Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (12): 2007075.doi: 10.3866/PKU.WHXB202007075
• REVIEW • Previous Articles Next Articles
Yao Chen1, Haoyang Dong1, Yuanyuan Li2,*(), Jinping Liu1,*()
Received:
2020-07-26
Accepted:
2020-08-18
Published:
2020-08-24
Contact:
Yuanyuan Li,Jinping Liu
E-mail:liyynano@hust.edu.cn;liujp@whut.edu.cn
About author:
Email: liujp@whut.edu.cn (J.L.)Supported by:
Yao Chen, Haoyang Dong, Yuanyuan Li, Jinping Liu. Recent Advances in 3D Array Anode Materials for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin. 2021, 37(12), 2007075. doi: 10.3866/PKU.WHXB202007075
Fig 2
(a) Schematic illustration of the preparation process and reaction mechanism of Bi/Ni 30; (b) SEM image of Bi/Ni 30; (c) Rate performance of the Bi/Ni electrode 30; (d) SEM images of Sb prism arrays 31; (e) Rate performance and (f) cycling performance of Sb prism array electrodes annealed at different temperatures 31; (g) Schematic illustration of the synthetic process for Co-Ge nanowire arrays 32; (h) Cycling performance of Co-Ge array and planar Ge at 0.2C 32."
Fig 3
(a) Rate performance and (c) cycling performance at 10C of TiO2 and P-TiO2 nanotube arrays 34; (c) In situ XRD and (d–i) In situ TEM of P-TiO2 electrode during the charge-discharge process 34; (j) SEM images of S-TiO2 nanotube array 35; (k) Schematic illustration of the fiber-shaped SIB 35; (l) Cycling performances of the fiber-shaped SIB under different bending states 35."
Fig 4
SEM images of (a) Ar-Fe2O3 and (b) S-Fe2O3 nanotube array 42; (c) SEM section view and (d) HRTEM images of S-Fe2O3 42; (e) TEM image and element mappings of Fe, O and S of S-Fe2O3 42; (f) Rate performance comparison of S-Fe2O3 and Ar-Fe2O3 42; (g) Cycling performance of S-Fe2O3 at 5 A·g-1 42; (h) Schematic illustration of the fabrication process of N-Fe2O3-x/CC nanorod arrays 43; (i) Rate performance comparison of N-Fe2O3-x/CC and A-Fe2O3/CC 43."
Fig 5
(a) Schematic illustration of the fabrication process of R-CuO nanowire array 46; (b) SEM, (c) TEM and (d) HRTEM images of R-CuO 46; (e) Galvanostatic charge-discharge profiles and (f) cycling performance of R-CuO 46; (g) SEM and (h)TEM images of NC-CuO nanorod array 47; (i) Schematic illustration of the working mechanism of NC-CuO array 47."
Fig 6
(a) Schematic illustration of the structural design and the fabrication process of Co3O4 NPA/rGO/NF 51; (b) SEM and (c) cross-sectional SEM images of Co3O4 NPA/rGO/NF51; (d) Rate performance and (e) cycling performance of Co3O4 NPA/rGO/NF 51; (f) SEM image of ZnO-Co3O4@CC nanosheet array 52; (g) Rate performance of ZnO-Co3O4@CC at different current densities 52; (h) Cycling performance of ZnO-Co3O4@CC at 0.5 and 1 A·g-1 52."
Fig 7
(a) SEM, (b) HRSEM and (c) TEM images of CC@CN@MoS2 nanowall array 57; (d) Galvanostatic charge-discharge profiles of CC@CN, CN@MoS2 and CC@CN@MoS257; (e) Rate performance and (f) cycling performance of CC@CN and CC@CN@MoS2 57; (g) SEM and (h) HRTEM images of Fe2O3@C@MoS2/CFC nanosheet array 59; (i) Schematic illustration of the electronic pathways and ionic channels in Fe2O3@C@MoS2/CFC59."
Fig 9
(a) SEM image of SnS2/CC nanosheet array 64; (b) Rate performance of SnS2/CC and SnS2 64; (c) Cycling performance of SnS2/CC at 2 A·g-1 64; (d) Schematic illustration of the fabrication process of TiO2@SnS2@N-C nanosheet array 67; (e, f) SEM and (g) HRTEM images of TiO2@SnS2@N-C67; (h) Schematic illustration of the fabrication process of SnS/SnS2@CC 68; (i) Cycling performance at 1 A·g-1 of SnS/SnS2@CC 68; (j) Schematic illustration of the fabrication process of NGQDs-WS2/3DCF nanosheet array 70; (k) Cycling performance of NGQDs-WS2/3DCF, WS2/3DCF and 3DCF at 200 mA·g-170."
Fig 10
(a) SEM, (b) TEM and (c) HRTEM images of CoP@PPy NWs/CP 74; (d) Cycling performance of CoP@PPy NWs/CP electrode at 1.5 mA·cm-2 74; (e) SEM image and (f) cycling performance at 0.2 A·g-1 of Ni2P Ns/CC 75; (g) SEM images and (h) cycling performance at 0.2 A·g-1 of FeP NAs/CC array 76; (i) Schematic illustration of the fabrication and sodiation/ desodiation process of CPNWs array 78; (j) SEM, (k) FESEM, (l) STEM and elemental mapping images of CPNWs array 78; (m) Rate performance of CPNWs 78; Cycling performance of CPNWs at (n) 500 mA·g-1 and (o) 1000 mA·g-1 78."
Fig 11
SEM images of (a) CTs, (b) Na2Ti3O7 /CTs and (c) Na2Ti3O7@N-GQDs/CTs 82; (d) Rate performance and (e) cycling performance of Na2Ti3O7@N-GQDs/CTs-20 and Na2Ti3O7/CTs electrodes 82; (f) The optical images of one small motor and two LED lights of remote-controlled model planes power by a normal state and crimped state full cell 82; (g) SEM image of Na2Ti2O5@Ti nanosheet array 84; (h) Galvanostatic charge-discharge profiles of the Na2Ti2O5@Ti electrode at 0.12C with ether electrolyte (inset: with ester electrolyte) 84; HRTEM images of the fully discharged Na2Ti2O5 nanosheets with (i) ether and (j) ester electrolytes 84; (k) Rate performance and (l) cycling performance of Na2Ti2O5@Ti with ether and ester electrolytes 84."
Table 1
Comparison of synthesis methods, substrates, mass loading and electrochemical performance of different array anode materials."
Material type | Array material | Synthetic methods | Substrate | Mass loading (mg·cm-2) | Initial coulombic efficiency (%) | Reversible capacity (mAh·g-1)/current density (mA·g-1) | Cycle performance (initial capacity (mAh·g-1)/retention (%)) | Ref. |
Metal | Bi nanosheets | Hydrothermal | Carbon fiber cloth | 1.2 | 61.2 | 120/2000 | 325/74 | |
Bi nanoflakes | Replacement | Ni foam | 0.8–1.5 | 90 | 206.4/2000 | 340/89 | ||
Sb prisms | Electrodeposition and annealing | Cu foil | 0.43 | 84 | 409/5C | 542/91 | ||
Co-Ge nanowires | Hydrothermal and RF-sputtering | Cu foil | – | 72.3 | 183.7/2000 | 547/64 | ||
Metal oxide | P-TiO2 nanotubes | Electrochemical anodization and phosphorylation | Ti foil | 1.4 ± 0.02 | 59 | 147/3350 | 150/94 | |
TiO2 nanotubes | Hydrothermal and ALD | Carbon cloth | 0.9 | 63.4 | 200/0.5C | 290/90 | ||
S-doped TiO2 nanotubes | Electrochemical anodization and annealing | Ti fiber | – | – | 142/80 | 125/79 | ||
α-Fe2O3 nanorods | Hydrothermal | Carbon cloth | 1.7 | 52.5 | 110/1000 | 210/119 | ||
S-Fe2O3 nanotubes | Electrochemical anodization and sulfurization | Fe foil | 0.4 | 83 | 390/5000 | 403/91 | ||
N-Fe2O3-x nanorods | Hydrothermal and ammonia annealing | Carbon cloth | 1.7 | 87 | 365/5000 | 750/85 | ||
TiO2 regulated CuO nanowires | Electrochemical anodization and ALD | Cu foam | 6.0 | 55 | 180/3000 | 190/82 | ||
N-doped carbon coated CuO array | Radio-frequency magnetron sputtering | Cu net | 1.8 | 65 | 268.8/500 | 267/81 | ||
CuO nanowires | One-step room temperature solution approach | Cu foil | 1.5 | 88.6 | 238/200 | 352/100 | ||
Co3O4 nanosheets | Thermal reduction and electrodeposition | Ni foam | 1.23 | 94 | 397/2000 | 844/89.7 | ||
ZnO-Co3O4 nanosheets | Solvothermal | Carbon cloth | 1.5–1.7 | 41.2 | 205.5/2000 | 370/72 | ||
Metal sulfide | MoS2 nanosheets | Hydrothermal | Carbon fiber cloth | 1.5 | – | 176/3000 | 413/82 | |
MoS2 nanosheets | Hydrothermal | Carbon fiber | 1.5 | 54 | 225/1000 | 362/91.2 | ||
CC@CN@MoS2 nanosheets | Thermal treatment and hydrothermal | Carbon cloth | 1.0 | 52 | 235/2000 | 352/73.5 | ||
Fe2O3@C@MoS2 | Solvothermal and hydrothermal | Carbon fiber cloth | 1.0 | 77.6 | 1211.3/100 | 900/88.9 | ||
NiCo2S4@MoS2 core/shell arrays | Hydrothermal | Carbon textile | 0.8 | 66.2 | 155/6400 | 209/75.5 | ||
Metal sulfide | 1T MoS2 array | Solvothermal | Carbon cloth | 2.1 | 77.7 | 276/2000 | 989/58.2 | |
SnS2 nanowall arrays | PSE-CVD | Stainless steel | 0.3 | 75 | 370/5000 | 580/87.9 | ||
SnS2 nanosheets | Hydrothermal | Carbon cloth | 1.3–1.9 | 32.8 | 647.9/2000 | 770.3/87.4 | ||
Metal sulfide | SnS2@rGF nanosheets | Hydrothermal and sulfurization reactions | Reduced graphene fiber | 1.0–1.5 | 71.3 | 400/1000 | 706/71 | |
Co-SnS2 nanosheets | Hydrothermal | Carbon cloth | 1.3–1.9 | 57.4 | 809.3/2000 | 809.3/98.9 | ||
TiO2@SnS2@N-C nanosheets | Hydrothermal and ALD | Carbon cloth | 1.0 | 64.2 | 152/10000 | 360/81.4 | ||
SnS2/NiS2 nanosheets | Solvothermal | Carbon cloth | 2.2 | 70.7 | 360/5000 | 540/63.6 | ||
SnS/SnS2 nanosheets | Solvothermal | Carbon cloth | 0.95 | 75 | 100/5000 | 490/61 | ||
NGQDs-WS2 nanosheets | Solvothermal and electrophoresis | Melamine foam | – | 63.7 | 211.4/5000 | 404/97.1 | ||
WS2 platelets thin film | Sputtering | Al foil | 1.02 | 72 | 103.8/5000 | 369/83.3 | ||
Metal phosphide | CoP4 microwires | Hydrothermal and situ phosphorization | Carbon felt | 5.01 | 53 | 535/4000 | 647/90 | |
CoP@PPy nanowires | Hydrothermal and polymerization | Carbon paper | 1.8 | 69.06 | 0.285 mAh·cm-2/ 3 mA·cm-2 | 0.443/100 | ||
Ni2P nanosheets | Hydrothermal and conversion | Carbon cloth | 1.7 | 42.9 | 68/2000 | 443/90 | ||
FeP nanorod arrays | Hydrothermal and phosphorization | Carbon cloth | 0.9 | 55.7 | 184/2000 | 250/44 | ||
FeP nanorods | Hydrothermal and phosphorization | Ti foil | 0.2–0.5 | 48.7 | 196.2/2000 | 300/69.2 | ||
Cu3P nanowires | Situ growth and phosphorization | Cu foil | 0.2–0.4 | 80.6 | 137.8/5000 | 195/68.8 | ||
Titanate | Na2Ti2O5 nanosheet | Hydrothermal | Ti foil | 0.88 | 91 | 88/2400 | 125/96 | |
H2Ti2O4(OH)2 nanowires | Hydrothermal and protonation process | Ti foil | 1.3 | 61 | 50/10000 | 75/85 | ||
Na2Ti3O7@N-GQDs nanofibre arrays | Hydrothermal | Carbon textiles | 2.0 | 56.4 | 58/11328 | 162/92.5 | ||
Na2Ti3O7 nanosheets | Hydrothermal | Ni foam | – | 45.2 | 50.3/400 | 139.3/58.7 |
1 | Zheng J. Y. ; Wang R. ; Li H. Acta Phys. -Chim. Sin. 2014, 30, 1855. |
郑杰允; 汪锐; 李泓. 物理化学学报, 2014, 30, 1855.
doi: 10.3866/PKU.WHXB201407151 |
|
2 |
Wang H. G. ; Li W. ; Liu D. P. ; Feng X. L. ; Wang J. ; Yang X. Y. ; Zhang X. B. ; Zhu Y. J. ; Zhang Y. Adv. Mater. 2017, 29, 1703012.
doi: 10.1002/adma.201703012 |
3 | Zhuang L. Acta Phys. -Chim. Sin. 2017, 33, 1271. |
庄林. 物理化学学报, 2017, 33, 1271.
doi: 10.3866/PKU.WHXB201705031 |
|
4 | Li H. X. ; Wang J. W. ; Jiao L. F. ; Tao Z. L. ; Liang J. Acta Phys. -Chim. Sin. 2020, 36, 1904017. |
李海霞; 王纪伟; 焦丽芳; 陶占良; 梁静. 物理化学学报, 2020, 36, 1904017.
doi: 10.3866/PKU.WHXB201904017 |
|
5 |
Jin T. ; Han Q. Q. ; Jiao L. F. Adv. Mater. 2020, 32, 1806304.
doi: 10.1002/adma.201806304 |
6 |
Xu Y. ; Zhou M. ; Lei Y. Adv. Energy Mater. 2016, 6, 1502514.
doi: 10.1002/aenm.201502514 |
7 |
Jiang J. ; Li Y. Y. ; Liu J. P. ; Huang X. T. ; Yuan C. Z. ; Lou X. W. Adv. Mater. 2012, 24, 5166.
doi: 10.1002/adma.201202146 |
8 |
Jiang J. ; Li Y. Y. ; Liu J. P. ; Huang X. T. Nanoscale 2011, 3, 45.
doi: 10.1039/c0nr00472c |
9 |
Xiao L. ; Li E. W. ; Yi J. Y. ; Meng W. ; Deng B. H. ; Liu J. P. Rare Metals 2018, 37, 527.
doi: 10.1007/s12598-018-1033-y |
10 |
Zheng L. M. ; Wang Z. Q. ; Wu M. S. ; Xu B. ; Ouyang C. Y. J. Mater. Chem. A 2019, 7, 6053.
doi: 10.1039/C8TA11955D |
11 |
Zhang R. H. ; Lu Z. B. ; Yang Y. C. ; Shi W. Curr. Appl. Phys. 2018, 18, 1431.
doi: 10.1016/j.cap.2018.08.011 |
12 |
Liang L. W. ; Sun X. ; Denis D. K. ; Zhang J. Y. ; Hou L. R. ; Liu Y. ; Yuan C. Z. ACS Appl. Mater. Interfaces 2019, 11, 4037.
doi: 10.1021/acsami.8b20149 |
13 |
Wang Y. S. ; Cui P. X. ; Zhu W. ; Feng Z. M. ; Vigeant M. J. ; Demers H. ; Guerfi A. ; Zaghib K. J. Power Sources 2019, 435, 226760.
doi: 10.1016/j.jpowsour.2019.226760 |
14 |
Kim J. ; Seo D. H. ; Kim H. ; Park I. ; Yoo J. K. ; Jung S. K. ; Park Y. U. ; Goddard Ⅲ W. A. ; Kang K. Energy Environ. Sci. 2015, 8, 540.
doi: 10.1039/c4ee03215b |
15 |
Wang C. C. ; Du D. F. ; Song M. M. ; Wang Y. H. ; Li F. J. Adv. Energy Mater. 2019, 9, 1900022.
doi: 10.1002/aenm.201900022 |
16 |
Ni Q. ; Bai Y. ; Li Y. ; Ling L. M. ; Li L. M. ; Chen G. H. ; Wang Z. H. ; Ren H. X. ; Wu F. ; Wu C. Small 2018, 14, 1702864.
doi: 10.1002/smll.201702864 |
17 |
Lu Y. H. ; Wang L. ; Cheng J. G. ; Goodenough J. B. Chem. Commun. 2012, 48, 6544.
doi: 10.1039/C2CC31777J |
18 |
Qian J. F. ; Zhou M. ; Cao Y. L. ; Ai X. P. ; Yang H. X. Adv. Energy Mater. 2012, 2, 410.
doi: 10.1002/aenm.201100655 |
19 |
Chen B. C. ; Qin H. Y. ; Li K. ; Zhang B. ; Liu E. Z. ; Zhao N. Q. ; Shi C. S. ; He C. N. Nano Energy 2019, 66, 104133.
doi: 10.1016/j.nanoen.2019.104133 |
20 |
Hou H. S. ; Jing M. J. ; Yang Y. C. ; Zhang Y. ; Zhu Y. R. ; Song W. X. ; Yang X. M. ; Ji X. B. J. Mater. Chem. A 2015, 3, 2971.
doi: 10.1039/C4TA06476C |
21 |
Yang F. H. ; Yu F. ; Zhang Z. A. ; Zhang K. ; Lai Y. Q. ; Li J. Chem. Eur. J. 2016, 22, 2333.
doi: 10.1002/chem.201503272 |
22 |
Yin H. ; Li Q. W. ; Cao M. L. ; Zhang W. ; Zhao H. ; Li C. ; Huo K. F. ; Zhu M. Q. Nano Res. 2017, 10, 2156.
doi: 10.1007/s12274-016-1408-z |
23 |
Rubio S. ; Maca R. R. ; Aragon M. J. ; Cabello M. ; Castillorodriguez M. ; Lavela P. ; Tirado J. L. ; Etacheri V. ; Ortiz G. F. J. Power Sources 2019, 432, 82.
doi: 10.1016/j.jpowsour.2019.05.070 |
24 |
Xie F. X. ; Zhang L. ; Su D ; W . ; Jaroniec M. ; Qiao S. Z. Adv. Mater. 2017, 24, 1700989.
doi: 10.1002/adma.201700989 |
25 |
Li D. ; Zhou J. S. ; Chen X. H. ; Song H. H. ACS Appl. Mater. Interfaces 2016, 8, 30899.
doi: 10.1021/acsami.6b09444 |
26 |
Liu Y. G. ; Cheng Z. Y. ; Sun H. Y. ; Arandiyan H. ; Li J. P. ; Ahmad M. J. Power Sources 2015, 273, 878.
doi: 10.1016/j.jpowsour.2014.09.121 |
27 |
Lao M. M. ; Zhang Y. ; Luo W. B. ; Yan Q. Y. ; Sun W. P. ; Dou S. X. Adv. Mater. 2017, 29, 1700622.
doi: 10.1002/adma.201700622 |
28 |
Wang M. ; Yang Z. Z. ; Wang J. Q. ; Li W. H. ; Gu L. ; Yu Y. Small 2015, 11, 5381.
doi: 10.1002/smll.201501313 |
29 |
Liu S. N. ; Luo Z. G. ; Guo J. H. ; Pan A. Q. ; Cai Z. Y. ; Liang S. Q. Electrochem. Commun. 2017, 81, 10.
doi: 10.1016/j.elecom.2017.05.011 |
30 |
Wang L. B. ; Wang C. C. ; Li F. J. ; Cheng F. Y. ; Chen J. Chem. Commun. 2018, 54, 38.
doi: 10.1039/C7CC08341F |
31 |
Li X. Y. ; Sun M. L. ; Ni J. F. ; Li L. Adv. Energy Mater. 2019, 9, 1901096.
doi: 10.1002/aenm.201901096 |
32 |
Zhao W. J. ; Chen J. X. ; Lei Y. ; Du N. ; Yang D. R. J. Alloy. Compd. 2020, 815, 152281.
doi: 10.1016/j.jallcom.2019.152281 |
33 |
Lou S. F. ; Zhao Y. ; Wang J. J. ; Yin G. P. ; Du C. Y. ; Sun X. L. Small 2019, 15, 1904740.
doi: 10.1002/smll.201904740 |
34 |
Ni J. F. ; Fu S. D. ; Yuan Y. F. ; Ma L. ; Jiang Y. ; Li L. ; Lu J. Adv. Mater. 2018, 30, 1704337.
doi: 10.1002/adma.201704337 |
35 |
Liu Q. ; Wang J. Y. ; Li X. L. ; Wang Z. P. Mater. Lett. 2019, 248, 123.
doi: 10.1016/j.matlet.2019.04.020 |
36 |
Gu X. L. ; Wang S. S. ; Wang L. L. ; Wu C. ; Xu K. B. ; Zhao L. Y. ; Liu Q. ; Ding M. ; Xu J. L. J. Nanosci. Nanotechnol. 2019, 19, 226.
doi: 10.1166/jnn.2019.16459 |
37 |
Huang Y. ; Li Y. W. ; Huang R. S. ; Yao J. H. J. Phys. Chem. C 2019, 123, 12614.
doi: 10.1021/acs.jpcc.9b02132 |
38 |
Yun S. ; Bak S. ; Kim S. ; Yeon J. S. ; Kim M. G. ; Yang X. Q. ; Braun P. V. ; Park H. S. Adv. Energy Mater. 2019, 9, 1802816.
doi: 10.1002/aenm.201802816 |
39 |
Fang Y. J. ; Chen Z. X. ; Xiao L. F. ; Ai X. P. ; Cao Y. L. ; Yang H. X. Small. 2018, 14, 1703116.
doi: 10.1002/smll.201703116 |
40 |
Qi S. H. ; Xu B. L. ; Tiong V. T. ; Hu J. ; Ma J. M. Chem. Eng. J. 2020, 379, 122261.
doi: 10.1016/j.cej.2019.122261 |
41 |
Zhao D. P. ; Xie D. ; Liu H. Q. ; Hu F. ; Wu X. Funct. Mater. Lett. 2018, 11, 1840002.
doi: 10.1142/S1793604718400027 |
42 |
Ni J. F. ; Sun M. L. ; Li L. Adv. Mater. 2019, 31, 1902603.
doi: 10.1002/adma.201902603 |
43 |
Sun M. L. ; Wang Z. Z. ; Ni J. F. ; Li L. Adv. Funct. Mater. 2020, 30, 1910043.
doi: 10.1002/adfm.201910043 |
44 |
Chen C. C. ; Dong Y. Y. ; Li S. Y. ; Jiang Z. H. ; Wang Y. J. ; Jiao L. F. ; Yuan H. T. J. Power Sources 2016, 320, 20.
doi: 10.1016/j.jpowsour.2016.04.063 |
45 |
Fang S. ; Bresser D. ; Passerini S. Adv. Energy Mater. 2020, 10, 1902485.
doi: 10.1002/aenm.201902485 |
46 |
Ni J. F. ; Jiang Y. ; Wu F. X. ; Maier J. ; Yu Y. ; Li L. Adv. Funct. Mater. 2018, 28, 1707179.
doi: 10.1002/adfm.201707179 |
47 |
Li Y. J. ; Zhang M. L. ; Qian J. ; Ma Y. T. ; Li Y. ; Li W. L. ; Wang F. J. ; Li L. ; Wu F. ; Chen R. J., Energy Technol. 2019, 7, 1900252.
doi: 10.1002/ente.201900252 |
48 |
Su Y. ; Liu T. ; Zhang P. ; Zheng P. Thin Solid Films 2019, 690, 137522.
doi: 10.1016/j.tsf.2019.137522 |
49 |
Xu M. ; Xia Q. Y. ; Yue J. J. ; Zhu X. H. ; Guo Q. B. ; Zhu J. W. ; Xia H. Adv. Funct. Mater. 2019, 29, 1807377.
doi: 10.1002/adfm.201807377 |
50 |
Li L. ; Wang Q. M. ; Zhang X. Y. ; Fang L. D. ; Li X. H. ; Zhang W. M. Appl. Surf. Sci. 2020, 508, 145295.
doi: 10.1016/j.apsusc.2020.145295 |
51 |
Wu K. ; Geng B. J. ; Zhang C. ; Shen W. W. ; Yang D. W. ; Li Z. ; Yang Z. B. ; Pan D. Y. J. Alloy. Compd. 2020, 820, 153296.
doi: 10.1016/j.jallcom.2019.153296 |
52 |
Chen H. H. ; Deng L. B. ; Luo S. ; Ren X. Z. ; Li Y. L. ; Sun L. N. ; Zhang P. X. ; Chen G. Q. ; Gao Y. J. Electrochem. Soc. 2018, 165, 152281.
doi: 10.1149/2.0721816jes |
53 |
Liu Y. Z. ; Yang C. H. ; Zhang Q. Y. ; Liu M. L. Energy Storage Mater 2019, 22, 66.
doi: 10.1016/j.ensm.2019.01.001 |
54 | Zhao L. P. ; Meng W. S. ; Wang H. Y. ; Qi L. Acta Phys. -Chim. Sin. 2017, 33, 787. |
赵立平; 孟未帅; 王宏宇; 齐力. 物理化学学报, 2017, 33, 787.
doi: 10.3866/PKU.WHXB201612152 |
|
55 |
Sun D. ; Ye D. L. ; Liu P. ; Tang Y. G. ; Guo J. ; Wang L. Z. ; Wang H. Y. Adv. Energy Mater. 2018, 8, 1702383.
doi: 10.1002/aenm.201702383 |
56 |
Liang X. Q. ; Chen M.H. ; Shen S. H. ; Xia X. H. Mater. Technol. 2018, 33, 1.
doi: 10.1080/10667857.2018.1470959 |
57 |
Ren W. N. ; Zhang H. F. ; Guan C. ; Cheng C. W. Adv. Funct. Mater. 2017, 27, 1702116.
doi: 10.1002/adfm.201702116 |
58 |
Zhang Y. Q. ; Tao H. C. ; Li T. ; Du S. L. ; Li J. H. ; Zhang Y. K. ; Yang X. L. ACS Appl. Mater. Interfaces 2018, 10, 35206.
doi: 10.1021/acsami.8b12079 |
59 |
Zhan J. ; Wu K. ; Yu X. ; Yang M. J. ; Cao X. ; Lei B. ; Pan D. Y. ; Jiang H. ; Wu M. H. Small 2019, 15, 1901083.
doi: 10.1002/smll.201901083 |
60 |
Liu B. ; Kong D. Z. ; Wang Y. ; Lim Y. V. ; Huang S. Z. ; Yang H. Y. FlatChem. 2018, 10, 14.
doi: 10.1016/j.flatc.2018.07.002 |
61 |
Tang W. J. ; Wang X.L. ; Xie D. ; Xia X. H. ; Gu C. D. ; Tu J. P. J. Mater. Chem. A 2018, 6, 18318.
doi: 10.1039/C8TA06905K |
62 |
Liang S. Z. ; Cheng Y. J. ; Zhu J. ; Xia Y. G. ; Müller-Buschbaum P. Small Methods 2020, 4, 2000218.
doi: 10.1002/smtd.202000218 |
63 |
Zhou P. ; Wang X. ; Guan W. H. ; Zhang D. ; Fang L. B. ; Jiang Y. Z. ACS Appl. Mater. Interfaces 2017, 9, 6979.
doi: 10.1021/acsami.6b13613 |
64 |
Wang L. Q. ; Yuan J. R. ; Zhao Q. Q. ; Wang Z. T. ; Zhu Y. Q. ; Ma X. L. ; Cao C. B. Electrochim. Acta 2019, 308, 174.
doi: 10.1016/j.electacta.2019.04.019 |
65 |
Ren Z. L. ; Wen J. ; Liu W. ; Jiang X. P. ; Dong Y. H. ; Guo X. L. ; Zhao Q. N. ; Ji G. P. ; Wang R. H. ; Hu N. ; et al Nano-Micro Lett. 2019, 11, 66.
doi: 10.1007/s40820-019-0297-6 |
66 |
Wang L. Q. ; Zhao Q. Q. ; Wang Z. T. ; Wu Y. J. ; Ma X. L. ; Zhu Y. Q. ; Cao C. B. Nanoscale 2020, 12, 248.
doi: 10.1039/C9NR07849E |
67 |
Ren W. N. ; Zhang H. F. ; Guan C. ; Cheng C. W. Green Energy Environ. 2017, 3, 42.
doi: 10.1016/j.gee.2017.09.005 |
68 |
Lu J. M. ; Zhao S. Y. ; Fan S. X. ; Lv Q. ; Li J. ; Lv R. T. Carbon 2019, 148, 525.
doi: 10.1016/j.carbon.2019.03.022 |
69 |
Guan S. D. ; Wang T. S. ; Fu X. L. ; Fan L. Z. ; Peng Z. J. Appl. Surf. Sci. 2020, 508, 145241.
doi: 10.1016/j.apsusc.2019.145241 |
70 |
Wang Y. ; Kong D. Z. ; Huang S. Z. ; Shi Y. M. ; Ding M. ; Von Lim Y. ; Xu T. T. ; Chen F. M. ; Li X. J. ; Yang H. Y. J. Mater. Chem. A 2018, 6, 10813.
doi: 10.1039/C8TA02773K |
71 |
Xu S. S. ; Gao X. M. ; Hua Y. ; Neville A. ; Wang Y. N. ; Zhang K. Energy Storage Mater. 2020, 26, 534.
doi: 10.1016/j.ensm.2019.11.026 |
72 |
Dinh K. N. ; Liang Q. H. ; Du C. F. ; Zhao J. ; Tok A. I. Y. ; Mao H. ; Yan Q. G. Nano Today 2019, 25, 99.
doi: 10.1016/j.nantod.2019.02.008 |
73 |
Sun D. ; Zhu X. B. ; Luo B. ; Zhang Y. ; Tang Y. G. ; Wang H. Y. ; Wang L. Z. Adv. Energy Mater. 2018, 8, 1801197.
doi: 10.1002/aenm.201801197 |
74 |
Zhang J. ; Zhang K. ; Yang J. H. ; Lee G. ; Shin J. ; Lau V. W. ; Kang Y. Adv. Energy Mater. 2018, 8, 1800283.
doi: 10.1002/aenm.201800283 |
75 |
Wang Y. ; Pan Q. ; Jia K. ; Wang H. B. ; Gao J. J. ; Xu C. L. ; Zhong Y. J. ; Alshehri A. A. ; Alzahrani K. A. ; Guo X. D. ; et al Inorg. Chem. 2019, 58, 6579.
doi: 10.1021/acs.inorgchem.9b00451 |
76 |
Wang Y. ; Wu C. J. ; Wu Z. G. ; Cui G. W. ; Xie F. Y. ; Guo X. D. ; Sun X. P. Chem. Commun. 2018, 54, 9341.
doi: 10.1039/C8CC03827A |
77 |
Wang L. G. ; Zhao X. J. ; Dai S. ; Shen Y. ; Wang M. K. Electrochim. Acta. 2019, 314, 142.
doi: 10.1016/j.electacta.2019.05.071 |
78 |
Fan M. P. ; Chen Y. ; Xie Y. H. ; Yang T. Z. ; Shen X. W. ; Xu N. ; Yu H. Y. ; Yan C. L. Adv. Funct. Mater. 2016, 26, 5019.
doi: 10.1002/adfm.201601323 |
79 |
Ni J. F. ; Fu S. D. ; Wu C. ; Zhao Y. ; Maier J. ; Yu Y. ; Li L. Adv. Energy Mater. 2016, 6, 1502568.
doi: 10.1002/aenm.201502568 |
80 |
Li H. ; Fei H. L. ; Liu X. ; Yang J. ; Wei M. D. Chem. Commun. 2015, 51, 9298.
doi: 10.1039/C5CC02612A |
81 |
Li Z. H. ; Shen W. ; Wang C. ; Xu Q. J. ; Liu H. M. ; Wang Y. G. ; Xia Y. Y. J. Mater. Chem. A 2016, 4, 17111.
doi: 10.1039/C6TA08416H |
82 |
Kong D. Z. ; Wang Y. ; Huang S. Z. ; Von Lim Y. ; Zhang J. ; Sun L. F. ; Liu B. ; Chen T. P. ; Alvaradoa P. V. ; Yang H. Y. J. Mater. Chem. A 2019, 7, 12751.
doi: 10.1039/C9TA01641D |
83 |
Chen Z. H. ; Zhang Q. X. ; Lu L. ; Chen X. Y. ; Wang S. ; Xin C. Z. ; Xing B. L. ; Zhang C. X. Energy Fuels 2020, 34, 3901.
doi: 10.1021/acs.energyfuels.9b04307 |
84 |
Gui Q. Y. ; Ba D. L. ; Zhao Z. S. ; Mao Y. F. ; Zhu W. H. ; Lei T. Y. ; Tan J. F. ; Deng B. H. ; Xiao L. ; Li Y. Y. Small Methods 2019, 3, 1800371.
doi: 10.1002/smtd.201800371 |
85 |
Que L. F. ; Yu F. D. ; Zheng L. L. ; Wang Z. B. ; Gu D. M. Nano Energy 2018, 45, 337.
doi: 10.1016/j.nanoen.2018.01.014 |
86 |
Chao D. L. ; Lai C. M. ; Liang P. ; Wei Q. L. ; Wang Y. S. ; Zhu C. R. ; Deng G. ; Doan-Nguyen V. V. T. ; Lin J. Y. ; Mai L. Q. ; Fan H. J. ; et al Adv. Energy Mater. 2018, 8, 1800058.
doi: 10.1002/aenm.201800058 |
87 |
Mao Z. F. ; Wang R. ; He B. B. ; Gong Y. S. ; Wang H. W. Small 2019, 15, 1902466.
doi: 10.1002/smll.201902466 |
88 |
Deng B. H. ; Yue N. ; Dong H. Y. ; Gui Q. Y. ; Xiao L. ; Liu J. P. Chin. Chem. Lett. 2021, 32, 826.
doi: 10.1016/j.cclet.2020.04.054 |
[1] | Qiuying Xia, Yu Cai, Wei Liu, Jinshi Wang, Chuanzhi Wu, Feng Zan, Jing Xu, Hui Xia. Direct Recycling of All-Solid-State Thin Film Lithium Batteries with Lithium Anode Failure [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212051-0. |
[2] | Shenglong Tang, Chunlei Wang, Xiangjun Pu, Xiangkui Gu, Zhongxue Chen. Unravelling Zn2+ Intercalation Mechanism in TiX2 (X = S, Se) Anodes for Aqueous Zn-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212037-0. |
[3] | Mingli Xu, Mengchuang Liu, Zezhou Yang, Chen Wu, Jiangfeng Qian. Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210043-0. |
[4] | Hao-Tian Teng, Wen-Tao Wang, Xiao-Feng Han, Xiang Hao, Ruizhi Yang, Jing-Hua Tian. Recent Development and Perspectives of Flexible Zinc-Air Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2107017-0. |
[5] | Yingying Zhu, Yong Wang, Miao Xu, Yongmin Wu, Weiping Tang, Di Zhu, Yu-Shi He, Zi-Feng Ma, Linsen Li. Tracking Pressure Changes and Morphology Evolution of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2110040-0. |
[6] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[7] | Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2103052-. |
[8] | Wei Zhang, Haichen Liang, Kerun Zhu, Yong Tian, Yao Liu, Jiayin Chen, Wei Li. Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2105024-. |
[9] | Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106002-. |
[10] | Yuecheng Xiong, Fei Yu, Jie Ma. Research Progress in Chlorine Ion Removal Electrodes for Desalination by Capacitive Deionization [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006037-. |
[11] | Xuewei Liu, Ying Niu, Ruixiong Cao, Xiaohong Chen, Hongyan Shang, Huaihe Song. Is there a Demand of Conducting Agent of Acetylene Black for Graphene-Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries? [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012062-. |
[12] | Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204049-. |
[13] | Cong Hu, Junbin Hu, Mengran Liu, Yucheng Zhou, Jiasheng Rong, Jianxin Zhou. Applications of Graphene in Self-Powered Sensing Systems [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2012083-. |
[14] | Yun Fan, Guodan Chen, Xiuan Xi, Jun Li, Qi Wang, Jingli Luo, Xianzhu Fu. Co-Generation of Ethylene and Electricity from Ethane by CeO2/RP-PSCFM@CoFe Anode Materials in Proton Conductive Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009107-. |
[15] | Zibo Zhang, Wei Deng, Xufeng Zhou, Zhaoping Liu. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008092-. |
|