Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (10): 2205032.doi: 10.3866/PKU.WHXB2022205032
Special Issue: Catalytic Conversion of Biomass
• REVIEW • Previous Articles Next Articles
Wei Wang, Yao Wang, Zixiang Zhan, Tian Tan, Weiping Deng(), Qinghong Zhang, Ye Wang()
Received:
2022-05-14
Accepted:
2022-06-01
Published:
2022-06-06
Contact:
Weiping Deng,Ye Wang
E-mail:dengwp@xmu.edu.cn;wangye@xmu.edu.cn
About author:
Email: wangye@xmu.edu.cn (Y.W.). Tel.: +86-592-2186156 (Y.W.)Supported by:
Wei Wang, Yao Wang, Zixiang Zhan, Tian Tan, Weiping Deng, Qinghong Zhang, Ye Wang. Heterogeneous Catalysis for Deoxygenation of Cellulose and Its Derivatives to Chemicals[J]. Acta Phys. -Chim. Sin. 2022, 38(10), 2205032. doi: 10.3866/PKU.WHXB2022205032
1 |
HuberG. W.;IborraS.;CormaA.Chem. Rev.2006,106,4044.
doi: 10.1021/cr068360d |
2 |
LinY. C.;HuberG. W.Energy Environ. Sci.2009,2(1),68.
doi: 10.1039/b814955k |
3 |
AlonsoD. M.;WettsteinS. G.;DumesicJ. A.Chem. Soc. Rev.2012,41(24),8075.
doi: 10.1039/c2cs35188a |
4 |
LiC.;ZhaoX.;WangA.;HuberG. W.;ZhangT.Chem. Rev.2015,115(21),11559.
doi: 10.1021/acs.chemrev.5b00155 |
5 |
ZhangZ.;SongJ.;HanB.Chem. Rev.2017,117(10),6834.
doi: 10.1021/acs.chemrev.6b00457 |
6 |
LiS.;DengW.;WangS.;WangP.;AnD.;LiY.;ZhangQ.;WangY.ChemSusChem2018,11(13),1995.
doi: 10.1002/cssc.201800440 |
7 |
LiS.;DengW.;LiY.;ZhangQ.;WangY.J. Energy Chem.2019,32,138.
doi: 10.1016/j.jechem.2018.07.012 |
8 |
JingY.;GuoY.;XiaQ.;LiuX.;WangY.Chem2019,5(10),2520.
doi: 10.1016/j.chempr.2019.05.022 |
9 |
WuX.;LuoN.;XieS.;ZhangH.;ZhangQ.;WangF.;WangY.Chem. Soc. Rev.2020,49(17),6198.
doi: 10.1039/d0cs00314j |
10 |
WongS. S.;ShuR.;ZhangJ.;LiuH.;YanN.Chem. Soc. Rev.2020,49(15),5510.
doi: 10.1039/d0cs00134a |
11 |
HeM.;SunY.;HanB.Angew. Chem. Int. Ed.2022,61(15),e202112835.
doi: 10.1002/anie.202112835 |
12 |
MikaL. T.;CsefalvayE.;NemethA.Chem. Rev.2018,118(2),505.
doi: 10.1021/acs.chemrev.7b00395 |
13 |
LiC.;ZhaoZ. K.Adv. Synth. Catal.2007,349(11–12),1847.
doi: 10.1002/adsc.200700259 |
14 |
LiC.;WangQ.;ZhaoZ. K.Green Chem.2008,10(2),177.
doi: 10.1039/b711512a |
15 |
RinaldiR.;PalkovitsR.;SchuthF.Angew. Chem. Int. Ed.2008,47(42),8047.
doi: 10.1002/anie.200802879 |
16 |
SongH.;WangP.;LiS.;DengW.;LiY.;ZhangQ.;WangY.Chem. Commun.2019,55(30),4303.
doi: 10.1039/c9cc00619b |
17 |
YangM.;QiH.;LiuF.;RenY.;PanX.;ZhangL.;LiuX.;WangH.;PangJ.;ZhengM.;et alJoule2019,3(8),1937.
doi: 10.1016/j.joule.2019.05.020 |
18 |
LiC.;XuG.;WangC.;MaL.;QiaoY.;ZhangY.;FuY.Green Chem.2019,21(9),2234.
doi: 10.1039/c9gc00719a |
19 |
LiuQ.;WangH.;XinH.;WangC.;YanL.;WangY.;ZhangQ.;ZhangX.;XuY.;HuberG. W.;et alChemSusChem2019,12(17),3977.
doi: 10.1002/cssc.201901110 |
20 |
XiaQ.;ChenZ.;ShaoY.;GongX.;WangH.;LiuX.;ParkerS. F.;HanX.;YangS.;WangY.Nat. Commun.2016,7,11162.
doi: 10.1038/ncomms11162 |
21 |
XuC.;PaoneE.;Rodriguez-PadronD.;LuqueR.;MaurielloF.Chem. Soc. Rev.2020,49(13),4273.
doi: 10.1039/d0cs00041h |
22 |
SubramaniV.;GangwalS. K.Energy Fuels2008,22(2),814.
doi: 10.1021/ef700411x |
23 |
KennesD.;AbubackarH. N.;DiazM.;VeigaM. C.;KennesC.J. Chem. Technol. Biotechnol.2016,91(2),304.
doi: 10.1002/jctb.4842 |
24 |
XuG.;WangA.;PangJ.;ZhaoX.;XuJ.;LeiN.;WangJ.;ZhengM.;YinJ.;ZhangT.ChemSusChem2017,10(7),1390.
doi: 10.1002/cssc.201601714 |
25 |
YangC.;MiaoZ.;ZhangF.;LiL.;LiuY.;WangA.;ZhangT.Green Chem.2018,20(9),2142.
doi: 10.1039/c8gc00309b |
26 |
LuoC.;WangS.;LiuH.Angew. Chem. Int. Ed.2007,46(40),7636.
doi: 10.1002/anie.200702661 |
27 |
WuY.;DongC.;WangH.;PengJ.;LiY.;SamartC.;DingM.ACS Sustainable Chem. Eng.2022,10(8),2802.
doi: 10.1021/acssuschemeng.1c08204 |
28 |
ChuD.;LuoZ.;XinY.;JiangC.;GaoS.;WangZ.;ZhaoC.Fuel2021,292,120311.
doi: 10.1016/j.fuel.2021.120311 |
29 |
ChapmanG.;Jr.;NicholasK. M.Chem. Commun.2013,49(74),8199.
doi: 10.1039/c3cc44656e |
30 |
ShiramizuM.;TosteF. D.Angew. Chem. Int. Ed.2013,52(49),12905.
doi: 10.1002/anie.201307564 |
31 |
LiX.;WuD.;LuT.;YiG.;SuH.;ZhangY.Angew. Chem. Int. Ed.2014,53(16),4200.
doi: 10.1002/anie.201310991 |
32 |
GopaladasuT. V.;NicholasK. M.ACS Catal.2016,6(3),1901.
doi: 10.1021/acscatal.5b02667 |
33 |
RajuS.;MoretM.-E.;Klein GebbinkR. J. M.ACS Catal.2014,5(1),281.
doi: 10.1021/cs501511x |
34 |
DethlefsenJ. R.;FristrupP.ChemSusChem2015,8(5),767.
doi: 10.1002/cssc.201402987 |
35 |
DenningA. L.;DangH.;LiuZ.;NicholasK. M.;JentoftF. C.ChemCatChem2013,5(12),3567.
doi: 10.1002/cctc.201300545 |
36 |
SandbrinkL.;KlindtworthE.;IslamH.-U.;BealeA. M.;PalkovitsR.ACS Catal.2015,6(2),677.
doi: 10.1021/acscatal.5b01936 |
37 |
JangJ. H.;SohnH.;Camacho-BunquinJ.;YangD.;ParkC. Y.;DelferroM.;Abu-OmarM. M.ACS Sustainable Chem. Eng.2019,7(13),11438.
doi: 10.1021/acssuschemeng.9b01253 |
38 |
MeinersI.;LouvenY.;PalkovitsR.ChemCatChem2021,13(10),2393.
doi: 10.1002/cctc.202100277 |
39 |
TazawaS.;OtaN.;TamuraM.;NakagawaY.;OkumuraK.;TomishigeK.ACS Catal.2016,6(10),6393.
doi: 10.1021/acscatal.6b01864 |
40 |
NakagawaY.;TazawaS.;WangT.;TamuraM.;HiyoshiN.;OkumuraK.;TomishigeK.ACS Catal.2017,8(1),584.
doi: 10.1021/acscatal.7b02879 |
41 |
CaoJ.;TamuraM.;NakagawaY.;TomishigeK.ACS Catal.2019,9(4),3725.
doi: 10.1021/acscatal.9b00589 |
42 |
YamaguchiK.;CaoJ.;BetchakuM.;NakagawaY.;TamuraM.;NakayamaA.;YabushitaM.;TomishigeK.ChemSusChem2022,e202102663.
doi: 10.1002/cssc.202102663 |
43 |
OtaN.;TamuraM.;NakagawaY.;OkumuraK.;TomishigeK.Angew. Chem. Int. Ed.2015,54(6),1897.
doi: 10.1002/anie.201410352 |
44 |
OtaN.;TamuraM.;NakagawaY.;OkumuraK.;TomishigeK.ACS Catal.2016,6(5),3213.
doi: 10.1021/acscatal.6b00491 |
45 |
TamuraM.;YuasaN.;CaoJ.;NakagawaY.;TomishigeK.Angew. Chem. Int. Ed.2018,57(27),8058.
doi: 10.1002/anie.201803043 |
46 |
LarsonR. T.;SamantA.;ChenJ.;LeeW.;BohnM. A.;OhlmannD. M.;ZuendS. J.;TosteF. D.J. Am. Chem. Soc.2017,139(40),14001.
doi: 10.1021/jacs.7b07801 |
47 |
LinJ.;SongH.;ShenX.;WangB.;XieS.;DengW.;WuD.;ZhangQ.;WangY.Chem. Commun.2019,55(74),11017.
doi: 10.1039/c9cc05413h |
48 |
DengW.;YanL.;WangB.;ZhangQ.;SongH.;WangS.;ZhangQ.;WangY.Angew. Chem. Int. Ed.2021,60(9),4712.
doi: 10.1002/anie.202013843 |
49 |
Roman-LeshkovY.;BarrettC. J.;LiuZ. Y.;DumesicJ. A.Nature2007,447(7147),982.
doi: 10.1038/nature05923 |
50 |
HuL.;TangX.;XuJ.;WuZ.;LinL.;LiuS.Ind. Eng. Chem. Res.2014,53(8),3056.
doi: 10.1021/ie404441a |
51 |
HuangY. B.;ChenM. Y.;YanL.;GuoQ. X.;FuY.ChemSusChem2014,7(4),1068.
doi: 10.1002/cssc.201301356 |
52 |
LuoJ.;Arroyo‐RamírezL.;GorteR. J.;TzoulakiD.;VlachosD. G.AIChE J.2014,61(2),590.
doi: 10.1002/aic.14660 |
53 |
LinZ.;WanW.;YaoS.;ChenJ. G.Appl. Catal. B-Environ.2018,233,160.
doi: 10.1016/j.apcatb.2018.03.113 |
54 |
DengY.;GaoR.;LinL.;LiuT.;WenX. D.;WangS.;MaD.J. Am. Chem. Soc.2018,140(43),14481.
doi: 10.1021/jacs.8b09310 |
55 |
ThananatthanachonT.;RauchfussT. B.Angew. Chem. Int. Ed.2010,49(37),6616.
doi: 10.1002/anie.201002267 |
56 |
SahaB.;BohnC. M.;Abu-OmarM. M.ChemSusChem2014,7(11),3095.
doi: 10.1002/cssc.201402530 |
57 |
LiJ.;LiuJ. L.;LiuH. Y.;XuG. Y.;ZhangJ. J.;LiuJ. X.;ZhouG. L.;LiQ.;XuZ. H.;FuY.ChemSusChem2017,10(7),1436.
doi: 10.1002/cssc.201700105 |
58 |
ChimentãoR. J.;OlivaH.;BelmarJ.;MoralesK.;Mäki-ArvelaP.;WärnåJ.;MurzinD. Y.;FierroJ. L. G.;LlorcaJ.;RuizD.Appl. Catal. B-Environ.2019,241,270.
doi: 10.1016/j.apcatb.2018.09.026 |
59 |
YangY.;LiuH.;LiS.;ChenC.;WuT.;MeiQ.;WangY.;ChenB.;LiuH.;HanB.ACS Sustainable Chem. Eng.2019,7(6),5711.
doi: 10.1021/acssuschemeng.8b04937 |
60 |
YangF.;MaoJ.;LiS.;YinJ.;ZhouJ.;LiuW.Catal. Sci. Technol.2019,9(6),1329.
doi: 10.1039/c9cy00330d |
61 |
LiC.;CaiH.;ZhangB.;LiW.;PeiG.;DaiT.;WangA.;ZhangT.Chin. J. Catal.2015,36(9),1638.
doi: 10.1016/s1872-2067(15)60927-5 |
62 |
WangQ.;GuanX.;KangL.;WangB.;ShengL.;WangF. R.ACS Appl. Mater. Interfaces2020,12,53712.
doi: 10.1021/acsami.0c11888 |
63 |
YuL.;HeL.;ChenJ.;ZhengJ.;YeL.;LinH.;YuanY.ChemCatChem2015,7(11),1701.
doi: 10.1002/cctc.201500097 |
64 |
SolankiB. S.;RodeC. V.Green Chem.2019,21(23),6390.
doi: 10.1039/c9gc03091c |
65 |
WangG. H.;HilgertJ.;RichterF. H.;WangF.;BongardH. J.;SpliethoffB.;WeidenthalerC.;SchuthF.Nat. Mater.2014,13(3),293.
doi: 10.1038/nmat3872 |
66 |
ZuY.;YangP.;WangJ.;LiuX.;RenJ.;LuG.;WangY.Appl. Catal. B- Environ.2014,146,244.
doi: 10.1016/j.apcatb.2013.04.026 |
67 |
GuoW.;LiuH.;ZhangS.;HanH.;LiuH.;JiangT.;HanB.;WuT.Green Chem.2016,18(23),6222.
doi: 10.1039/c6gc02630c |
68 |
YangP.;XiaQ.;LiuX.;WangY.J. Energy. Chem.2016,25(6),1015.
doi: 10.1016/j.jechem.2016.08.008 |
69 |
ChangX.;LiuA. F.;CaiB.;LuoJ. Y.;PanH.;HuangY. B.ChemSusChem2016,9(23),3330.
doi: 10.1002/cssc.201601122 |
70 |
LuoJ.;YunH.;MironenkoA. V.;GoulasK.;LeeJ. D.;MonaiM.;WangC.;VorotnikovV.;MurrayC. B.;VlachosD. G.;et alACS Catal.2016,6(7),4095.
doi: 10.1021/acscatal.6b00750 |
71 |
LuoJ.;LeeJ. D.;YunH.;WangC.;MonaiM.;MurrayC. B.;FornasieroP.;GorteR. J.Appl. Catal. B-Environ.2016,199,439.
doi: 10.1016/j.apcatb.2016.06.051 |
72 |
SrivastavaS.;JadejaG. C.;ParikhJ.Chin. J. Catal.2017,38(4),699.
doi: 10.1016/s1872-2067(17)62789-x |
73 |
LuoJ.;MonaiM.;WangC.;LeeJ. D.;DuchoňT.;DvořákF.;MatolínV.;MurrayC. B.;FornasieroP.;GorteR. J.Catal. Sci. Technol.2017,7(8),1735.
doi: 10.1039/c6cy02647h |
74 |
GaoZ.;FanG.;LiuM.;YangL.;LiF.Appl. Catal. B-Environ.2018,237,649.
doi: 10.1016/j.apcatb.2018.06.026 |
75 |
LiJ.;SongZ.;HouY.;LiZ.;XuC.;LiuC. L.;DongW. S.ACS Appl. Mater. Interfaces2019,11(13),12481.
doi: 10.1021/acsami.8b22183 |
76 |
ZhangZ.;YaoS.;WangC.;LiuM.;ZhangF.;HuX.;ChenH.;GouX.;ChenK.;ZhuY.;et alJ. Catal.2019,373,314.
doi: 10.1016/j.jcat.2019.04.011 |
77 |
MhadmhanS.;FrancoA.;PinedaA.;ReubroycharoenP.;LuqueR.ACS Sustainable Chem. Eng.2019,7(16),14210.
doi: 10.1021/acssuschemeng.9b03017 |
78 |
WangQ.;FengJ.;ZhengL.;WangB.;BiR.;HeY.;LiuH.;LiD.ACS Catal.2019,10(2),1353.
doi: 10.1021/acscatal.9b03630 |
79 |
GanT.;LiuY.;HeQ.;ZhangH.;HeX.;JiH.ACS Sustainable Chem. Eng.2020,8(23),8692.
doi: 10.1021/acssuschemeng.0c02065 |
80 |
LiS.;DongM.;PengM.;MeiQ.;WangY.;YangJ.;YangY.;ChenB.;LiuS.;XiaoD.;et alThe Innov.2022,3(1),100189.
doi: 10.1016/j.xinn.2021.100189 |
81 |
BuntaraT.;NoelS.;PhuaP. H.;Melian-CabreraI.;de VriesJ. G.;HeeresH. J.Angew. Chem. Int. Ed.2011,50(31),7083.
doi: 10.1002/anie.201102156 |
82 |
ChiaM.;Pagan-TorresY. J.;HibbittsD.;TanQ.;PhamH. N.;DatyeA. K.;NeurockM.;DavisR. J.;DumesicJ. A.J. Am. Chem. Soc.2011,133(32),12675.
doi: 10.1021/ja2038358 |
83 |
BuntaraT.;NoelS.;PhuaP. H.;Melián-CabreraI.;de VriesJ. G.;HeeresH. J.Top. Catal.2012,55(7–10),612.
doi: 10.1007/s11244-012-9839-6 |
84 |
HeJ.;BurtS. P.;BallM.;ZhaoD.;HermansI.;DumesicJ. A.;HuberG. W.ACS Catal.2018,8(2),1427.
doi: 10.1021/acscatal.7b03593 |
85 |
HeJ.;BurtS. P.;BallM. R.;HermansI.;DumesicJ. A.;HuberG. W.Appl. Catal. B-Environ.2019,258,117945.
doi: 10.1016/j.apcatb.2019.117945 |
86 |
XiaoB.;ZhengM.;LiX.;PangJ.;SunR.;WangH.;PangX.;WangA.;WangX.;ZhangT.Green Chem.2016,18(7),2175.
doi: 10.1039/c5gc02228b |
87 |
TutejaJ.;ChoudharyH.;NishimuraS.;EbitaniK.ChemSusChem2014,7(1),96.
doi: 10.1002/cssc.201300832 |
88 | Boussie, T. R.; Dias, E. L.; Fresco, Z. M.; Murphy, V. J. Production of Adipic Acid and Derivatives from Carbohydrate- Containing Materials. US Patent 0317822 A1, 2010. |
89 |
GilkeyM. J.;MironenkoA. V.;VlachosD. G.;XuB.ACS Catal.2017,7(10),6619.
doi: 10.1021/acscatal.7b01753 |
90 |
GilkeyM. J.;BalakumarR.;VlachosD. G.;XuB.Catal. Sci. Technol.2018,8(10),2661.
doi: 10.1039/c8cy00379c |
91 |
Vy TranA.;ParkS. K.;Jin LeeH.;Yong KimT.;KimY.;SuhY. W.;LeeK. Y.;Jin KimY.;BaekJ.ChemSusChem2022,e202200375.
doi: 10.1002/cssc.202200375 |
92 |
AsanoT.;TamuraM.;NakagawaY.;TomishigeK.ACS Sustainable Chem. Eng.2016,4(12),6253.
doi: 10.1021/acssuschemeng.6b01640 |
93 |
WeiL.;ZhangJ.;DengW.;XieS.;ZhangQ.;WangY.Chem. Commun.2019,55(55),8013.
doi: 10.1039/c9cc02877c |
[1] | Rui Hao, Weixiang Guan, Fei Liu, Leilei Zhang, Aiqin Wang. Reaction Mechanism of Cellulose Conversion to Lactic Acid with Lewis Acid Catalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(10): 2205027-. |
[2] | Yunbo Zhang, Qiaowei Lin, Junwei Han, Zhiyuan Han, Tong Li, Feiyu Kang, Quan-Hong Yang, Wei Lü. Bacterial Cellulose-Derived Three-Dimensional Carbon Current Collectors for Dendrite-Free Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008088-. |
[3] | Xu-Chun WANG,Jin-Ze LI,Guang-Yong LI,Jin WANG,Xue-Tong ZHANG,Qiang GUO. Fabrication and Performance of Various Aerogel Microspheres [J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2141-2152. |
[4] | Yin WANG,Feng-Ling SUN,Xiao-Dong ZHANG,Hong TAO,Yi-Qiong YANG. Microwave-Assisted Synthesis of Esterified Bacterial Celluloses to Effectively Remove Pb(Ⅱ) [J]. Acta Phys. -Chim. Sin., 2016, 32(3): 753-762. |
[5] | MA Hao, LONG Jin-Xing, WANG Fu-Rong, WANG Le-Fu, LI Xue-Hui. Conversion of Cellulose to Butyl Levulinate in Bio-Butanol Medium Catalyzed by Acidic Ionic Liquids [J]. Acta Phys. -Chim. Sin., 2015, 31(5): 973-979. |
[6] | ZHU Li-Ying, YAN Xiao-Qin, ZHANG Hong-Man, LIN Dong-Qiang, YAO Shan-Jing, JIANG Ling. Determination of Apparent Drug Permeability Coefficients through Chitosan-Sodium Cellulose Sulfate Polyelectrolyte Complex Films [J]. Acta Phys. -Chim. Sin., 2014, 30(2): 365-370. |
[7] | LI Ya-Jing, SUN Xiao-Feng, YE Qing, LIU Bai-Chen, WU Yao-Guo. Preparation and Properties of a Novel Hemicellulose-Based Magnetic Hydrogel [J]. Acta Phys. -Chim. Sin., 2014, 30(1): 111-120. |
[8] | LIU Ying, MENG Xiang-Guang, YU Wei-Feng, LI Xiao-Hong, PENG Xiao. Hydrolysis of Methyl-β-D-cellobioside Catalyzed by Functional Micelles with Glutamic Acid under Mild Conditions [J]. Acta Phys. -Chim. Sin., 2013, 29(10): 2263-2270. |
[9] | CHEN Chong, CHEN Xiang-Ying, XIE Dong-Hua. Synthesis of Nitrogen Doped Porous Carbons from Sodium Carboxymethyl Cellulose and the Capacitive Performance [J]. Acta Phys. -Chim. Sin., 2013, 29(01): 102-110. |
[10] | FANG Yun, LAI Zhong-Yu, PANG Ping-Ping, JIANG Ming. pH Responsive Self-Assembly of HPAM-HEC in Aqueous Solution [J]. Acta Phys. -Chim. Sin., 2011, 27(07): 1712-1718. |
[11] | LONG Jin-Xing, GUO Bin, LI Xue-Hui, WANG Fu-Rong, WANG Le-Fu. Catalytic Decomposition of Cellulose in Cooperative Ionic Liquids [J]. Acta Phys. -Chim. Sin., 2011, 27(05): 995-999. |
[12] | WANG Hua-Yu, ZHANG Chang-Bin, HE Hong, WANG Lian. Preparation o fMagnetic Sulfonated Carbon-Based Solid Acid Catalysts for the Hydrolysis of Cellulose [J]. Acta Phys. -Chim. Sin., 2010, 26(07): 1873-1878. |
[13] | BAYOL E., GVRTEN A. A., DURSUN M., KAYAKIRILMAZ K.. Adsorption Behavior and Inhibition Corrosion Effect of Sodium Carboxymethyl Cellulose on Mild Steel in Acidic Medium [J]. Acta Phys. -Chim. Sin., 2008, 24(12): 2236-2242. |
[14] | LIU Qian, WANG Shu-Rong, WANG Kai-Ge, GUO Xiu-Juan, LUO Zhong-Yang, CEN Ke-Fa. Mechanism of Formation and Consequent Evolution of Active Cellulose during Cellulose Pyrolysis [J]. Acta Phys. -Chim. Sin., 2008, 24(11): 1957-1963. |
[15] | WAN Jun-min; HU Zhi-wen; CHEN Wen-xing; ZHENG Shi-rui; LU Sheng-shui; ZHANG Li. Molecular Inclusion Recognition of Dihydroxybenzenes by Cellulose Fibre Grated β-cyclodextrin [J]. Acta Phys. -Chim. Sin., 2006, 22(02): 244-248. |
|