Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (8): 2009073.doi: 10.3866/PKU.WHXB202009073
• COMMUNICATION • Previous Articles Next Articles
Guoguang Xu1,2, Qi Wang2, Yi Su3, Meinan Liu1,2, Qingwen Li1,2, Yuegang Zhang2,3,*()
Received:
2020-09-22
Accepted:
2020-10-26
Published:
2020-11-02
Contact:
Yuegang Zhang
E-mail:yuegang.zhang@tsinghua.edu.cn
About author:
Yuegang Zhang, Email: yuegang.zhang@tsinghua.edu.cn; Tel.: +86-10-62788965Supported by:
Guoguang Xu, Qi Wang, Yi Su, Meinan Liu, Qingwen Li, Yuegang Zhang. Revealing Electrochemical Sodiation Mechanism of Orthogonal-Nb2O5 Nanosheets by In Situ Transmission Electron Microscopy[J]. Acta Phys. -Chim. Sin. 2022, 38(8), 2009073. doi: 10.3866/PKU.WHXB202009073
Fig 4
(a–c) Time-lapse HRTEM images of a T-Nb2O5 nanosheet during 0.2 µA galvanostatic charge; (d–f) the corresponding magnified HRTEM of the orange rectangle in (a–c); (g–i) the corresponding strain mapping around [001] direction using GPA method. 由于T-Nb2O5为层状结构,锂离子和钠离子可以在(001)面内快速地二维扩散,而在[001]方向传输一般较难。但是图 4的结果显示钠离子可以通过晶体缺陷在[001]方向扩散。为了确认这个结论,我们在低倍原位TEM实验中进一步观察了钠离子在T-Nb2O5中的扩散行为。图 5显示T-Nb2O5纳米片在0.1 μA恒电流嵌钠过程的0,600,1000和1400 s等时刻的原位TEM图(原位TEM视频见支撑视频2)。通过标定图 5a虚线圈内的电子衍射图(图S10d),确定了纳米片的两个边分别为T-Nb2O5的(001)面和(150)面,图S10还显示了原位电化学芯片的0.1 μA恒流充电曲线以及充电前后T-Nb2O5纳米片(图 5a中黄色虚线圆圈位置)的钠元素含量变化,证实了嵌钠反应的发生。从支撑视频2和图 5中我们可以看到纳米片嵌钠时出现一个由左到右移动的反应前沿(图 5中红色虚线)。反应前沿的衬度明显加深,这是因为钠离子的嵌入导致材料内部的应力发生变化而引起的衬度变化32。先前的研究表明离子在(001)面内的扩散能垒和空间位阻都比较小,所以(001)面是离子的快速二维扩散通道;而在垂直于(001)面的方向的离子传输阻力大14。按照这种模型,钠离子应该快速地在某一层(001)面内扩散开,然后再跨越到下一层(001)面内继续扩散,即反应前沿应该平行于(001)面。而从支撑视频2和图 5观察到的反应前沿平行于(151)面,而不是(001)面,且反应前沿前进方向垂直于(151)面(黄色箭头)。这可能是因为纳米片内存在大量的缺陷结构,如位错和畴界(图S4),这些缺陷结构为钠离子提供了很多[001]方向的扩散通道,钠离子通过这种方式的扩散速率与其在(001)面内的扩散速率相当33, 34。通过缺陷的钠离子扩散导致了在图 5中观测到的反应前沿朝垂直于(151)面的方向而不是[001]方向前进。"
1 |
Sivaram, V.; Dabiri, J. O.; Hart, D. M. Joule. 2018, 2, 1639.
doi: 10.1016/j.joule.2018.07.025 |
2 |
Bullich-Massagué, E.; Cifuentes-García, F. J.; Glenny-Crende, I.; Cheah-Mañé, M.; Aragüés-Peñalba, M.; Díaz-González, F.; Gomis-Bellmunt, O. Appl. Energy. 2020, 274, 115213.
doi: 10.1016/j.apenergy.2020.115213 |
3 |
Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sin. 2014, 72, 21.
doi: 10.6023/a13080830 |
李慧, 吴川, 吴锋, 白莹. 化学学报, 2014, 72, 21.
doi: 10.6023/a13080830 |
|
4 |
Hirsh, H. S.; Li, Y.; Tan, D. H. S.; Zhang, M.; Zhao, E.; Meng, Y. S. Adv. Energy Mater. 2020, 10, 2001274.
doi: 10.1002/aenm.202001274 |
5 |
Xiang, X.; Lu, Y.; Chen, J. Acta Chim. Sin. 2017, 75, 154.
doi: 10.6023/a16060275 |
向兴德, 卢艳莹, 陈军. 化学学报, 2017, 75, 154.
doi: 10.6023/a16060275 |
|
6 |
Cao, B.; Li, X. F. Acta Phys. -Chim. Sin. 2020, 36, 1905003.
doi: 10.3866/PKU.WHXB201905003 |
曹斌, 李喜飞. 物理化学学报, 2020, 36, 1905003.
doi: 10.3866/PKU.WHXB201905003 |
|
7 |
Song, W. X.; Hou, H. S.; Ji, X. B. Acta Phy. -Chim. Sin. 2017, 33, 103.
doi: 10.3866/pku.whxb201608303 |
宋维鑫, 侯红帅, 纪效波. 物理化学学报, 2017, 33, 103.
doi: 10.3866/pku.whxb201608303 |
|
8 |
Wang, Y.; Yu, X.; Xu, S.; Bai, J.; Xiao, R.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2013, 4, 2365.
doi: 10.1038/ncomms3365 |
9 |
Ding, H.; Song, Z.; Zhang, H.; Zhang, H.; Li, X. Mater. Today Nano. 2020, 11, 100082.
doi: 10.1016/j.mtnano.2020.100082 |
10 |
Deng, Q.; Fu, Y.; Zhu, C.; Yu, Y. Small. 2019, 15, e1804884.
doi: 10.1002/smll.201804884 |
11 |
Yang, H.; Xu, R.; Gong, Y.; Yao, Y.; Gu, L.; Yu, Y. Nano Energy. 2018, 48, 448.
doi: 10.1016/j.nanoen.2018.04.006 |
12 |
Chen, D.; Wang, J. H.; Chou, T. F.; Zhao, B.; El-Sayed, M. A.; Liu, M. J. Am. Chem. Soc. 2017, 139, 7071.
doi: 10.1021/jacs.7b03141 |
13 |
Kumagai, N.; Koishikawa, Y.; Komaba, S.; Koshibab, N. J. Electrochem. Soc. 1999, 156, 3203.
doi: 10.1149/1.1392455 |
14 |
Lubimtsev, A. A.; Kent, P. R. C.; Sumpter, B. G.; Ganesh, P. J. Mater. Chem. A. 2013, 1, 14951.
doi: 10.1039/c3ta13316h |
15 |
Meng, J.; He, Q.; Xu, L.; Zhang, X.; Liu, F.; Wang, X.; Li, Q.; Xu, X.; Zhang, G.; Niu, C.; et al. Adv. Energy Mater. 2019, 9, 1802695.
doi: 10.1002/aenm.201802695 |
16 |
Come, J.; Augustyn, V.; Kim, J. W.; Rozier, P.; Taberna, P. L.; Gogotsi, P.; Long, J. W.; Dunn, B.; Simon, P. J. Electrochem. Soc. 2014, 161, A718.
doi: 10.1149/2.040405jes |
17 |
Kim, H.; Lim, E.; Jo, C.; Yoon, G.; Hwang, J.; Jeong, S.; Lee, J.; Kang, K. Nano Energy. 2015, 16, 62.
doi: 10.1016/j.nanoen.2015.05.015 |
18 |
Li, H.; Zhu, Y.; Dong, S.; Shen, L.; Chen, Z.; Zhang, X.; Yu, G. Chem. Mater. 2016, 28, 5753.
doi: 10.1021/acs.chemmater.6b01988 |
19 |
Han, X.; Russo, P. A.; Goubard-Bretesché, N.; Patanè, S.; Santangelo, S.; Zhang, R.; Pinna, N. Adv. Energy Mater. 2019, 9, 1902813.
doi: 10.1002/aenm.201902813 |
20 |
Han, X.; Russo, P. A.; Triolo, C.; Santangelo, S.; Goubard-Bretesché, N.; Pinna, N. ChemElectroChem. 2020, 7, 1689.
doi: 10.1002/celc.202000181 |
21 |
Yan, L.; Chen, G.; Sarker, S.; Richins, S.; Wang, H.; Xu, W.; Rui, X.; Luo, H. ACS Appl. Mater. Inter. 2016, 8, 22213.
doi: 10.1021/acsami.6b06516 |
22 |
Wang, L.; Bi, X.; Yang, S. Adv. Mater. 2016, 28, 7672.
doi: 10.1002/adma.201601723 |
23 |
Hÿtcha, M. J.; Snoeckb, E.; Kilaasc, R. Ultramicroscopy. 1998, 74, 131.
doi: 10.1016/S0304-3991(98)00035-7 |
24 |
Liu, Z.; Dong, W.; Wang, J.; Dong, C.; Lin, Y.; Chen, I. W.; Huang, F. iScience. 2020, 23, 100767.
doi: 10.1016/j.isci.2019.100767 |
25 |
Daniels, P.; Tamazyan, R.; Kuntscher, C. A.; Dressel, M.; Lichtenbergc, F.; Smaalen, S. V. Acta Cryst. 2002, B58, 970.
doi: 10.1107/s010876810201741x |
26 |
Kruk, I.; Zajdel, P.; van Beek, W.; Bakaimi, I.; Lappas, A.; Stock, C.; Green, M. A. J. Am. Chem. Soc. 2011, 133, 13950.
doi: 10.1021/ja109707q |
27 |
Kodama, R.; Terada, Y.; Nakai, I.; Komaba, S.; Kumagai, N. J. Electrochem. Soc. 2006, 153, A583.
doi: 10.1149/1.2163788 |
28 |
Xu, G.; Zhang, X.; Liu, M.; Li, H.; Zhao, M.; Li, Q.; Zhang, J.; Zhang, Y. Small. 2020, 16, 1906499.
doi: 10.1002/smll.201906499 |
29 |
Benedek, P.; Forslund, O. K.; Nocerino, E.; Yazdani, N.; Matsubara, N.; Sassa, Y.; Juranyi, F.; Medarde, M.; Telling, M.; Mansson, M.; et al. ACS Appl. Mater. Inter. 2020, 12, 16243.
doi: 10.1021/acsami.9b21470 |
30 |
Zhang, W.; Yu, H. C.; Wu, L.; Liu, H.; Abdellah, A.; Qiu, B.; Bai, J.; Orvananos, B.; Strobridge, F. C.; Zhou, X.; et al. Sci. Adv. 2018, 4, eaao2608.
doi: 10.1126/sciadv.aao2608 |
31 |
Zhang, N.; Zhu, Y.; Li, D.; Pan, D.; Tang, Y.; Han, M.; Ma, J.; Wu, B.; Zhang, Z.; Ma, X. ACS Appl. Mater. Inter. 2018, 10, 38230.
doi: 10.1021/acsami.8b13674 |
32 |
Wang, L.; Xu, Z.; Wang, W.; Bai, X. J. Am. Chem. Soc. 2014, 136, 6693.
doi: 10.1021/ja501686w |
33 |
Navickas, E.; Chen, Y.; Lu, Q.; Wallisch, W.; Huber, T. M.; Bernardi, J.; Stoger-Pollach, M.; Friedbacher, G.; Hutter, H.; Yildiz, B.; Fleig, J. ACS Nano. 2017, 11, 11475.
doi: 10.1021/acsnano.7b06228 |
34 |
Yang, S.; Yan, B.; Lu, L.; Zeng, K. RSC Adv. 2016, 6, 94000.
doi: 10.1039/c6ra17681j |
[1] | Yanpeng Fu, Changbao Zhu. Design Strategies for Sodium Electrode Materials: Solid-State Ionics Perspective [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209002-0. |
[2] | Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204049-. |
[3] | Hui Li, Shuangyu Liu, Tianci Yuan, Bo Wang, Peng Sheng, Li Xu, Guangyao Zhao, Huitao Bai, Xin Chen, Zhongxue Chen, Yuliang Cao. Influence of NaOH Concentration on Sodium Storage Performance of Na0.44MnO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 1907049-. |
[4] | Silan Wang, Guorui Yang, Nasir Muhammad Salman, Xiaojun Wang, Jianan Wang, Wei Yan. Research Progress on Phosphorus-based Anode Materials for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2001003-. |
[5] | Peng Zhou,Jinzhi Sheng,Chongwei Gao,Jun Dong,Qinyou An,Liqiang Mai. Synthesis of V2O5/Fe2V4O13 Nanocomposite Materials using In situ Phase Separation and the Electrochemical Performance for Sodium Storage [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1906046-. |
[6] | Hui Li,Shuangyu Liu,Tianci Yuan,Bo Wang,Peng Sheng,Li Xu,Guangyao Zhao,Huitao Bai,Xin Chen,Zhongxue Chen,Yuliang Cao. Electrochemical Mechanism of Na0.44MnO2 in Alkaline Aqueous Solution [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905027-. |
[7] | Xinxin Cao,Jiang Zhou,Anqiang Pan,Shuquan Liang. Recent Advances in Phosphate Cathode Materials for Sodium-ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905018-. |
[8] | Guanghai Chen,Ying Bai,Yongsheng Gao,Feng Wu,Chuan Wu. Chalcogenide Electrolytes for All-Solid-State Sodium Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905009-. |
[9] | Xiaoxia Lu,Shengyang Dong,Zhijie Chen,Langyuan Wu,Xiaogang Zhang. Preparation of Carbon Coated Ti2Nb2O9 Nanosheets and Its Sodium Ion Storage Properties [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1906024-. |
[10] | Zhenjie CHENG, Yayun MAO, Qingyu DONG, Feng JIN, Yanbin SHEN, Liwei CHEN. Fluoroethylene Carbonate as an Additive for Sodium-Ion Batteries: Effect on the Sodium Cathode [J]. Acta Physico-Chimica Sinica, 2019, 35(8): 868-875. |
[11] | Mingyu ZHAO,Lin ZHU,Bowen FU,Suhua JIANG,Yongning ZHOU,Yun SONG. Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets [J]. Acta Phys. -Chim. Sin., 2019, 35(2): 193-199. |
[12] | Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597. |
[13] | Xiyue ZHANG,Yalan HUANG,Shuwei WU,Yinxiang ZENG,Minghao YU,Faliang CHENG,Xihong LU,Yexiang TONG. Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2018, 34(2): 219-226. |
[14] | Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(1): 211-241. |
[15] | Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1489-1494. |
|