Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (8): 1905039.doi: 10.3866/PKU.WHXB201905039
• Article • Previous Articles Next Articles
Yang Ge1,2, Xulin Mu1,2, Yue Lu1,2,*(), Manling Sui1,2,*(
)
Received:
2019-05-08
Accepted:
2019-06-06
Published:
2020-05-19
Contact:
Yue Lu,Manling Sui
E-mail:luyuerr@163.com;mlsui@bjut.edu.cn
Supported by:
Yang Ge, Xulin Mu, Yue Lu, Manling Sui. Photoinduced Degradation of Lead Halide Perovskite Thin Films in Air[J].Acta Physico-Chimica Sinica, 2020, 36(8): 1905039.
Fig 1
The evolution of CH3NH3PbI3 film after light soaking in air for different time: (a) UV-Vis with insets showing change of film photo and (b) XRD; (c) XRD of CH3NH3PbI3 film in air under dark, air or dry air under light soaking for 2 h, respectively; (d) XRD of PbI2 film after light soaking in air for different time."
Fig 3
(a) Low-magnification HAADF image of the film before light soaking; (b) HAADF image and corresponding element distribution and NBD analysis; (c) Low-magnification HAADF image of the film after light soaking for 2 h; (d) High-magnification HAADF image of (c) and corresponding element distribution and NBD analysis."
Fig 4
(a) High- magnification HAADF image of the film after light soaking for 2 h, the inset showing the corresponding SAED; (b) High-resolution HAADF image of the local region in (a), the inset showing corresponding fast Fourier transform (FFT) of the lattice region; (c, d) The EELS at O(K) edge and I(M4, 5) edge acquired before and after light soaking on film for 2 h."
Fig 5
Schematic diagram of the photodegradation process of CH3NH3PbI3 film in air. (a) Oxygen combines with photogenerated electrons to form O2•−, (b) O2•− induces the degradation of CH3NH3PbI3; (c) PbI2 also transforms into amorphous phase as the illumination time increasing; (d) CH3NH3PbI3 has substantially degraded into the amorphous phase."
1 |
De Wolf S. ; Holovsky J. ; Moon S. J. ; Loper P. ; Niesen B. ; Ledinsky M. ; Haug F. J. ; Yum J. H. ; Ballif C. J. Phys. Chem. Lett. 2014, 5, 1035.
doi: 10.1021/jz500279b |
2 |
Stranks S. D. ; Eperon G. E. ; Grancini G. ; Menelaou C. ; Alcocer M. J. ; Leijtens T. ; Herz L. M. ; Petrozza A. ; Snaith H. J. Science 2013, 342, 341.
doi: 10.1126/science.1243982 |
3 |
Wehrenfennig C. ; Eperon G. E. ; Johnston M. B. ; Snaith H. J. ; Herz L. M. Adv. Mater. 2014, 26, 1584.
doi: 10.1002/adma.201305172 |
4 |
Steirer K. X. ; Schulz P. ; Teeter G. ; Stevanovic V. ; Yang M. ; Zhu K. ; Berry J. J. ACS Energy Lett 2016, 1, 360.
doi: 10.1021/acsenergylett.6b00196 |
5 |
Jeon N. J. ; Noh J. H. ; Kim Y. C. ; Yang W. S. ; Ryu S. ; Seok S. I. Nat. Mater. 2014, 13, 897.
doi: 10.1038/nmat4014 |
6 |
Kojima A. ; Teshima K. ; Shirai Y. ; Miyasaka T. J. Am. Chem. Soc. 2009, 131, 6050.
doi: 10.1021/ja809598r |
7 | https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies (accessed May 1, 2019). |
8 |
Tang X. F. ; Brandl M. ; May B. ; Levchuk I. ; Hou Y. ; Richter M. ; Chen H. W., Chen S., Kahmann S., Osvet A., et al. J. Mater. Chem. A. 2016, 4, 15896.
doi: 10.1039/c6ta06497c |
9 |
Yang J. L. ; Siempelkamp B. D. ; Liu D. Y. ; Kelly T. L. ACS Nano 2015, 9, 1955.
doi: 10.1021/nn506864k |
10 |
Aristidou N. ; Sanchez-Molina I. ; Chotchuangchutchaval T. ; Brown M. ; Martinez L. ; Rath T. ; Haque S. A. Angew. Chem. Int. Ed. 2015, 54, 8208.
doi: 10.1002/anie.201503153 |
11 |
Nie W. ; Tsai H. ; Asadpour R. ; Blancon J. C. ; Neukirch A. J. ; Gupta G. ; Crochet J. J. ; Chhowalla M. ; Tretiak S. ; Alam M. A. ; et al Science 2015, 347, 522.
doi: 10.1126/science.aaa0472 |
12 |
Zhou Y. ; Yang M. ; Vasiliev A. L. ; Garces H. F. ; Zhao Y. ; Wang D. ; Pang S. ; Zhu K. ; Padture N. P. J. Mater. Chem. A. 2015, 3, 9249.
doi: 10.1039/c4ta07036d |
13 |
Chen H. Adv. Funct. Mater. 2017, 27, 1605654.
doi: 10.1002/adfm.201605654 |
14 | Shai X. X. ; Li D. ; Liu S. S. ; Li H. ; Wang M. K. Acta Phys. -Chim. Sin. 2016, 32, 2159. |
晒旭霞; 李丹; 刘双双; 李浩; 王鸣魁. 物理化学学报, 2016, 32, 2159.
doi: 10.3866/PKU.WHXB201606072 |
|
15 |
Rong Y. ; Hu Y. ; Mei A. ; Tan H. ; Saidaminov M. I. ; Seok S. I. ; McGehee M. D. ; Sargent E. H. ; Han H. Science 2018, 361, eaat8235.
doi: 10.1126/science.aat8235 |
16 | Huang Y ; Sun Q. D. ; Xu W. ; He Y. ; Yin W. J. Acta Phys. -Chim. Sin. 2017, 33, 1730. |
黄杨; 孙庆德; 徐文; 何垚; 尹万健. 物理化学学报, 2017, 33, 1730.
doi: 10.3866/PKU.WHXB201705042 |
|
17 |
Boyd C. C. ; Cheacharoen R. ; Leijtens T. ; McGehee M. D. Chem. Rev. 2018, 119, 3418.
doi: 10.1021/acs.chemrev.8b00336 |
18 |
Sun Q. ; Fassl P. ; Becker-Koch D. ; Bausch A. ; Rivkin B. ; Bai S. ; Hopkinson P. E. ; Snaith H. J. ; Vaynzof Y. Adv. Energy Mater. 2017, 7, 1700977.
doi: 10.1002/aenm.201700977 |
19 |
Bryant D. ; Aristidou N. ; Pont S. ; Sanchez-Molina I. ; Chotchunangatchaval T. ; Wheeler S. ; Durrant J. R. ; Haque S. A. Energy Environ. Sci. 2016, 9, 1655.
doi: 10.1039/c6ee00409a |
20 |
Aristidou N. ; Eames C. ; Sanchez-Molina I. ; Bu X. ; Kosco J. ; Islam M. S. ; Haque S. A. Nat. Commun. 2017, 8, 15218.
doi: 10.1038/ncomms15218 |
21 |
Lee M. M. ; Teuscher J. ; Miyasaka T. ; Murakami T. N. ; Snaith H. J. Science 2012, 338, 643.
doi: 10.1126/science.1228604 |
22 |
Wu Y. ; Islam A. ; Yang X. ; Qin C. ; Liu J. ; Zhang K. ; Peng W. ; Han L. Energy Environ. Sci. 2014, 7, 2934.
doi: 10.1039/c4ee01624f |
23 |
Ouyang Y. ; Shi L. ; Li Q. ; Wang J. Small Methods 2019, 1900154.
doi: 10.1002/smtd.201900154 |
24 |
Li Y. ; Zhao Z. ; Lin F. ; Cao X. ; Cui X. ; Wei J. Small 2017, 13, 1604125.
doi: 10.1002/smll.201604125 |
25 |
Rothmann M. U. ; Li W. ; Zhu Y. ; Liu A. ; Ku Z. L. ; Bach U. ; Etheridge J. ; Cheng Y. B. Adv. Mater. 2018, 30, 1802769.
doi: 10.1002/adma.201802769 |
26 | Pennycook, S. J.; Nellist, P. D. Z-Contrast Scanning Transmission Electron Microscopy. In Impact of Electron and Scanning Probe Microscopy on Materials Research; Rickerby, D. G., Valdrè, G., Valdrè, U., Eds.; Springer Netherlands: Dordrecht, The Netherlangds, 1999; pp. 161–207. |
27 |
Jung H. J. ; Kim D. ; Kim S. ; Park J. ; Dravid V. P. ; Shin B. Adv. Mater. 2018, 30, e1802769.
doi: 10.1002/adma.201802769 |
[1] | Qilong Feng, Chongzhi Zhu, Guan Sheng, Tulai Sun, Yonghe Li, Yihan Zhu. Four-Dimensional Scanning Transmission Electron Microscopy: From Material Microstructures to Physicochemical Properties [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210017-0. |
[2] | Guoguang Xu, Qi Wang, Yi Su, Meinan Liu, Qingwen Li, Yuegang Zhang. Revealing Electrochemical Sodiation Mechanism of Orthogonal-Nb2O5 Nanosheets by In Situ Transmission Electron Microscopy [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2009073-. |
[3] | Jionghua Wu, Yiming Li, Jiangjian Shi, Huijue Wu, Yanhong Luo, Dongmei Li, Qingbo Meng. UV Photodetectors Based on High Quality CsPbCl3 Film Prepared by a Two-Step Diffusion Method [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2004041-. |
[4] | Xing Chen, He Tian, Ze Zhang. Periodic Misfit Dislocation and Electron Aggregation at (010) PbTiO3/SrTiO3 Heterointerface [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1906019-. |
[5] | Dan-Hui LÜ,Dan-Cheng ZHU,Chuan-Hong JIN. Preferential Substitution of Selenium along the Grain Boundaries in Monolayer MoS2(1-x)Se2x Alloy [J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1514-1519. |
[6] | Wei-Yan LIU,Ya-Dong LI,Tian LIU,Lin GAN. Investigation of the Growth Mechanism and Compositional Segregations of Monodispersed Ferrite Nanoparticles by Transmission Electron Microscopy [J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2106-2112. |
[7] | Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy [J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2287-2292. |
[8] | Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1489-1494. |
[9] | LI Yi, ZOU Ai-Hua, YE Ru-Qiang, MU Bo-Zhong. Effects of Molecular Structure on Surfactin Micellization Activity [J]. Acta Phys. -Chim. Sin., 2011, 27(05): 1128-1134. |
[10] | Li Hong-Guang;Hao Jing-Cheng;Liu Wei-Min. Studies on Self-assemblies of C60-amphiphiles in Aqueous Solutions [J]. Acta Phys. -Chim. Sin., 2004, 20(01): 107-111. |
[11] | Chi Guang-Jun;Yao Su-Wei;Fan Jun;Zhang Wei-Guo;Wang Hong-Zhi. Electrochemically Assembled Silver Nanowire Arrays and Its Structural Characterization [J]. Acta Phys. -Chim. Sin., 2002, 18(06): 532-535. |
|