Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (7): 2212043.doi: 10.3866/PKU.WHXB202212043
• ARTICLE • Previous Articles Next Articles
Huixian Han1, Lan Chen1, Jiancheng Zhao2,3, Haitao Yu1, Yang Wang1, Helian Yan1, Yingxiong Wang4, Zhimin Xue1,*(), Tiancheng Mu5,*()
Received:
2022-12-27
Accepted:
2023-01-18
Published:
2023-03-06
Contact:
Zhimin Xue, Tiancheng Mu
E-mail:zmxue@bjfu.edu.cn;tcmu@ruc.edu.cn
Supported by:
Huixian Han, Lan Chen, Jiancheng Zhao, Haitao Yu, Yang Wang, Helian Yan, Yingxiong Wang, Zhimin Xue, Tiancheng Mu. Biomass-based Acidic Deep Eutectic Solvents for Efficient Dissolution of Lignin: Towards Performance and Mechanism Elucidation[J]. Acta Phys. -Chim. Sin. 2023, 39(7), 2212043. doi: 10.3866/PKU.WHXB202212043
"
Entry | DES | Molar ratio | AL solubility (%) b |
1 | ChCl: EG | 2:1 | 41.5 (±2.2) |
2 | ChCl: EG | 1:1 | 42.9 (±2.8) |
3 | ChCl: BA | 1:2 | 43.5 (±1.7) |
4 | ChCl: OA | 2:1 | 41.6 (±1.7) |
5 | Bet: BA | 1:2 | 37.1 (±3.1) |
6 | Bet: 5-MeOSA | 2:1 | 26.0 (±2.9) |
7 | Bet: 5-MeOSA | 1:1 | 20.6 (±3.1) |
8 | L-Carn: BA | 1:1 | 27.3 (±2.5) |
9 | L-Carn: BA | 1:2 | 34.1 (±2.9) |
10 | L-Carn: 5-MeOSA | 2:1 | 23.5 (±2.7) |
11 | L-Carn: 5-MeOSA | 1:1 | 25.1 (±3.7) |
12 | L-Carn: 5-MeOSA | 1:2 | 33.9 (±3.8) |
1 |
Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M.. Science 2012, 337 (6095),695.
doi: 10.1126/science.1222566 |
2 |
Chen, Z.; Ragauskas, A.; Wan, C.. Ind. Crops Prod. 2020, 147, 112241.
doi: 10.1016/j.indcrop.2020.112241 |
3 | Wang, W.; Wang, Y.; Zhan, Z.; Tan, T.; Deng, W.; Zhang, Q.; Wang, Y.. Acta Phys. -Chim. Sin. 2022, 38 (10),2205032. |
王伟, 王瑶, 占自祥, 谭天, 邓卫平, 张庆红, 王野. 物理化学学报, 2022, 38 (10),2205032.
doi: 10.3866/PKU.WHXB2022205032 |
|
4 | Zhou, H.; Jing, Y.; Wang, Y.. Acta Phys. -Chim. Sin. 2022, 38 (10),2203016. |
周浩, 景亚轩, 王艳芹. 物理化学学报, 2022, 38 (10),2203016.
doi: 10.3866/PKU.WHXB202203016 |
|
5 |
Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.; Chandra, R.; Chen, F.; Davis, M. F.; Davison, B. H.; Dixon, R. A.; Gilna, P.; Keller, M.; et al.. Science 2014, 344 (6185),1246843.
doi: 10.1126/science.124684 |
6 |
Sun, Z.; Fridrich, B.; De Santi, A.; Elangovan, S.; Barta, K.. Chem. Rev. 2018, 118 (2),614.
doi: 10.1021/acs.chemrev.7b00588 |
7 |
Luo, H.; Weeda, E. P.; Alherech, M.; Anson, C. W.; Karlen, S. D.; Cui, Y.; Foster, C. E.; Stahl, S. S.. J. Am. Chem. Soc. 2021, 143 (37),15462.
doi: 10.1021/jacs.1c08635 |
8 |
Adler, A.; Kumaniaev, I.; Karacic, A.; Baddigam, K. R.; Hanes, R. J.; Subbotina, E.; Bartling, A. W.; Huertas-Alonso, A. J.; Moreno, A.; Håkansson, H.. Joule 2022, 6 (8),1845.
doi: 10.1016/j.joule.2022.06.021 |
9 |
Sun, Z.; Cheng, J.; Wang, D.; Yuan, T.-Q.; Song, G.; Barta, K.. ChemSusChem 2020, 13 (19),5199.
doi: 10.1002/cssc.202001085 |
10 |
Rinaldi, R.. Joule 2017, 1 (3),427.
doi: 10.1016/j.joule.2017.11.001 |
11 |
Hong, S.; Shen, X.; Xue, Z.; Sun, Z.; Yuan, T.. Green Chem. 2020, 22 (21),7219.
doi: 10.1039/D0GC02439B |
12 |
New, E. K.; Tnah, S. K.; Voon, K. S.; Yong, K. J.; Procentese, A.; Yee Shak, K. P.; Subramonian, W.; Cheng, C. K.; Wu, T. Y.. J. Environ. Manage. 2022, 307, 114385.
doi: 10.1016/j.jenvman.2021.114385 |
13 |
Xue, Z.; Zhao, X.; Sun, R.; Mu, T.. ACS Sustain. Chem. Eng. 2016, 4 (7),3864.
doi: 10.1021/acssuschemeng.6b00639 |
14 |
Zhang, H.; Bai, Y.; Yu, B.; Liu, X.; Chen, F.. Green Chem. 2017, 19 (21),5152.
doi: 10.1039/C7GC01974B |
15 |
Yin, X.; Cai, T.; Liu, C.; Huang, C.; Wang, J.; Hu, J.; Li, N.; Jiang, J.; Wang, K.. Chem. Eng. J. 2022, 437, 135408.
doi: 10.1016/j.cej.2022.135408 |
16 |
Yang, S.; Yang, X.; Meng, X.; Wang, L.. Green Chem. 2022, 24 (10),4082.
doi: 10.1039/D2GC00409G |
17 |
Jahan, N.; Huda, M. M.; Tran, Q. X.; Rai, N.. J. Phys. Chem. B 2022, 126 (31),5752.
doi: 10.1021/acs.jpcb.2c03147 |
18 |
Prinsen, P.; Narani, A.; Rothenberg, G. A.. ChemSusChem 2017, 10 (5),1022.
doi: 10.1002/cssc.201601608 |
19 |
Strassberger, Z.; Prinsen, P.; Klis, F. V. D.; Es, D. S. V.; Tanase, S.; Rothenberg, G.. Green Chem. 2015, 17 (1),325.
doi: 10.1039/C4GC01143K |
20 |
Miao, S.; Atkin, R.; Warr, G.. Green Chem. 2022, 24 (19),7281.
doi: 10.1039/D2GC02282F |
21 |
Zhao, W.; Wei, C.; Cui, Y.; Ye, J.; He, B.; Liu, X.; Sun, J.. Chem. Eng. J. 2022, 443, 136486.
doi: 10.1016/j.cej.2022.136486 |
22 |
Sathitsuksanoh, N.; Holtman, K. M.; Yelle, D. J.; Morgan, T.; Stavila, V.; Pelton, J.; Blanch, H.; Simmons, B. A.; George, A.. Green Chem. 2014, 16 (3),1236.
doi: 10.1039/C3GC42295J |
23 |
Liu, Q.; Zhao, X.; Yu, D.; Yu, H.; Zhang, Y.; Xue, Z.; Mu, T.. Green Chem. 2019, 21 (19),5291.
doi: 10.1039/C9GC02306B |
24 |
Yu, H.; Xue, Z.; Shi, R.; Zhou, F.; Mu, T.. Ind. Crops Prod. 2022, 184, 115049.
doi: 10.1016/j.indcrop.2022.115049 |
25 |
Wang, Z.; Liu, Y.; Barta, K.; Deuss, P. J.. ACS Sustain. Chem. Eng. 2022, 10 (38),12569.
doi: 10.1021/acssuschemeng.2c02954 |
26 |
Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V.. Chem. Commun. 2003, No.1, 70.
doi: 10.1039/B210714G |
27 |
Smith, E. L.; Abbott, A. P.; Ryder, K. S.. Chem. Rev. 2014, 114 (21),11060.
doi: 10.1021/cr300162p |
28 |
Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K.. J. Am. Chem. Soc. 2004, 126 (29),9142.
doi: 10.1021/ja048266j |
29 |
Yu, D.; Xue, Z.; Mu, T.. Chem. Soc. Rev. 2021, 50 (15),8596.
doi: 10.1039/D1CS90065J |
30 |
Xia, Q.; Liu, Y.; Meng, J.; Cheng, W.; Chen, W.; Liu, S.; Liu, Y.; Li, J.; Yu, H.. Green Chem. 2018, 20 (12),2711.
doi: 10.1039/C8GC00900G |
31 |
Sosa, F. H. B.; Abranches, D. O.; Lopes, A. M.; Coutinho, J. A. P.; da Costa, M. C.. ACS Sustain. Chem. Eng. 2020, 8 (50),18577.
doi: 10.1021/acssuschemeng.0c06655 |
32 |
Malaeke, H.; Housaindokht, M. R.; Monhemi, H.; Izadyar, M.. J. Mol. Liq. 2018, 263, 193.
doi: 10.1016/j.molliq.2018.05.001 |
33 |
Francisco, M.; Bruinhorst, A.; Kroon, M. C.. Green Chem. 2012, 14 (8),2153.
doi: 10.1039/C2GC35660K |
34 |
Wang, Y.; Meng, X.; Jeong, K.; Li, S.; Leem, G.; Kim, K. H.; Pu, Y.; Ragauskas, A. J.; Yoo, C. G.. ACS Sustain. Chem. Eng. 2020, 8 (33),12542.
doi: 10.1021/acssuschemeng.0c03533 |
35 |
Meng, X.; Wang, Y.; Conte, A. J.; Zhang, S.; Ryu, J.; Wie, J. J.; Pu, Y.; Davison, B. H.; Yoo, C. G.; Ragauskas, A. J.. Bioresour. Technol. 2023, 368, 128280.
doi: 10.1016/j.biortech.2022.128280 |
36 |
Wang, Y.; Kim, K. H.; Jeong, K.; Kim, N.-K.; Yoo, C. G.. Curr. Opin. Green Sustain. Chem. 2021, 27, 100396.
doi: 10.1016/j.cogsc.2020.100396 |
37 |
Kim, K. H.; Dutta, T.; Sun, J.; Simmons, B.; Singh, S.. Green Chem. 2018, 20 (4),809.
doi: 10.1039/C7GC03029K |
38 |
Huang, C.; Cheng, J.; Zhan, Y.; Liu, X.; Wang, J.; Wang, Y.; Yoo, C. G.; Fang, G.; Meng, X.; Ragauskas, A. J.; et al.. Bioresour. Technol. 2022, 362, 127771.
doi: 10.1016/j.biortech.2022.127771 |
39 |
Shen, X.; Wen, J.; Mei, Q.; Chen, X.; Sun, D.; Yuan, T.; Sun, R.. Green Chem. 2019, 21 (2),275.
doi: 10.1039/C8GC03064B |
40 |
Yu, H.; Xue, Z.; Wang, Y.; Yan, C.; Chen, L.; Mu, T.. Sep. Purif. Technol. 2023, 306, 122688.
doi: 10.1016/j.seppur.2022.122688 |
41 | Su, H.; Yin, J.; Liu, Q.; Li, C.. Acta Phys. -Chim. Sin. 2015, 31, 1468. |
宿洪祯, 尹静梅, 刘青山, 李长平. 物理化学学报, 2015, 31, 1468.
doi: 10.3866/PKU.WHXB201506111 |
|
42 |
Zhou, F.; Shi, R.; Wang, Y.; Xue, Z.; Zhang, B.; Mu, T.. Phys. Chem. Chem. Phys. 2022, 24, 16973.
doi: 10.1039/D2CP01816K |
43 |
Wang, Y.; Zhang, W.; Yang, J.; Li, M.; Peng, F.; Bian, J.. Bioresour. Technol. 2022, 354, 127139.
doi: 10.1016/j.biortech.2022.127139 |
44 | Chen, W.; Xue, Z.; Wang, J.; Jiang, J.; Zhao, X.; Mu, T.. Acta Phys. -Chim. Sin. 2018, 34 (8),904. |
陈文君, 薛智敏, 王晋芳, 蒋静云, 赵新辉, 牟天成. 物理化学学报, 2018, 34 (8),904.
doi: 10.3866/PKU.WHXB201712281 |
|
45 |
Ma, Q.; Wang, L.; Zhai, H.; Ren, H.. Int. J. Biol. Macromol. 2021, 182, 51.
doi: 10.1016/j.ijbiomac.2021.03.179 |
46 |
Zheng, A.; Liu, S.-B.; Deng, F.. Chem. Rev. 2017, 117 (19),12475.
doi: 10.1021/acs.chemrev.7b00289 |
47 |
Zhou, F.; Shi, R.; Wang, Y.; Xue, Z.; Zhang, B.; Mu, T.. Phys. Chem. Chem. Phys. 2022, 24 (28),16973.
doi: 10.1039/D2CP01816K |
48 |
Sosa, F.; Bjelic, A.; Coutinho, J.; Costa, M.; Lopes, A.. Sustain. Energy Fuels 2022, 6 (20),4800.
doi: 10.1039/D2SE00859A |
49 |
Hong, S.; Shen, X.; Pang, B.; Xue, Z.; Cao, X.; Wen, J.; Yuan, T.. Green Chem. 2020, 22 (6),1851.
doi: 10.1039/D0GC00006J |
[1] | Shihan Li,Zhenchao Zhao,Shikun Li,Youdong Xing,Weiping Zhang. Aluminum Distribution and Brønsted Acidity of Al-Rich SSZ-13 Zeolite: A Combined DFT Calculation and Solid-State NMR Study [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1903021-. |
[2] | Lulu XU,Zhenchao ZHAO,Rongrong ZHAO,Rui YU,Weiping ZHANG. Effects of Magnesium Modification on the Catalytic Performances of HZSM-5 Zeolite for the Conversion of Ethene to Propene [J]. Acta Phys. -Chim. Sin., 2019, 35(1): 92-100. |
[3] | Wenjun CHEN,Zhimin XUE,Jinfang WANG,Jingyun JIANG,Xinhui ZHAO,Tiancheng MU. Investigation on the Thermal Stability of Deep Eutectic Solvents [J]. Acta Physico-Chimica Sinica, 2018, 34(8): 904-911. |
[4] | Zhou-Sheng MO,Yu-Cai QIN,Xiao-Tong ZHANG,Lin-Hai DUAN,Li-Juan SONG. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites [J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241. |
[5] | Yi-Hao HU,Tong-Yang SONG,Yue-Juan WANG,Geng-Sheng HU,Guan-Qun XIE,Meng-Fei LUO. Gas Phase Dehydrochlorination of 1, 1, 2-Trichloroethane over Zn/SiO2 Catalysts: Acidity and Deactivation [J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1017-1026. |
[6] | Shen-Hui LI,Jing LI,An-Min ZHENG,Feng DENG. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts [J]. Acta Phys. -Chim. Sin., 2017, 33(2): 270-282. |
[7] | Cui-Can. LI,Meng-Xiao. ZHANG,Wei-Ming. HUA,Ying-Hong. YUE,Zi. GAO. Effect of the Carbon Precursor on the Design of Perfluorosulfonic Acid Functionalized Carbon Catalysts [J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1747-1752. |
[8] | HU Si, ZHANG Qing, YIN Qi, ZHANG Ya-Fei, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6 [J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1374-1382. |
[9] | DING Dan-Dan, XU Xuan, WU Zi-Wen, ZHOU Wo-Hua, CHEN Rong, XU Zhi-Guang. Coordination Structures of Metal String Complexes (n, m)[Cr3(PhPyF)4Cl2](n=2, 3, 4; m=2, 1, 0) and Relationship with External Electric Field [J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1323-1330. |
[10] | PAN Wen-Ya, HUANG Liang, QIN Feng, ZHUANG Yan, LI Xue-Mei, MA Jian-Xue, SHEN Wei, XU Hua-Long. Regulation of Pore Structure and Acidity of a ZSM-5 Catalyst for Dehydration of Glycerol to Acrolein [J]. Acta Phys. -Chim. Sin., 2015, 31(5): 965-972. |
[11] | ZHANG Chang, QIN Yu-Cai, GAO Xiong-Hou, ZHANG Hai-Tao, MO Zhou-Sheng, CHU Chun-Yu, ZHANG Xiao-Tong, SONG Li-Juan. Modulation of the Acidity and Catalytic Conversion Properties of Y Zeolites Modified by Cerium Cations [J]. Acta Phys. -Chim. Sin., 2015, 31(2): 344-352. |
[12] | MIAO Hai-Xia, MA Li, MA Jing-Hong, LI Dui-Chun, LI Rui-Feng. Benzylation of Naphthalene over a Mesoporous ZSM-5 Zeolite Microsphere Catalyst [J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1518-1526. |
[13] | QIN Yu-Cai, GAO Xiong-Hou, DUAN Lin-Hai, FAN Yue-Chao, YU Wen-Guang, ZHANG Hai-Tao, SONG Li-Juan. Effects on Adsorption Desulfurization of CeY Zeolites:Acid Catalysis and Competitive Adsorption [J]. Acta Phys. -Chim. Sin., 2014, 30(3): 544-550. |
[14] | NING Ai-Min, MENG Lei, ZHAO Zhong-Lin, ZHENG Xian-Fu, WAN Xin-Sheng. Mechanism of Interaction between Bovine Serum Albumin and Sodium Dodecyl Sulfate [J]. Acta Phys. -Chim. Sin., 2013, 29(12): 2639-2646. |
[15] | QIAN Jia-Sheng, LIU Ming-Xian, GAN Li-Hua, LÜ Yao-Kang, CHEN Ling-Yan, YE Rui-Jie, CHEN Long-Wu. Synthesis and Electrochemical Performance of Microporous Carbon Using a Zinc(II)-Organic Coordination Polymer [J]. Acta Phys. -Chim. Sin., 2013, 29(07): 1494-1500. |
|