Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (9): 2212060.doi: 10.3866/PKU.WHXB202212060
Special Issue: Multi-Physical Fields Driven Catalysis for Energy Conversion
• REVIEW • Previous Articles Next Articles
Zhanjun He1,2, Min Huang1,3, Tiejun Lin1, Liangshu Zhong1,2,3,*()
Received:
2022-12-30
Accepted:
2023-02-07
Published:
2023-04-03
Contact:
Liangshu Zhong
E-mail:zhongls@sari.ac.cn
Zhanjun He, Min Huang, Tiejun Lin, Liangshu Zhong. Recent Advances in Dry Reforming of Methane via Photothermocatalysis[J]. Acta Phys. -Chim. Sin. 2023, 39(9), 2212060. doi: 10.3866/PKU.WHXB202212060
Table 1
Advantages and disadvantages of different methane dry reforming technologies."
Different methane dry reforming technologies | Advantages | Disadvantages |
Thermocatalytic dry reforming of methane | High conversion and yield, low investment cost, pilot-scale plant | Non-Renewable energy input, high energy consumption, high operation cost, low flexibility, high coke formation, high operating temperature |
Photocatalytic dry reforming of methane | Renewable energy input, green technology, low operating cost, low investment cost, low coke formation, tunable operating temperature | Low conversion and yield, Non-commercial |
Photothermocatalytic dry reforming of methane | Renewable energy input, green technology, low operating cost, low coke formation, high flexibility | Non-commercial, High operating temperature, high investment cost |
Table 2
Summary of catalytic performance of various Ni-based catalysts for photothermal dry reforming of methane."
Entry | Catalyst | Reaction conditions | Catalytic performance | Ref. | ||
T/℃ | Light intensity (kW∙m−2) | External heating | ||||
1 | Ni@SiO2-Core | 550 | 10.7 | Yes | rH2 ≈ 19.50 μmol∙min−1, rCO ≈ 23.40 μmol∙min−1 | |
Ni@SiO2-Yolk | 550 | 10.7 | Yes | rH2 ≈ 21.00 μmol∙min−1, rCO ≈ 23.40 μmol∙min−1 | ||
2 | Ni/Al2O3 | 550 | 10.7 | Yes | rH2 ≈ 6.25 μmol∙min−1, rCO ≈ 6.50 μmol∙min−1 | |
3 | Ni/CeO2 | 807 | 363.4 | No | rH2 = 6.53 mmol∙min−1∙g−1, rCO = 6.27 mmol∙min−1∙g−1 | |
4 | Ni/Al2O3 | 550 | 10.7 | Yes | rH2 = 4 mmol∙min−1∙g−1, rCO = 4.5 mmol∙min−1∙g−1 | |
5 | Ni-CeO2/SiO2 | 678 | 385.2 | No | rH2 = 33.42 mmol∙min−1∙g−1, rCO = 41.53 mmol∙min−1∙g−1 | |
6 | Ni/Ni-Al2O3 | 771 | 333.8 | No | rH2 = 27.02 mmol∙min−1∙g−1, rCO = 28.71 mmol∙min−1∙g−1 | |
7 | Ni/TaC | 500 | 150 | Yes | CO yield ~40%, H2 yield ~35% | |
8 | Ni/Ga2O3 | 391 | 27 | Yes | rH2 ≈ 200 μmol∙min−1∙g−1, rCO = 210 μmol∙min−1∙g−1 | |
9 | (Ni/CeO2)@SiO2 | 750 | NA | Yes | CCH4 = 74%, CCO2 = 82% | |
10 | Ni/Mg-Al2O3 | NA | NA | No | rH2 = 69.71 mmol∙min−1∙g−1, rCO = 74.57 mmol∙min−1∙g−1 | |
11 | Ni/CeO2−x | 400 | 7.9 | No | rCH4 = 0.21 mmol∙min−1∙g−1, rCO2 = 0.75 mmol∙min−1∙g−1 | |
12 | Ni3Fe1Al-LDH | 350 | 36.2 | No | rH2 + rCO = 0.96 mol∙g−1∙h−1 | |
13 | Ni-CeO2/ZrO2 | 700 | 30 | Yes | rH2 = 713 mmol∙h−1∙g−1, rCO = 693 mmol∙h−1∙g−1 | |
14 | Ni/mesoporous TiO2 | 600 | NA | Yes | rH2 = 95.34 mmol∙h−1∙g−1, rCO = 131.72 mmol∙h−1∙g−1 |
Fig 3
Catalytic activity and characterization of Ni/Al2O3 with different loadings: (a) CH4 and (b) CO2 conversion rate as a function of light intensity, (c) electromagnetic field distribution and enhanced cross-sectional diagram simulated by FDTD method 32. Adapted with permission from Ref. 32, Copyright 2017, Elsevier B.V."
Fig 6
Schematic illustration of the mechanism of (a) carbon deposition for Ni/Al2O3 and (b) carbon deposition inhibition induced by a fence of CO2 molecules (strongly adsorbed on Mg-doped Al2O3) around Ni nanoparticle for Ni/Mg-Al2O3 40. Reproduced with permission from Ref. 40, Copyright 2022, John Wiley and Sons."
1 |
Noor, Z. Z.; Yusuf, R. O.; Abba, A. H.; Abu Hassan, M. A.; Din, M. F. M. Renew. Sustain. Energy Rev. 2013, 20, 378.
doi: 10.1016/j.rser.2012.11.050 |
2 |
Yusuf, R. O.; Noor, Z. Z.; Abba, A. H.; Abu Hassan, M. A.; Din, M. F. M. Renew. Sustain. Energy Rev. 2012, 16, 5059.
doi: 10.1016/j.rser.2012.04.008 |
3 |
Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R.; et al. Science 2016, 351, 1065.
doi: 10.1126/science.aaf1835 |
4 |
Zhong, L. S.; Yu, F.; An, Y. L.; Zhao, Y. H.; Sun, Y. H.; Li, Z. J.; Lin, T. J.; Lin, Y. J.; Qi, X. Z.; Dai, Y. Y.; et al. Nature 2016, 538, 84.
doi: 10.1038/nature19786 |
5 |
Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507.
doi: 10.1038/417507a |
6 |
Kroll, V. C. H.; Swaan, H. M.; Mirodatos, C. J. Catal. 1996, 161, 409.
doi: 10.1006/jcat.1996.0199 |
7 |
He, C.; Wu, S.; Wang, L.; Zhang, J. J. Photochem. Photobiol. C 2022, 51, 100468.
doi: 10.1016/j.jphotochemrev.2021.100468 |
8 |
Li, M.; Sun, Z.; Hu, Y. H. Chem. Eng. J. 2022, 428, 131222.
doi: 10.1016/j.cej.2021.131222 |
9 |
Wu, S.; Li, Y.; Hu, Q.; Wu, J.; Zhang, Q. ACS Sustain. Chem. Eng. 2021, 9, 11635.
doi: 10.1021/acssuschemeng.1c03692 |
10 |
Wang, C.; Su, Y.; Tavasoli, A.; Sun, W.; Wang, L.; Ozin, G. A.; Yang, D. Mater. Today Nano 2021, 14, 100113.
doi: 10.1016/j.mtnano.2021.100113 |
11 |
Ning, S.; Sun, Y.; Ouyang, S.; Qi, Y.; Ye, J. Appl. Catal. B 2022, 310, 121063.
doi: 10.1016/j.apcatb.2022.121063 |
12 |
Aramouni, N. A. K.; Touma, J. G.; Abu Tarboush, B.; Zeaiter, J.; Ahmad, M. N. Renew. Sustain. Energy Rev. 2018, 82, 2570.
doi: 10.1016/j.rser.2017.09.076 |
13 |
Theofanidis, S. A.; Galvita, V. V.; Poelman, H.; Marin, G. B. ACS Catal. 2015, 5, 3028.
doi: 10.1021/acscatal.5b00357 |
14 |
Zhang, S. R.; Nguyen, L.; Liang, J. X.; Shan, J. J.; Liu, J. Y.; Frenkel, A. I.; Patlolla, A.; Huang, W. X.; Li, J.; Tao, F. Nat. Commun. 2015, 6, 1.
doi: 10.1038/ncomms8938 |
15 |
Bian, Z. F.; Das, S.; Wai, M. H.; Hongmanorom, P.; Kawi, S. ChemPhysChem 2017, 18, 3117.
doi: 10.1002/cphc.201700529 |
16 |
Zubenko, D.; Singh, S.; Rosen, B. Appl. Catal. B 2017, 209, 711.
doi: 10.1016/j.apcatb.2017.03.047 |
17 |
Song, Y.; Ozdemir, E.; Ramesh, S.; Adishev, A.; Subramanian, S.; Harale, A.; Albuali, M.; Fadhel, B.; Jamal, A.; Moon, D.; et al. Science 2020, 367, 777.
doi: 10.1126/science.aav2412 |
18 |
Naeem, M. A.; Abdala, P. M.; Armutlulu, A.; Kim, S. M.; Fedorov, A.; Mueller, C. R. ACS Catal. 2020, 10, 1923.
doi: 10.1021/acscatal.9b04555 |
19 |
Das, S.; Perez-Ramirez, J.; Gong, J.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Chem. Soc. Rev. 2020, 49, 2937.
doi: 10.1039/c9cs00713j |
20 |
Li, Z.; Li, M.; Bian, Z.; Kathiraser, Y.; Kawi, S. Appl. Catal. B 2016, 188, 324.
doi: 10.1016/j.apcatb.2016.01.067 |
21 |
Fujishima, A.; Honda, K. Nature 1972, 238, 37.
doi: 10.1038/238037a0 |
22 |
Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Science 2015, 347, 970.
doi: 10.1126/science.aaa3145 |
23 |
Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520.
doi: 10.1039/c3cs60378d |
24 |
Han, F.; Kambala, V. S. R.; Srinivasan, M.; Rajarathnam, D.; Naidu, R. Appl. Catal. A 2009, 359, 25.
doi: 10.1016/j.apcata.2009.02.043 |
25 |
Byrne, C.; Subramanian, G.; Pillai, S. C. J. Environ. Chem. Eng. 2018, 6, 3531.
doi: 10.1016/j.jece.2017.07.080 |
26 |
Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Chem. Rev. 2019, 119, 3962.
doi: 10.1021/acs.chemrev.8b00400 |
27 |
Ding, M.; Flaig, R. W.; Jiang, H.-L.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783.
doi: 10.1039/c8cs00829a |
28 |
Tahir, B.; Tahir, M.; Amin, N. A. S. Appl. Surf. Sci. 2017, 419, 875.
doi: 10.1016/j.apsusc.2017.05.117 |
29 |
Tahir, M.; Tahir, B.; Zakaria, Z. Y.; Muhammad, A. J. Cleaner Prod. 2019, 213, 451.
doi: 10.1016/j.jclepro.2018.12.169 |
30 |
Yang, Y.; Tan, H. Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Ho, W. K. Small Methods 2021, 5, 2001042.
doi: 10.1002/smtd.202001042 |
31 |
Liu, H.; Meng, X.; Thang Duy, D.; Liu, L.; Li, P.; Zhao, G.; Nagao, T.; Yang, L.; Ye, J. J. Mater. Chem. A 2017, 5, 10567.
doi: 10.1039/c7ta00704c |
32 |
Liu, H.; Thang Duy, D.; Liu, L.; Meng, X.; Nagaoa, T.; Ye, J. Appl. Catal. B 2017, 209, 183.
doi: 10.1016/j.apcatb.2017.02.080 |
33 |
Zhang, Q.; Mao, M.; Li, Y.; Yang, Y.; Huang, H.; Jiang, Z.; Hu, Q.; Wu, S.; Zhao, X. Appl. Catal. B 2018, 239, 555.
doi: 10.1016/j.apcatb.2018.08.052 |
34 |
Liu, H.; Song, H.; Meng, X.; Yang, L.; Ye, J. Catal. Today 2019, 335, 187.
doi: 10.1016/j.cattod.2018.11.005 |
35 |
Zhang, Q.; Jiang, Z.; Li, Y.; Zhang, Q.; Yang, Y.; Wu, S.; Wu, J.; Zhao, X. J. Mater. Chem. A 2019, 7, 4881.
doi: 10.1039/c9ta00259f |
36 |
Zhang, Q.; Li, Y.; Wu, S.; Wu, J.; Jiang, Z.; Yang, Y.; Ren, L.; Zhao, X. J. Mater. Chem. A 2019, 7, 19800.
doi: 10.1039/c9ta06923b |
37 |
Takeda, K.; Yamaguchi, A.; Cho, Y.; Anjaneyulu, O.; Fujita, T.; Abe, H.; Miyauchi, M. Global Chall. 2020, 4, 1900067.
doi: 10.1002/gch2.201900067 |
38 |
Rao, Z.; Cao, Y.; Huang, Z.; Yin, Z.; Wan, W.; Ma, M.; Wu, Y.; Wang, J.; Yang, G.; Cui, Y.; et al. ACS Catal. 2021, 11, 4730.
doi: 10.1021/acscatal.0c04826 |
39 |
Han, K.; Wang, Y.; Wang, S.; Liu, Q.; Deng, Z.; Wang, F. Chem. Eng. J. 2021, 421, 129989.
doi: 10.1016/j.cej.2021.129989 |
40 |
Tan, X.; Wu, S.; Li, Y.; Zhang, Q.; Hu, Q.; Wu, J.; Zhang, A.; Zhang, Y. Energy Environ. Mater. 2022, 5, 582.
doi: 10.1002/eem2.12193 |
41 |
Lorber, K.; Zavasnik, J.; Sancho-Parramon, J.; Bubas, M.; Mazaj, M.; Djinovic, P. Appl. Catal. B 2022, 301, 120745.
doi: 10.1016/j.apcatb.2021.120745 |
42 |
Zhao, J.; Guo, X.; Shi, R.; Waterhouse, G. I. N.; Zhang, X.; Dai, Q.; Zhang, T. Adv. Funct. Mater. 2022, 32, 2204056.
doi: 10.1002/adfm.202204056 |
43 |
Du, Z.; Pan, F.; Yang, X.; Fang, L.; Gang, Y.; Fang, S.; Li, T.; Hu, Y. H.; Li, Y. Catal. Today 2023, 409, 31.
doi: 10.1016/j.cattod.2022.05.014 |
44 |
Xie, T.; Zhang, Z.-Y.; Zheng, H.-Y.; Xu, K.-D.; Hu, Z.; Lei, Y. Chem. Eng. J. 2022, 429, 132507.
doi: 10.1016/j.cej.2021.132507 |
45 |
Han, B.; Wei, W.; Chang, L.; Cheng, P. F.; Hu, Y. H. ACS Catal. 2016, 6, 494.
doi: 10.1021/acscatal.5b02653 |
46 |
Liu, H.; Song, H.; Zhou, W.; Meng, X.; Ye, J. Angew. Chem. Int. Ed. 2018, 57, 16781.
doi: 10.1002/anie.201810886 |
47 |
Song, H.; Meng, X.; Dao, T. D.; Zhou, W.; Liu, H.; Shi, L.; Zhang, H.; Nagao, T.; Kako, T.; Ye, J. ACS Appl. Mater. Interfaces 2018, 10, 408.
doi: 10.1021/acsami.7b13043 |
48 |
Liu, H.; Meng, X.; Thang Duy, D.; Zhang, H.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J. Angew. Chem. Int. Ed. 2015, 54, 11545.
doi: 10.1002/anie.201504933 |
49 |
hoji, S.; Peng, X.; Yamaguchi, A.; Watanabe, R.; Fukuhara, C.; Cho, Y.; Yamamoto, T.; Matsumura, S.; Yu, M. -W.; Ishii, S.; et al. Nat. Catal. 2020, 3, 148.
doi: 10.1038/s41929-019-0419-z |
50 |
Cho, Y.; Shoji, S.; Yamaguchi, A.; Hoshina, T.; Fujita, T.; Abe, H.; Miyauchi, M. Chem. Commun. 2020, 56, 4611.
doi: 10.1039/d0cc00729c |
51 |
Liu, H.; Li, M.; Thang Duy, D.; Liu, Y.; Zhou, W.; Liu, L.; Meng, X.; Nagao, T.; Ye, J. Nano Energy 2016, 26, 398.
doi: 10.1016/j.nanoen.2016.05.045 |
52 |
Zhou, L.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M.; Dong, L.; Henderson, L.; et al. Nat. Energy 2020, 5, 61.
doi: 10.1038/s41560-019-0517-9 |
53 |
Wu, S.; Li, Y.; Zhang, Q.; Jiang, Z.; Yang, Y.; Wu, J.; Zhao, X. Energy Environ. Sci. 2019, 12, 2581.
doi: 10.1039/c9ee01484e |
54 | He, K.; Shen, R.; Hao, L.; Li, Y.; Zhang, P.; Jiang, J.; Li, X. Acta Phys. -Chim. Sin. 2022, 38, 2201021. |
何科林, 沈荣晨, 郝磊, 李佑稷, 张鹏, 江吉周, 李鑫. 物理化学学报, 2022, 38, 2201021.
doi: 10.3866/PKU.WHXB202201021 |
|
55 |
Ma, J.; Long, R.; Liu, D.; Low, J. X.; Xiong, Y. J. Small Struct. 2022, 3, 2100147.
doi: 10.1002/sstr.202100147 |
56 | Liu, Y.; Duan, Z.; Li, J.; Chan, C. 2021 Phys. -Chim. Sin. 2018, 37, 2011012. |
刘源, 段增晖, 李隽, 常春然. 物理化学学报, 2018, 37, 2011012.
doi: 10.3866/PKU.WHXB202011012 |
[1] | Chengcheng Zhang, Zhiyi Wu, Jiahui Shen, Le He, Wei Sun. Silicon Nanostructure Arrays: An Emerging Platform for Photothermal CO2 Catalysis [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304004-. |
[2] | Qianwei Song, Guanchao He, Huilong Fei. Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212038-0. |
[3] | Qian Yin, Huiting Song, Ming Xu, Hong Yan, Yufei Zhao, Xue Duan. Thermal Decomposition of Carbonates Coupled with Dry Reforming of Methane to Synthesize High-Value Products: A Perspective [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210026-0. |
[4] | ZHANG Xiao-Qing, XU Yan YAN, YANG Chun-Hui, ZHANG Yan-Ping, YIN Yong-Xiang, SHANG Shu-Yong. In-situ Co-Precipitation of Ni-Mg-Al-LDH Catalytic Precursor on γ-Al2O3 for Dry Reforming of Methane: Synthesis and Evaluation [J]. Acta Phys. -Chim. Sin., 2015, 31(5): 948-954. |
[5] | XU Jun-Ke; LI Zhao-Jing; WANG Ji-Hui; ZHOU Wei; MA Jian-Xin. Characterization and Analysis of Carbon Deposited on the Surface of Ni/Al2O3 Catalyst for Methane Dry Reforming [J]. Acta Phys. -Chim. Sin., 2009, 25(02): 253-260. |
|