo J. I. ; Diez V. K. ; Xu M. ; Iglesia E. ; Apesteguia C. R. J. Catal. 1998, 178, 499.
doi: 10.1006/jcat.1998.2161 |
37 |
Klier K. ; Chatikavanij V. ; Herman R. G. ; Simmons G. W. J. Catal. 1982, 74, 343.
doi: 10.1016/0021-9517(82)90040-9 |
38 |
Burch R. ; Golunski S. E. ; Spencer M. S. Catal. Lett. 1990, 5, 55.
doi: 10.1007/BF00772093 |
39 |
Fujitani T. ; Saito M. ; Kanai Y. ; Kakumoto T. ; Watanabe T. ; Nakamura J. ; Uchijima T. Catal. Lett. 1994, 25, 271.
doi: 10.1007/BF00816307 |
40 |
Yang C. ; Ma Z.Y. ; Zhao N. ; Wei W. ; Hu T. D. ; Sun Y. H. Catal. Today 2006, 115, 222.
doi: 10.1016/j.cattod.2006.02.077 |
41 |
Chinchen G. C. ; Denny P. J. ; Parker D. G. ; Spencer M. S. ; Whan D. A. Appl. Catal. 1987, 30, 333.
doi: 10.1016/S0166-9834(00)84123-8 |
42 |
Chinchen G. C. ; Waugh K. C. J. Catal. 1986, 97, 280.
doi: 10.1016/0021-9517(86)90063-1 |
43 |
Chinchen G. C. ; Waugh K. C. ; Whan D. A. Appl. Catal. 1986, 25, 101.
doi: 10.1016/S0166-9834(00)81226-9 |
44 |
Sun J. T. ; Metcalfe I. S. ; Sahibzada M. Ind. Eng. Chem. Res. 1999, 38, 3868.
doi: 10.1021/ie990078s |
[1] | Yanqiu Wang, Zixin Zhong, Tangkang Liu, Guoliang Liu, Xinlin Hong. Cu@UiO-66 Derived Cu+-ZrO2 Interfacial Sites for Efficient CO2 Hydrogenation to Methanol [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2007089-. |
[2] | Congming Li, Kuo Chen, Xiaoyue Wang, Nan Xue, Hengquan Yang. Understanding the Role of Cu/ZnO Interaction in CO2 Hydrogenation to Methanol [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2009101-. |
[3] | Yazhi YIN,Bing HU,Guoliang LIU,Xiaohai ZHOU,Xinlin HONG. ZnO@ZIF-8 Core-Shell Structure as Host for Highly Selective and Stable Pd/ZnO Catalysts for Hydrogenation of CO2 to Methanol [J]. Acta Phys. -Chim. Sin., 2019, 35(3): 327-336. |
[4] | Yunnan GAO,Shizhen LIU,Zhenqing ZHAO,Hengcong TAO,Zhenyu SUN. Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products [J]. Acta Phys. -Chim. Sin., 2018, 34(8): 858-872. |
[5] | Tian LIU,Jun LI,Weijia LIU,Yudan ZHU,Xiaohua LU. Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation: Trans Influence of Boryl Ligands and Nature of Ru―H Bond [J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1097-1105. |
[6] | WANG Ruo-Xi, ZHANG Dong-Ju, LIU Cheng-Bu. Theoretical Study of Adsorption of Chlorinated Phenol Pollutants on Co-Doped Boron Nitride Nanotubes [J]. Acta Phys. -Chim. Sin., 2015, 31(5): 877-884. |
[7] | GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-Han . Preparation of Cu/Zn/Al/(Zr)/(Y) Catalysts from Hydrotalcite-Like Precursors and Their Catalytic Performance for the Hydrogenation of CO2 to Methanol [J]. Acta Phys. -Chim. Sin., 2014, 30(6): 1155-1162. |
[8] | WANG Guan-Nan, CHEN Li-Min, GUO Yuan-Yuan, FU Ming-Li, WU Jun-Liang, HUANG Bi-Chun, YE Dai-Qi. Effect of Chromium Doping on the Catalytic Behavior of Cu/ZrO2/CNTs-NH2 for the Synthesis of Methanol from Carbon Dioxide Hydrogenation [J]. Acta Phys. -Chim. Sin., 2014, 30(5): 923-931. |
[9] | HAO Ai-Xiang, YU Yang, CHEN Hai-Bo, MAO Chun-Peng, WEI Shi-Xin, YIN Yu-Sheng. Effect of Surface Promoters-Modifying on Catalytic Performance of Cu/ZnO/Al2O3 Methanol Synthesis Catalyst [J]. Acta Phys. -Chim. Sin., 2013, 29(09): 2047-2055. |
[10] | GUO Xiao-Ming, MAO Dong-Sen, LU Guan-Zhong, WANG Song. Preparation of CuO-ZnO-ZrO2 by Citric Acid Combustion Method and Its Catalytic Property for Methanol Synthesis from CO2 Hydrogenation [J]. Acta Phys. -Chim. Sin., 2012, 28(01): 170-176. |
[11] | WANG Bai-Qi; XIA Chun-Hui; FU Qiang; WANG Peng-Wei; SHAN Xu-Dong; YU Da-Peng. Hydrothermal Preparation and Photoluminescence Property of Co-Doped ZnO Nanorods [J]. Acta Phys. -Chim. Sin., 2008, 24(07): 1165-1168. |
[12] | XU Hui-Yuan; CHU Wei; CI Zhi-Min. Effect of Glow Discharge Plasma on Copper-based Catalysts for Methanol Synthesis [J]. Acta Phys. -Chim. Sin., 2007, 23(07): 1042-1046. |
[13] | JIA Yu-Xiang; GUO Xiang-Yun. Monte Carlo Simulation of Adsorption Process of CO and H2 in Supercritical Fluids [J]. Acta Phys. -Chim. Sin., 2005, 21(03): 306-309. |
[14] | Wang Jin;Chen Hong-Bo;Yun Hong;Lin Jing-Dong;Yi Jun;Zhang Hong-Bin;Liao Dai-Wei. Study on Rh-ZnO/MWNTs Catalyst for Methanol Synthesis [J]. Acta Phys. -Chim. Sin., 2003, 19(01): 65-69. |
[15] | Wu Gui-Sheng, Ren Jie, Sun Yu-Han. The Effect of Calcination Temperature on The Performance of Cu/ZrO2 and Cu-La2O3/ZrO2 [J]. Acta Phys. -Chim. Sin., 1999, 15(06): 564-567. |
|