Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (12): 2001003.doi: 10.3866/PKU.WHXB202001003
• REVIEW • Previous Articles Next Articles
Silan Wang1, Guorui Yang1,2,3,*(), Nasir Muhammad Salman1,4, Xiaojun Wang1, Jianan Wang1,3, Wei Yan1,*()
Received:
2020-01-02
Accepted:
2020-03-06
Published:
2020-03-16
Contact:
Guorui Yang,Wei Yan
E-mail:yangguorui@xjtu.edu.cn;yanwei@xjtu.edu.cn
About author:
Email: yanwei@xjtu.edu.cn (W.Y.)Supported by:
Silan Wang, Guorui Yang, Nasir Muhammad Salman, Xiaojun Wang, Jianan Wang, Wei Yan. Research Progress on Phosphorus-based Anode Materials for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin. 2021, 37(12), 2001003. doi: 10.3866/PKU.WHXB202001003
Table 1
The comparison between Na and Li elements."
Na | Li | |
Price | ~2 RMB·kg-1 | ~40 RMB·kg-1 |
Cost of carbonate | 5800 $·ton-1 | 250–300 $·ton-1 |
E vs. SHE | -2.7 V | -3.04 V |
lattice coordination | Octahedron and prismoid | Octahedron and tetrahedron |
Ionic radii | 0.102 nm | 0.076 nm |
Theoretical capacity | 1.16 Ah·g-1 | 3.861 Ah·g-1 |
Abundance | 23.6 × 103 mg·kg-1 | 20 mg·kg-1 |
Distribution | Everywhere | 70% in South America |
Atomic weight | 22.99 g·mol-1 | 6.94 g·mol-1 |
First ionization energy | 495.8 kJ·mol-1 | 520.2 kJ·mol-1 |
Fig 10
(a) Scheme for the structures of BPC composite 116; (b) Schematic representation of the BP-CNT active material 117; (c) Proposed layered structure of the composite particle prepared by electroless deposition of 30% (w) Ni 119; (d) Schematic illustration of the formation process of the BPQD/TNS composite 121."
Fig 11
(a) Molecular model of 4-NBD modification and bonding with Rgo, reversible desodiation capacity and CE 123; (b) Schematic illustration of the process to assemble 2D-BP/G Heterostructures and cycling performance 124. (c) Schematic description of the BP/rGO synthesis and cycling performance 125."
Table 2
Phosphorus-based anode material for sodium-ion batteries."
Materials | Potential [V] | Current density [mA·g-1] | Reversible capacity [mAh·g-1] | Cycle Number | Capacity Retention [%] | Ref. | |
RP | Hollow RP Nanospheres | 0.01–2.0 | 520 | 1364.7 | 600 | 63.8 | |
Hollow Nanoporous RP | 0.01–2.0 | 2600 | 857.3 | 1000 | 98.94 | ||
RP/super P | 0.01–1.5 | 143 | 1890* | 30 | 93 | ||
RP/super P | 0.01–2 | 250 | 1200* | 60 | – | ||
RP@CMK-3 composite | 0.01–2.5 | 519 | 1020* | 210 | 80 | ||
RP-N-MPC | 0.01–2.5 | 150 | 600 | 100 | 45.6 | ||
RP/NCF(N-doped carbon nanofiber) | 0.01–2.5 | 100 | 731* | 55 | 57.3 | ||
RP/CFs@rGO | 0.01–1.5 | 50 | 725.9 | 55 | 55.3 | ||
RP/CNTS | 0.01–1.5 | 143 | 1675* | 10 | 76.6 | ||
Red P-SWCNTS | 0.01–2.0 | 50 | 700 | 2000 | 80 | ||
RP@AC@CNT | 0.01–2.0 | 519 | 1357 | 50 | 92.2 | ||
RP@HPC | 0.01–2.0 | 150 | 1290* | 200 | 88 | ||
RP/G | 0.01–2.0 | 260 | 2077* | 60 | 81.8 | ||
RP/Graphene scrolls(RP-G) | 0.01–2.0 | 250 | 2355* | 150 | 92.3 | ||
RP/C@rGO | 0.01–2.0 | 100 | 2445* | 100 | 95 | ||
RP@rGO | 0.01–1.75 | 300 | 1211 | 300 | 75.5 | ||
RP/rGO | 0.01–1.75 | 1000 | 1625* | 200 | 57.9 | ||
RPQDs/rGO | 0.01–2.0 | 200 | 1161 | 250 | 72.1 | ||
NPRP@rGO | 0.01–2.0 | 173.26 | 1249.7* | 150 | 59.24 | ||
RP/GnP | 0.01–1.5 | 100 | 1146 | 200 | 92.5 | ||
C@RP/GA | 0.01–2.0 | 260 | 1867* | 100 | 89.5 | ||
S-P/rGO | 0.01–2.5 | 2600 | 1364.1* | 700 | – | ||
APC | 0.01–2.0 | 100 | 1408* | 300 | 82.6 | ||
RP/Sb/Cu nanowires-composite | 0.01–1.5 | 125 | 1100 | 50 | 95 | ||
RP-SPAN | 0.01–2.0 | 520 | 1300 | 100 | 91 | ||
RP-TiP2-C nanocomposite | 0.01–1.5 | 200 | 607 | 100 | 79.3 | ||
RP-TiO2-C | 0.01–2.0 | 500 | 632 | 100 | 81.5 | ||
Fe3O4/C/RP | 0.01–3.0 | 200 | 1390 | 200 | 80 | ||
RP/CNTs@PD | 0.01–2.0 | 2600 | 730* | 2000 | 52 | ||
Fe-RP | 0.01–2.0 | 400 | 1033 | 30 | 62.9 | ||
BP | Ni-BP | 0.01–2.0 | 260 | 780 | 60 | 48.4 | |
E-BP/PEDOT | 0.01–3.0 | 100 | 1597 | 100 | 51.51 | ||
P/C nanocomposites | 0.33–2.0 | 100 | 400 | 100 | – | ||
BP-C | 0.005–1.5 | 100 | 1381* | 100 | 90.5 | ||
BPC | 0.01–2.0 | 1300 | 1700* | 100 | – | ||
BP-CNT | 0.01–2.0 | 519.2 | 1560 | 200 | 75.3 | ||
SPG | 0.02–1.5 | 50 | 2080* | 200 | 85 | ||
RBP | 0.01–3.0 | 1000 | 650 | 200 | – | ||
2D-BP/G | 0.02–1.5 | 100 | 1297 | 100 | 54.84 | ||
BP/rGO | 0.01–1.5 | 1000 | ~1250 | 500 | 74.39 | ||
PGH | 0.02–1.5 | 100 | 2311* | 200 | 83.9 | ||
Phosphides | Sn4P3 | 0.01–1.5 | 100 | 718 | 100 | – | |
Sn4 + xP3(Sn-P) | 0.01–1.5 | 100 | 465 | 100 | 92.6 | ||
Sn-P | 0.001–1.5 | 100 | ~560 | 100 | 83 | ||
multi-shell Sn4P3 NSs | 0.01–2.0 | 50 | 770 | 50 | 96 | ||
SnP NCs | 0.01–2.5 | 100 | 600 | 200 | – | ||
Sn4P3/C | 0.01–2.0 | 50 | 850 | 150 | 86 | ||
SnP3/C | 0.01–2.0 | 150 | 810 | 150 | – | ||
Sn4P3@C | 0.01–2.0 | 100 | 516 | 500 | 55.3 | ||
Sn4P3-C nanospheres | 0.01–2.0 | 200 | 650 | 50 | 53.72 | ||
hollow Sn4P3@C | 0.01–3.0 | 200 | 372 | 200 | 63.37 | ||
Sn4P3/rGO | 0.01-3.0 | 100 | 506 | 100 | – | ||
Sn4P3-P@G | 0.01–2.0 | 1000 | 550 | 1000 | 84.36 | ||
Sn4P3-GA | 0.01–3.0 | 100 | 657 | 100 | 55.68 | ||
Cu4SnP10/MWCNTs | 0.01–2.0 | 100 | 512 | 100 | ~80 | ||
CSP@C/G | 0.01–2.0 | 50 | 990 | 200 | ~80 | ||
Sn5SbP3/C | 0.01–2.0 | 500 | 432 | 200 | – | ||
Sb2S3-P/C | 0.01–2.0 | 50 | 654 | 100 | 93.4 | ||
GeP5/C | 0.01–3.0 | 100 | 1250 | 60 | 98 | ||
GeP5/C | 0.01–3.0 | 150 | 411.5 | 30 | 59.2 | ||
GeP5/AB/p-rGO | 0.01–3.0 | 500 | 400 | 50 | 81.6 | ||
MGePx | 0.01–2.0 | 360 | 704 | 100 | 86.06 | ||
FeSi4P4 | 0.01–2.0 | 100 | 180 | 100 | 99 | ||
SiP2/C | 0.01–2.0 | 50 | 410 | 100 | – | ||
FeP | 0.01–1.5 | 50 | 321 | 60 | 69 | ||
FeP4 | 0.01–2.0 | 89.45 | 1023 | 30 | 90 | ||
FeP NRs/Ti | 0.01–2.5 | 100 | 309 | 1000 | – | ||
FeP/graphite | 0.01–1.5 | 50 | 174 | 70 | 58 | ||
CNT@FeP-C | 0.01–3.0 | 3000 | 321 | 1200 | 95 | ||
M-FeP@C | 0.01–3.0 | 100 | 474 | 100 | 43.56 | ||
FeP/NPG | 0.01–2.5 | 50 | 613 | 50 | – | ||
FeP NAs/CC | 0.01–3.0 | 200 | 548 | 100 | 99.8 | ||
IPs/BC | 0.01–3.0 | 50 | 500.9 | 100 | 51.94 | ||
CuP2/C | 0.01–2.5 | 150 | ~430 | 30 | 67.14 | ||
CuP2/C | 0.01–1.5 | 50 | ~450 | 100 | 95 | ||
CuP2@GNs | 0.01–2.75 | 100 | 804 | 50 | 91.6 | ||
Sb-CuP2-C | 0.01–2.0 | 100 | 410 | 100 | ~80 | ||
Cu3P-Co2P/N-C | 0.005–3.0 | 100 | 166.4 | 50 | 38.7 | ||
Cu3P@C | 0.01–3.0 | 300 | 286 | 300 | – | ||
Co2P@NC@rGO | 0.01–3.0 | 50 | 225 | 100 | 66.96 | ||
CoP/rGO | 0.01–3.0 | 100 | 490 | 100 | 36.35 | ||
CoP4/CF | 0.01–1.5 | 300 | 851 | 300 | 50.33 | ||
CoP3@C | 0.01–2.5 | 100 | 212 | 80 | 77.6 | ||
Ti3C2/NiCoP | 0.01–3.0 | 100 | 374.8 | 100 | 49.88 | ||
NiP3/CNT | 0.01–1.5 | 200 | 853 | 120 | 80 | ||
Ni2.3FeP3.4/CNT | 0.01–3.0 | 100 | 335.1 | 120 | – | ||
Ni2P@C | 0.01–3.0 | 50 | 296 | 200 | 39.95 | ||
Ni2P Ns/CC | 0.01–3.0 | 200 | 399 | 100 | 90 | ||
Ni2P@C yolk-shell | 0.01–3.0 | 100 | 291.9 | 300 | 62.91 | ||
MoP2 | 0.01–2.5 | 40 | 205 | 100 | 75 | ||
MoP@C | 0.01–3.0 | 100 | 230.3 | 50 | 99.6 | ||
H-MoP@rGO | 0.01–3.0 | 1000 | 353.8 | 600 | 32.34 |
Fig 12
(a) Schematic illustration of the fabrication and morphology of multi-shell Sn4P3 NS 130; (b) Schematic diagram of structure advantages and charge and discharge performance during charge and discharge of Sn4P3@C egg yolk-shell nanocube 134; (c) Schematic diagram of the synthesis process of Sn4P3/RGO hybrid 137; (d) Schematic illustration of the charge-discharge of Sn4P3-GA composites138."
Fig 13
(a) SEM of FeP NRs/Ti and long-cycle performance 67; (b) TEM of CNT@FeP-C and long-cycle performance of CNT@FeP-C electrode at current density of 3 A·g-1 151; (c) Schematic illustration and SEM of the fabrication of M-FeP@C composite nanofiber 152; (d) Schematic illustration of the fabrication of FeP/NPG 153."
Fig 14
(a) Schematic illustration of the CuP2@GNs composite synthesis 158; (b) Schematic illustration of electron diffusion during charge and discharge of CoP4/CF composite 68; (c) Schematic illustration of the fabrication of H-MoP @ rGO 172; (d) Schematic diagram of synthesis method and half-cell mechanism of Ti3C2/NiCoP composite 165."
1 |
Wen L. ; Zhou M. ; Wang C. ; Mi Y. ; Lei Y. Adv. Eng. Mater. 2016, 6, 1600468.
doi: 10.1002/aenm.201600468 |
2 |
Stamenkovic V. R. ; Strmcnik D. ; Lopes P. P. ; Markovic N. M. Nat. Mater. 2017, 16, 57.
doi: 10.1038/nmat4738 |
3 |
Schlapbach L. ; Zuttel A. Nature 2001, 414, 353.
doi: 10.1038/35104634 |
4 |
Wang X. ; Kim H. M. ; Xiao Y. ; Sun Y. K. J. Mater. Chem. A 2016, 4, 14915.
doi: 10.1039/c6ta06705k |
5 |
Zhao Y. ; Li X. F. ; Yan B. ; Xiong D. B. ; Li D. J. ; Lawes S. ; Sun X. L. Adv. Eng. Mater. 2016, 6, 19.
doi: 10.1002/aenm.201502175 |
6 |
Lin M. C. ; Gong M. ; Lu B. G. ; Wu Y. P. ; Wang D. Y. ; Guan M. Y. ; Angell M. ; Chen C. X. ; Yang J. ; Hwang B. J. ; et al Nature 2015, 520, 324.
doi: 10.1038/nature14340 |
7 | Wang L. ; Yang G. R. ; Wang J. N. ; Wang S. L. ; Peng S. J. ; Yan W. Acta Chim. Sin. 2018, 76, 666. |
王玲; 杨国锐; 王嘉楠; 王思岚; 彭生杰; 延卫. 化学学报, 2018, 76, 666.
doi: 10.6023/A18040129 |
|
8 | Chen G. H. ; Bai Y. ; Gao Y. S. ; Wu F. ; Wu C. Acta Phys. -Chim. Sin 2020, 36 (5), 1905099. |
陈光海; 白莹; 高永晟; 吴锋; 吴川. 物理化学学报, 2020, 36 (5), 1905099.
doi: 10.3866/PKU.WHXB201905009 |
|
9 | Fang Y. J. ; Chen C. X. ; Ai X. P. ; Yang H. X. ; Cao Y. L. Acta Phys. -Chim. Sin 2017, 33, 211. |
方永进; 陈重学; 艾新平; 杨汉西; 曹余良. 物理化学学报, 2017, 33, 211.
doi: 10.3866/PKU.WHXB201610111 |
|
10 |
Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
doi: 10.1126/science.1212741 |
11 |
Armand M. ; Tarascon J. M. Nature 2008, 451, 652.
doi: 10.1038/451652a |
12 |
Bruce P. G. ; Freunberger S. A. ; Hardwick L. J. ; Tarascon J. M. Nat. Mater. 2012, 11, 19.
doi: 10.1038/nmat3191 |
13 |
Guo X. ; Sun B. ; Su D. ; Liu X. ; Liu H. ; Wang Y. ; Wang G. Sci. Bull. 2017, 62, 442.
doi: 10.1016/j.scib.2017.01.037 |
14 |
Armstrong M. J. ; O'Dwyer C. ; Macklin W. J. ; Holmes J. D. Nano Res. 2014, 7, 1.
doi: 10.1007/s12274-013-0375-x |
15 |
Yang G. ; Wang L. ; Zhao Y. ; Peng S. ; Wang J. ; Ji D. ; Wang Z. ; Yan W. ; Ramakrishna S. Appl. Catal. B 2018, 225, 332.
doi: 10.1016/j.apcatb.2017.11.062 |
16 |
Yang G. ; Wang L. ; Peng S. ; Wang J. ; Ji D. ; Yan W. ; Ramakrishna S. Small 2017, 13, 1702357.
doi: 10.1002/smll.201702357 |
17 |
Li X. ; Chen G. ; Le Z. ; Li X. ; Nie P. ; Liu X. ; Xu P. ; Wu H. B. ; Liu Z. ; Lu Y. Nano Energy 2019, 59, 464.
doi: 10.1016/j.nanoen.2019.02.061 |
18 |
Yaksic A. ; Tilton J. E. Resour. Policy 2009, 34, 185.
doi: 10.1016/j.resourpol.2009.05.002 |
19 |
Palacin M. R. ; de Guibert A. Science 2016, 351, 574.
doi: 10.1126/science.1253292 |
20 |
Slater M. D. ; Kim D. ; Lee E. ; Johnson C. S. Adv. Funct. Mater. 2013, 23, 947.
doi: 10.1002/adfm.201200691 |
21 |
Eftekhari A. ; Jian Z. L. ; Ji X. L. ACS Appl. Mater. Interfaces 2017, 9, 4404.
doi: 10.1021/acsami.6b07989 |
22 | Xi Y. ; Huang Y. L. ; Wu S. W. ; Zeng Y. X. ; Yu M. H. ; Cheng F. L. ; Lu X. H. ; Tong Y. X. Acta Phys. -Chim. Sin 2018, 34, 219. |
熙悦; 黄雅兰; 吴树炜; 曾银香; 于明浩; 程发良; 卢锡洪; 童叶翔. 物理化学学报, 2018, 34, 219.
doi: 10.3866/PKU.WHXB201707173 |
|
23 |
Zhu C. ; Kopold P. ; van Aken P. A. ; Maier J. ; Yu Y. Adv. Mater. 2016, 28, 2408.
doi: 10.1002/adma.201670082 |
24 |
Wei Q. L. ; Fu Y. Q. ; Zhang G. X. ; Wang Y. L. ; Wang X. Y. ; Mohamedi M. ; Sun S. H. RSC Adv. 2016, 6, 84149.
doi: 10.1039/c6ra19393e |
25 |
Zhang B. ; Dugas R. ; Rousse G. ; Rozier P. ; Abakumov A. M. ; Tarascon J. M. Nat. Commun. 2016, 7, 9.
doi: 10.1038/ncomms10308 |
26 |
Chen J. ; Zhang Y. ; Zou G. Q. ; Huang Z. D. ; Li S. M. ; Liao H. X. ; Wang J. F. ; Hou H. S. ; Ji X. B. Small 2016, 12, 5554.
doi: 10.1002/smll.201601938 |
27 |
Xiao Y. ; Lee S. H. ; Sun Y. K. Adv. Eng. Mater. 2017, 7, 20.
doi: 10.1002/aenm.201601329 |
28 |
Zhao Y. ; Wang L. P. ; Sougrati M. T. ; Feng Z. ; Leconte Y. ; Fisher A. ; Srinivasan M. ; Xu Z. Adv. Eng. Mater. 2017, 7, 1601424.
doi: 10.1002/aenm.201601424 |
29 |
Hwang J. Y. ; Myung S. T. ; Sun Y. K. Chem. Soc. Rev. 2017, 46, 3529.
doi: 10.1039/C6CS00776G |
30 |
Sun D. ; Luo B. ; Wang H. ; Tang Y. ; Ji X. ; Wang L. Nano Energy 2019, 64, 103937.
doi: 10.1016/j.nanoen.2019.103937 |
31 |
He H. ; Sun D. ; Tang Y. ; Wang H. ; Shao M. Energy Storage Mater. 2019, 23, 233.
doi: 10.1016/j.ensm.2019.05.008 |
32 |
Barpanda P. ; Oyama G. ; Nishimura S. ; Chung S. C. ; Yamada A. Nat. Commun. 2014, 5, 8.
doi: 10.1038/ncomms5358 |
33 |
Ellis B. L. ; Makahnouk W. R. M. ; Makimura Y. ; Toghill K. ; Nazar L. F. Nat. Mater. 2007, 6, 749.
doi: 10.1038/nmat2007 |
34 |
Lee H. W. ; Wang R. Y. ; Pasta M. ; Lee S. W. ; Liu N. ; Cui Y. Nat. Commun. 2014, 5, 6.
doi: 10.1038/ncomms6280 |
35 |
Komaba S. ; Murata W. ; Ishikawa T. ; Yabuuchi N. ; Ozeki T. ; Nakayama T. ; Ogata A. ; Gotoh K. ; Fujiwara K. Adv. Funct. Mater. 2011, 21, 3859.
doi: 10.1002/adfm.201100854 |
36 |
Hou H. S. ; Qiu X. Q. ; Wei W. F. ; Zhang Y. ; Ji X. B. Adv. Eng. Mater. 2017, 7, 30.
doi: 10.1002/aenm.201602898 |
37 |
Xiang X. D. ; Zhang K. ; Chen J. Adv. Mater. 2015, 27, 5343.
doi: 10.1002/adma.201501527 |
38 |
Kim Y. ; Ha K. H. ; Oh S. M. ; Lee K. T. Chem. -Eur. J. 2014, 20, 11980.
doi: 10.1002/chem.201402511 |
39 |
Feng L. G. ; Xue H. G. ChemElectroChem. 2017, 4, 20.
doi: 10.1002/celc.201600563 |
40 |
Yang G. ; Ilango P. R. ; Wang S. ; Nasir M. S. ; Li L. ; Ji D. ; Hu Y. ; Ramakrishna S. ; Yan W. ; Peng S. Small 2019, 15, 1900628.
doi: 10.1002/smll.201900628 |
41 |
Liu T. ; Zhang Y. ; Jiang Z. ; Zeng X. ; Ji J. ; Li Z. ; Gao X. ; Sun M. ; Lin Z. ; Ling M. ; et al Energy Environ. Sci. 2019, 12, 1512.
doi: 10.1039/c8ee03727b |
42 |
Deng J. ; Luo W. B. ; Chou S. L. ; Liu H. K. ; Dou S. X. Adv. Eng. Mater. 2018, 8, 1701428.
doi: 10.1002/aenm.201701428 |
43 | Cao X. X. ; Zhou J. ; Pan A. Q. ; Liang S. Q. Acta Phys. -Chim. Sin 2020, 36, 1905018. |
曹鑫鑫; 周江; 潘安强; 梁叔全. 物理化学学报, 2020, 36, 1905018.
doi: 10.3866/PKU.WHXB201905018 |
|
44 | Cao B. ; Li X. F. Acta Phys. -Chim. Sin 2020, 36, 1905003. |
曹斌; 李喜飞. 物理化学学报, 2020, 36, 1905003.
doi: 10.3866/PKU.WHXB201905003 |
|
45 |
Tan H. ; Chen D. ; Rui X. ; Yu Y. Adv. Funct. Mater. 2019, 29, 1808745.
doi: 10.1002/adfm.201808745 |
46 |
Pang J. ; Bachmatiuk A. ; Yin Y. ; Trzebicka B. ; Zhao L. ; Fu L. ; Mendes R. G. ; Gemming T. ; Liu Z. ; Rummeli M. H. Adv. Eng. Mater. 2018, 8, 1702093.
doi: 10.1002/aenm.201702093 |
47 |
Bridgman P. W. J. Am. Chem. Soc. 1914, 36, 1344.
doi: 10.1021/ja02184a002 |
48 |
Brown A. ; Rundqvist S. Acta Crystallogr. 1965, 19, 684.
doi: 10.1107/s0365110x65004140 |
49 |
Appalakondaiah S. ; Vaitheeswaran G. ; Lebegue S. ; Christensen N. E. ; Svane A. Phys. Rev. B 2012, 86, 9.
doi: 10.1103/PhysRevB.86.035105 |
50 |
Shulenburger L. ; Baczewski A. D. ; Zhu Z. ; Guan J. ; Tomanek D. Nano Lett. 2015, 15, 8170.
doi: 10.1021/acs.nanolett.5b03615 |
51 |
Yasaei P. ; Kumar B. ; Foroozan T. ; Wang C. H. ; Asadi M. ; Tuschel D. ; Indacochea J. E. ; Klie R. F. ; Salehi-Khojin A. Adv. Mater. 2015, 27, 1887.
doi: 10.1002/adma.201405150 |
52 |
Favron A. ; Gaufres E. ; Fossard F. ; Phaneuf-L'Heureux A. L. ; Tang N. Y. W. ; Levesque P. L. ; Loiseau A. ; Leonelli R. ; Francoeur S. ; Martel R. Nat. Mater. 2015, 14, 826.
doi: 10.1038/nmat4299 |
53 |
Kang J. ; Wood J. D. ; Wells S. A. ; Lee J. H. ; Liu X. L. ; Chen K. S. ; Hersam M. C. ACS Nano 2015, 9, 3596.
doi: 10.1021/acsnano.5b01143 |
54 |
Brent J. R. ; Savjani N. ; Lewis E. A. ; Haigh S. J. ; Lewis D. J. ; O'Brien P. Chem. Commun. 2014, 50, 13338.
doi: 10.1039/c4cc05752j |
55 |
Castellanos-Gomez A. ; Vicarelli L. ; Prada E. ; Island J. O. ; Narasimha-Acharya K. L. ; Blanter S. I. ; Groenendijk D. J. ; Buscema M. ; Steele G. A. ; Alvarez J. V. ; et al 2D Mater. 2014, 1, 19.
doi: 10.1088/2053-1583/1/2/025001 |
56 |
Bai L. Y. ; Sun L. Q. ; Wang Y. ; Liu Z. Z. ; Gao Q. ; Xiang H. J. ; Xie H. M. ; Zhao Y. L. J. Mater. Chem. A 2017, 5, 8280.
doi: 10.1039/c6ta08140a |
57 |
Abellán G. ; Lloret V. ; Mundloch U. ; Marcia M. ; Neiss C. ; Görling A. ; Varela M. ; Hauke F. ; Hirsch A. Angew. Chem. 2016, 128, 14777.
doi: 10.1002/ange.201604784 |
58 |
Kim Y. ; Park Y. ; Choi A. ; Choi N. S. ; Kim J. ; Lee J. ; Ryu J. H. ; Oh S. M. ; Lee K. T. Adv. Mater. 2013, 25, 3045.
doi: 10.1002/adma.201204877 |
59 |
Qian J. ; Wu X. ; Cao Y. ; Ai X. ; Yang H. Angew. Chem. 2013, 125, 4731.
doi: 10.1002/ange.201209689 |
60 |
Gusmão R. ; Sofer Z. ; Pumera M. Angew. Chem. 2017, 129, 8164.
doi: 10.1002/ange.201610512 |
61 |
Ni J. ; Li L. ; Lu J. ACS Energy Lett. 2018, 3, 1137.
doi: 10.1021/acsenergylett.8b00312 |
62 |
Xia Q. ; Li W. ; Miao Z. ; Chou S. ; Liu H. Nano Res. 2017, 10, 4055.
doi: 10.1007/s12274-017-1671-7 |
63 |
Yang F. ; Gao H. ; Chen J. ; Guo Z. Small Methods. 2017, 1, 1700216.
doi: 10.1002/smtd.201700216 |
64 |
Nie A. ; Cheng Y. ; Ning S. ; Foroozan T. ; Yasaei P. ; Li W. ; Song B. ; Yuan Y. ; Chen L. ; Salehi-Khojin A. Nano Lett. 2016, 16, 2240.
doi: 10.1021/acs.nanolett.5b04514 |
65 |
Sun J. ; Lee H. W. ; Pasta M. ; Yuan H. ; Zheng G. ; Sun Y. ; Li Y. ; Cui Y. Nat. Nanotechnol. 2015, 10, 980.
doi: 10.1038/nnano.2015.194 |
66 |
Hao X. ; Jiang Z. ; Tian X. ; Hao X. ; Maiyalagan T. ; Jiang Z. J. J. Alloys Compd. 2019, 791, 1220.
doi: 10.1016/j.jallcom.2019.03.311 |
67 |
Wang L. ; Zhao X. ; Dai S. ; Shen Y. ; Wang M. Electrochim. Acta 2019, 314, 142.
doi: 10.1016/j.electacta.2019.05.071 |
68 |
Sun D. ; Zhu X. ; Luo B. ; Zhang Y. ; Tang Y. ; Wang H. ; Wang L. Adv. Energy Mater. 2018, 8, 1801197.
doi: 10.1002/aenm.201801197 |
69 |
iu J. ; Wang S. ; Kravchyk K. ; Ibanez M. ; Krumeich F. ; Widmer R. ; Nasiou D. ; Meyns M. ; Llorca J. ; Arbiol J. ; et al J. Mater. Chem. A 2018, 6, 10958.
doi: 10.1039/C8TA01492B |
70 |
Fu Y. ; Wei Q. ; Zhang G. ; Sun S. Adv. Energy Mater. 2018, 8, 1702849.
doi: 10.1002/aenm.201702849 |
71 |
Sun J. ; Zheng G. Y. ; Lee H. W. ; Liu N. ; Wang H. T. ; Yao H. B. ; Yang W. S. ; Cui Y. Nano Lett. 2014, 14, 4573.
doi: 10.1021/nl501617j |
72 |
Liu Y. H. ; Zhang A. Y. ; Shen C. F. ; Liu Q. Z. ; Cao X. A. ; Ma Y. Q. ; Chen L. A. ; Lau C. ; Chen T. C. ; Wei F. ; et al ACS Nano 2017, 11, 5530.
doi: 10.1021/acsnano.7b00557 |
73 |
Liu J. ; Kopold P. ; Wu C. ; van Aken P. A. ; Maier J. ; Yu Y. Energy Environ. Sci. 2015, 8, 3531.
doi: 10.1039/c5ee02074c |
74 |
Wang C. D. ; Ding T. ; Sun Y. ; Zhou X. L. ; Liu Y. ; Yang Q. Nanoscale 2015, 7, 19241.
doi: 10.1039/c5nr05432j |
75 |
Li W. H. ; Hu S. H. ; Luo X. Y. ; Li Z. L. ; Sun X. Z. ; Li M. S. ; Liu F. F. ; Yu Y. Adv. Mater. 2017, 29, 8.
doi: 10.1002/adma.201605820 |
76 |
Extance P. ; Elliott S. R. Philos. Mag. B 1981, 43, 469.
doi: 10.1080/01418638108222110 |
77 |
Li W. J. ; Chou S. L. ; Wang J. Z. ; Liu H. K. ; Dou S. X. Nano Lett. 2013, 13, 5480.
doi: 10.1021/nl403053v |
78 |
Li W. ; Li M. ; Jiang Y. ; Wei X. ; Zhong X. ; Yu Y. ; Yang Z. ; Gu L. ; Gu L. ; Yu Y. ; et al Nano Lett. 2016, 16, 1546.
doi: 10.1021/acs.nanolett.5b03903 |
79 |
Yabuuchi N. ; Matsuura Y. ; Ishikawa T. ; Kuze S. ; Son J. Y. ; Cui Y. T. ; Oji H. ; Komaba S. ChemElectroChem 2014, 1, 580.
doi: 10.1002/celc.201300149 |
80 |
Zhou J. ; Liu X. ; Cai W. ; Zhu Y. ; Liang J. ; Zhang K. ; Lan Y. ; Jiang Z. ; Wang G. ; Qian Y. Adv. Mater. 2017, 29, 1700214.
doi: 10.1002/adma.201700214 |
81 |
Liu S. ; Xu H. ; Bian X. ; Feng J. ; Liu J. ; Yang Y. ; Yuan C. ; An Y. ; Fan R. ; Ci L. J. Mater. Chem. A 2018, 6, 12992.
doi: 10.1039/C8TA03301C |
82 |
Li J. ; Wang L. ; Wang Z. ; Tian G. ; He X. ACS Omega 2017, 2, 4440.
doi: 10.1021/acsomega.7b00540 |
83 |
Song J. ; Yu Z. ; Gordin M. L. ; Li X. ; Peng H. ; Wang D. ACS Nano 2015, 9, 11933.
doi: 10.1021/acsnano.5b04474 |
84 |
Wu N. ; Yao H. R. ; Yin Y. X. ; Guo Y. G. J. Mater. Chem. A 2015, 3, 24221.
doi: 10.1039/c5ta08367b |
85 |
Zhu Y. ; Wen Y. ; Fan X. ; Gao T. ; Han F. ; Luo C. ; Liou S. C. ; Wang C. ACS Nano 2015, 9, 3254.
doi: 10.1021/acsnano.5b00376 |
86 |
Xu J. ; Ding J. ; Zhu W. ; Zhou X. ; Ge S. ; Yuan N. Sci. China Mater. 2018, 61, 371.
doi: 10.1007/s40843-017-9152-9 |
87 |
Song J. ; Yu Z. ; Gordin M. L. ; Hu S. ; Yi R. ; Tang D. ; Walter T. ; Regula M. ; Choi D. ; Li X. ; et al Nano Lett. 2014, 14, 6329.
doi: 10.1021/nl502759z |
88 |
Pei L. ; Zhao Q. ; Chen C. ; Liang J. ; Chen J. ChemElectroChem 2015, 2, 1652.
doi: 10.1002/celc.201500251 |
89 |
Gao H. ; Zhou T. ; Zheng Y. ; Liu Y. ; Chen J. ; Liu H. ; Guo Z. Adv. Energy Mater. 2016, 6, 1601037.
doi: 10.1002/aenm.201601037 |
90 |
Li W. J. ; Chou S. L. ; Wang J. Z. ; Liu H. K. ; Dou S. X. J. Mater. Chem. A 2016, 4, 505.
doi: 10.1039/c5ta08590j |
91 |
Yao S. ; Cui J. ; Huang J. ; Huang J. Q. ; Chong W. G. ; Qin L. ; Mai Y. W. ; Kim J. K. Adv. Eng. Mater. 2018, 8, 1702267.
doi: 10.1002/aenm.201702267 |
92 |
Kim Y. ; Park Y. ; Choi A. ; Choi N. S. ; Kim J. ; Lee J. ; Ryu J. H. ; Oh S. M. ; Lee K. T. Adv Mater. 2013, 25, 3045.
doi: 10.1002/adma.201204877 |
93 |
Qian J. ; Wu X. ; Cao Y. ; Ai X. ; Yang H. Angew. Chem. Int. Ed. 2013, 52, 4633.
doi: 10.1002/anie.201209689 |
94 |
Li W. ; Hu S. ; Luo X. ; Li Z. ; Sun X. ; Li M. ; Liu F. ; Yu Y. Adv. Mater. 2017, 29
doi: 10.1002/adma.201605820 |
95 |
Ruan B. ; Wang J. ; Shi D. ; Xu Y. ; Chou S. ; Liu H. ; Wang J. J. Mater. Chem. A 2015, 3, 19011.
doi: 10.1039/c5ta04366b |
96 |
Ma X. ; Chen L. ; Ren X. ; Hou G. ; Chen L. ; Zhang L. ; Liu B. ; Ai Q. ; Zhang L. ; Si P. ; et al J. Mater. Chem. A 2018, 6, 1574.
doi: 10.1039/c7ta07762a |
97 |
Lee G. H. ; Jo M. R. ; Zhang K. ; Kang Y. M. J. Mater. Chem. A 2017, 5, 3683.
doi: 10.1039/C6TA09967J |
98 |
Liu Y. ; Zhang A. ; Shen C. ; Liu Q. ; Cao X. ; Ma Y. ; Chen L. ; Lau C. ; Chen T. C. ; Wei F. ; et al ACS Nano 2017, 11, 5530.
doi: 10.1021/acsnano.7b00557 |
99 |
Liu Y. ; Zhang A. ; Shen C. ; Liu Q. ; Cai J. ; Cao X. ; Zhou C. Nano Res. 2018, 11, 3780.
doi: 10.1007/s12274-017-1952-1 |
100 |
Zeng G. ; Hu X. ; Zhou B. ; Chen J. ; Cao C. ; Wen Z. Nanoscale 2017, 9, 14722.
doi: 10.1039/c7nr05470j |
101 |
Liu S. ; Xu H. ; Bian X. ; Feng J. ; Liu J. ; Yang Y. ; Yuan C. ; An Y. ; Fan R. ; Ci L. ACS Nano 2018, 12, 7380.
doi: 10.1021/acsnano.8b04075 |
102 |
Zhou J. ; Liu X. ; Zhu L. ; Niu S. ; Cai J. ; Zheng X. ; Ye J. ; Lin Y. ; Zheng L. ; Zhu Z. ; et al Chemistry 2020, 6, 221.
doi: 10.1016/j.chempr.2019.10.021 |
103 |
Zhou J. ; Jiang Z. ; Niu S. ; Zhu S. ; Zhou J. ; Zhu Y. ; Liang J. ; Han D. ; Xu K. ; Zhu L. ; et al Chemistry 2018, 4, 372.
doi: 10.1016/j.chempr.2018.01.006 |
104 |
Xu Q. ; Sun J. K. ; Yue F. S. ; Li J. Y. ; Li G. ; Xin S. ; Yin Y. X. ; Guo Y. G. ACS Appl. Mater. Interfaces 2018, 10, 30479.
doi: 10.1021/acsami.8b12571 |
105 |
Walter M. ; Kovalenko M. V. ; Erni R. Sci. Rep. 2015, 5, 8418.
doi: 10.1038/srep08418 |
106 |
Chin L. C. ; Yi Y. H. ; Chang W. C. ; Tuan H. Y. Electrochim. Acta 2018, 266, 178.
doi: 10.1016/j.electacta.2017.12.105 |
107 |
Hu Y. ; Li B. ; Jiao X. ; Zhang C. ; Dai X. ; Song J. Adv. Funct. Mater. 2018, 28, 1801010.
doi: 10.1002/adfm.201801010 |
108 |
Kim S. O. ; Manthiram A. Chem. Mater. 2016, 28, 5935.
doi: 10.1021/acs.chemmater.6b02482 |
109 |
Lan D. ; Li Q. ACS Appl. Energy Mater. 2019, 2, 661.
doi: 10.1021/acsaem.8b01666 |
110 |
Qin G. ; Duan J. ; Yang Y. ; Liu F. ACS Appl. Mater. Interfaces 2018, 10, 6441.
doi: 10.1021/acsami.7b17341 |
111 |
Liu W. ; Yuan X. ; Yu X. Nanoscale 2018, 10, 16675.
doi: 10.1039/C8NR04290J |
112 |
Choi J. H. ; Ha C. W. ; Choi H. Y. ; Shin H. C. ; Park C. M. ; Jo Y. N. ; Lee S. M. Electrochim. Acta 2016, 210, 588.
doi: 10.1016/j.electacta.2016.05.190 |
113 |
Liu H. ; Neal A. T. ; Zhu Z. ; Luo Z. ; Xu X. ; Tománek D. ; Ye P. D. ACS Nano 2014, 8, 4033.
doi: 10.1021/nn501226z |
114 |
Ramireddy T. ; Xing T. ; Rahman M. M. ; Chen Y. ; Dutercq Q. ; Gunzelmann D. ; Glushenkov A. M. J. Mater. Chem. A 2015, 3, 5572.
doi: 10.1039/C4TA06186A |
115 |
Peng B. ; Xu Y. ; Liu K. ; Wang X. ; Mulder F. M. ChemElectroChem 2017, 4, 2140.
doi: 10.1002/celc.201700345 |
116 |
Xu G. L. ; Chen Z. ; Zhong G. M. ; Liu Y. ; Yang Y. ; Ma T. ; Ren Y. ; Zuo X. ; Wu X. H. ; Zhang X. ; et al Nano Lett. 2016, 16, 3955.
doi: 10.1021/acs.nanolett.6b01777 |
117 |
Haghighat-Shishavan S. ; Nazarian-Samani M. ; Nazarian-Samani M. ; Roh H. K. ; Chung K. Y. ; Cho B. W. ; Kashani-Bozorg S. F. ; Kim K. B. J. Mater. Chem. A 2018, 6, 10121.
doi: 10.1039/C8TA02590H |
118 |
Feng N. ; Liang X. ; Pu X. ; Li M. ; Liu M. ; Cong Z. ; Sun J. ; Song W. ; Hu W. J. Alloys Compd. 2019, 775, 1270.
doi: 10.1016/j.jallcom.2018.10.143 |
119 |
Shimizu M. ; Tsushima Y. ; Arai S. ACS Omega 2017, 2, 4306.
doi: 10.1021/acsomega.7b00950 |
120 |
Zhang Y. ; Sun W. ; Luo Z. Z. ; Zheng Y. ; Yu Z. ; Zhang D. ; Yang J. ; Tan H. T. ; Zhu J. ; Wang X. ; et al Nano Energy 2017, 40, 576.
doi: 10.1016/j.nanoen.2017.09.002 |
121 |
Meng R. ; Huang, J. ; Feng Y. ; Zu L. ; Peng C. ; Zheng L. ; Zheng L. ; Chen Z. ; Liu G. ; Chen B. ;et al Adv. Energy Mater. 2018, 8, 1801514.
doi: 10.1002/aenm.201801514 |
122 |
Chowdhury C. ; Karmakar S. ; Datta A. ACS Energy Lett. 2016, 1, 253.
doi: 10.1021/acsenergylett.6b00164 |
123 |
Liu H. ; Tao L. ; Zhang Y. ; Xie C. ; Zhou P. ; Liu H. ; Chen R. ; Wang S. ; Wang S. ; Wang S. ACS Appl. Mater. Interfaces 2017, 9, 36849.
doi: 10.1021/acsami.7b11599 |
124 |
Li M. ; Muralidharan N. ; Moyer K. ; Pint C. L. Nanoscale 2018, 10, 10443.
doi: 10.1039/c8nr01400k |
125 |
Liu Y. ; Liu Q. ; Zhang A. ; Cai J. ; Cao X. ; Li Z. ; Asimow P. D. ; Zhou C. ACS Nano 2018, 12, 8323.
doi: 10.1021/acsnano.8b03615 |
126 |
Shuai H. ; Ge P. ; Hong W. ; Li S. ; Hu J. ; Hou H. ; Zou G. ; Ji X. Small Methods 2019, 3, 1800328.
doi: 10.1002/smtd.201800328 |
127 |
Kim Y. ; Kim Y. ; Choi A. ; Woo S. ; Mok D. ; Choi N. S. ; Jung Y. S. ; Ryu J. H. ; Oh S. M. ; Lee K. T. Adv. Mater. 2014, 26, 4139.
doi: 10.1002/adma.201305638 |
128 |
Li W. ; Chou S. L. ; Wang J. Z. ; Kim J. H. ; Liu H. K. ; Dou S. X. Adv. Mater. 2014, 26, 4037.
doi: 10.1002/adma.201400794 |
129 |
Shin H. S. ; Jung K. N. ; Jo Y. N. ; Park M. S. ; Kim H. ; Lee J. W. Sci. Rep. 2016, 6, 26195.
doi: 10.1038/srep26195 |
130 |
Huang S. ; Meng C. ; Xiao M. ; Ren S. ; Wang S. ; Han D. ; Li Y. ; Meng Y. Sustain. Energy Fuels 2017, 1, 1944.
doi: 10.1039/C7SE00355B |
131 |
Xu Y. ; Peng B. ; Mulder F. M. Adv. Energy Mater. 2018, 8, 1701847.
doi: 10.1002/aenm.201701847 |
132 |
Qian J. ; Xiong Y. ; Cao Y. ; Ai X. ; Yang H. Nano Lett. 2014, 14, 1865.
doi: 10.1021/nl404637q |
133 |
Fan X. ; Mao J. ; Zhu Y. ; Luo C. ; Suo L. ; Gao T. ; Han F. ; Liou S. C. ; Wang C. Adv. Energy Mater. 2015, 5, 1500174.
doi: 10.1002/aenm.201500174 |
134 |
Ma L. ; Yan P. ; Wu S. ; Zhu G. ; Shen Y. J. Mater. Chem. A 2017, 5, 16994.
doi: 10.1039/C7TA04900E |
135 |
Choi J. ; Kim W. S. ; Kim K. H. ; Hong S. H. J. Mater. Chem. A 2018, 6, 17437.
doi: 10.1039/C8TA05586F |
136 |
Pan E. ; Jin Y. ; Zhao C. ; Jia M. ; Chang Q. ; Jia M. J. Alloys Compd. 2018, 769, 45.
doi: 10.1016/j.jallcom.2018.07.361 |
137 |
Li Q. ; Li Z. ; Zhang Z. ; Li C. ; Ma J. ; Wang C. ; Ge X. ; Dong S. ; Yin L. Adv. Energy Mater. 2016, 6, 1600376.
doi: 10.1002/aenm.201600376 |
138 |
Pan E. ; Jin Y. ; Zhao C. ; Jia M. ; Chang Q. ; Zhang R. ; Jia M. Appl. Surf. Sci. 2019, 475, 12.
doi: 10.1016/j.apsusc.2018.12.259 |
139 |
Lan D. ; Wang W. ; Li Q. Nano Energy 2017, 39, 506.
doi: 10.1016/j.nanoen.2017.07.026 |
140 |
Ding X. ; Sun H. ACS Appl. Energy Mater. 2019, 2, 4309.
doi: 10.1021/acsaem.9b00525 |
141 |
Zhang W. ; Mao J. ; Pang W. K. ; Guo Z. ; Chen Z. Electrochim. Acta 2017, 235, 107.
doi: 10.1016/j.electacta.2017.03.093 |
142 |
Li W. ; Ke L. ; Wei Y. ; Guo S. ; Gan L. ; Li H. ; Zhai T. ; Zhou H. J. Mater. Chem. A 2017, 5, 4413.
doi: 10.1039/C7TA00139H |
143 |
Liu Y. ; Xiao X. ; Fan X. ; Li M. ; Zhang Y. ; Zhang W. ; Chen L. J. Alloys Compd. 2018, 744, 15.
doi: 10.1016/j.jallcom.2018.01.358 |
144 |
Ning Q. L. ; Hou B. H. ; Wang Y. Y. ; Liu D. S. ; Luo Z. Z. ; Li W. H. ; Yang Y. ; Guo J. Z. ; Wu X. L. ACS Appl. Mater. Interfaces 2018, 10, 36902.
doi: 10.1021/acsami.8b11103 |
145 |
Tseng K. W. ; Huang S. B. ; Chang W. C. ; Tuan H. Y. Chem. Mater. 2018, 30, 4440.
doi: 10.1021/acs.chemmater.8b01922 |
146 |
Liu Q. ; Wang J. ; Luo Y. ; Miao L. ; Yan Y. ; Xue L. ; Zhang W. Electrochim. Acta 2017, 247, 820.
doi: 10.1016/j.electacta.2017.07.012 |
147 |
Saddique J. ; Zhang X. ; Wu T. ; Wang X. ; Chen X. ; Su H. ; Liu S. ; Zhang L. ; Li G. ; Zhang Y. ; Yu H. ACS Appl. Energy Mater. 2019, 2, 2223.
doi: 10.1021/acsaem.8b02242 |
148 |
Li W. J. ; Chou S. L. ; Wang J. Z. ; Liu H. K. ; Dou S. X. Chem. Commun. 2015, 51, 3682.
doi: 10.1039/c4cc09604e |
149 |
Zhang W. ; Dahbi M. ; Amagasa S. ; Yamada Y. ; Komaba S. Electrochem. Commun. 2016, 69, 11.
doi: 10.1016/j.elecom.2016.05.005 |
150 |
Yang Q. R. ; Li W. J. ; Chou S. L. ; Wang J. Z. ; Liu H. K. RSC Adv. 2015, 5, 80536.
doi: 10.1039/C5RA18314F |
151 |
Ma C. ; Fu Z. ; Deng C. ; Liao X. ; He Y. ; Ma Z. ; Xiong H. Chem. Commun. 2018, 54, 11348.
doi: 10.1039/c8cc06291a |
152 |
Wang B. ; Wang G. ; Wang H. ; Bai J. ChemNanoMat 2018, 4, 924.
doi: 10.1002/cnma.201800112 |
153 |
Wang Y. ; Fu Q. ; Li C. ; Li H. ; Tang H. ACS Sustain. Chem. Eng. 2018, 6, 15083.
doi: 10.1021/acssuschemeng.8b03561 |
154 |
Wang Y. ; Wu C. ; Wu Z. ; Cui G. ; Xie F. ; Guo X. ; Sun X. Chem. Commun. 2018, 54, 9341.
doi: 10.1039/C8CC03827A |
155 |
Wu H. ; Li X. ; Chen L. ; Dan Y. Batteries Supercaps. 2019, 2, 144.
doi: 10.1002/batt.201800113 |
156 |
Zhao F. P. ; Han N. ; Huang W. J. ; Li J. J. ; Ye H. L. ; Chen F. J. ; Li Y. G. J. Mater. Chem. A 2015, 3, 21754.
doi: 10.1039/c5ta05781g |
157 |
Kim S. O. ; Manthiram A. Chem. Commun. 2016, 52, 4337.
doi: 10.1039/c5cc10585d |
158 |
Zhang Y. ; Wang G. ; Wang L. ; Tang L. ; Zhu M. ; Wu C. ; Dou S. X. ; Wu M. Nano Lett. 2019, 19, 2575.
doi: 10.1021/acs.nanolett.9b00342 |
159 |
Mun Y. S. ; Yoon Y. ; Hur J. ; Park M. S. ; Bae J. ; Kim J. H. ; Yoon Y. S. ; Yoo I. S. ; Lee S. G. ; Kim I. T. J. Power Sources 2017, 362, 115.
doi: 10.1016/j.jpowsour.2017.07.031 |
160 |
Li J. ; Li X. ; Liu P. ; Zhu X. ; Ali R. N. ; Naz H. ; Yu Y. ; Xiang B. ACS Appl. Mater. Interfaces 2019, 11, 11442.
doi: 10.1021/acsami.8b22367 |
161 |
Zhu J. ; He Q. ; Liu Y. ; Key J. ; Nie S. ; Wu M. ; Shen P. K. J. Mater. Chem. A 2019, 7, 16999.
doi: 10.1039/c9ta04035h |
162 |
Jin R. ; Li X. ; Sun Y. ; Shan H. ; Fan L. ; Li D. ; Sun X. ACS Appl. Mater. Interfaces 2018, 10, 14641.
doi: 10.1021/acsami.8b00444 |
163 |
Li Q. ; Dong S. ; Zhang Y. ; Feng S. ; Wang Q. ; Yuan J. Eur. J. Inorg. Chem. 2018, 2018, 3433.
doi: 10.1002/ejic.201800311 |
164 |
Zhao W. ; Ma X. ; Wang G. ; Long X. ; Li Y. ; Zhang W. ; Zhang P. Appl. Surf. Sci. 2018, 445, 167.
doi: 10.1016/j.apsusc.2018.03.126 |
165 |
Zhao D. ; Zhao R. ; Dong S. ; Miao X. ; Zhang Z. ; Wang C. ; Yin L. Energy Environ. Sci. 2019, 12, 2422.
doi: 10.1039/c9ee00308h |
166 |
Ihsan-Ul-Haq M. ; Huang H. ; Cui J. ; Yao S. ; Wu J. ; Chong W. G. ; Huang B. ; Kim J. K. J. Mater. Chem. A 2018, 6, 20184.
doi: 10.1039/c8ta06841k |
167 |
Wang J. ; Wang B. ; Liu X. ; Wang G. ; Wang H. ; Bai J. J. Colloid Interface Sci. 2019, 538, 187.
doi: 10.1016/j.jcis.2018.11.093 |
168 |
Wang Y. ; Pan Q. ; Jia K. ; Wang H. ; Gao J. ; Xu C. ; Zhong Y. ; Alshehri A. A. ; Alzahrani K. A. ; Guo X. ; Sun X. Inorg. Chem. 2019, 58, 6579.
doi: 10.1021/acs.inorgchem.9b00451 |
169 |
Zheng J. ; Huang X. ; Pan X. ; Teng C. ; Wang N. Appl. Surf. Sci. 2019, 473, 699.
doi: 10.1016/j.apsusc.2018.12.225 |
170 |
Li Z. Integr. Ferroelectr. 2018, 192, 88.
doi: 10.1080/10584587.2018.1521672 |
171 |
Cao Y. ; Zhang B. ; Ou X. ; Li Y. ; Wang C. ; Cao L. ; Peng C. ; Zhang J. New J. Chem. 2019, 43, 7386.
doi: 10.1039/c9nj00884e |
172 |
Yin Y. ; Fan L. ; Zhang Y. ; Liu N. ; Zhang N. ; Sun K. Nanoscale 2019, 11, 7129.
doi: 10.1039/c9nr00406h |
173 |
Kim Y. ; Kim Y. ; Choi A. ; Woo S. ; Mok D. ; Choi N. S. ; Jung Y. S. ; Ryu J. H. ; Oh S. M. ; Lee K. T. Adv. Mater. 2014, 26, 4139.
doi: 10.1002/adma.201305638 |
174 |
Lu Y. ; Zhou P. ; Lei K. ; Zhao Q. ; Tao Z. ; Chen J. Adv. Eng. Mater. 2017, 7, 1601973.
doi: 10.1002/aenm.201601973 |
175 |
Li W. J. ; Yang Q. R. ; Chou S. L. ; Wang J. Z. ; Liu H. K. J. Power Sources 2015, 294, 627.
doi: 10.1016/j.jpowsour.2015.06.097 |
176 |
Marino C. ; Dupre N. ; Villevieille C. J. Power Sources 2017, 365, 339.
doi: 10.1016/j.jpowsour.2017.08.096 |
177 |
Jamieson J. C. Science 1963, 139, 1291.
doi: 10.1126/science.139.3561.1291 |
178 |
Donohue P. C. ; Young H. S. J. Solid State Chem. 1970, 1, 143.
doi: 10.1016/0022-4596(70)90005-8 |
179 |
Shen H. ; Ma Z. ; Yang B. ; Guo B. ; Lyu Y. ; Wang P. ; Yang H. ; Li Q. ; Wang H. ; Liu Z. ; Nie A. J. Power Sources 2019, 433, 126682.
doi: 10.1016/j.jpowsour.2019.05.088 |
180 |
Duveau D. ; Israel S. S. ; Fullenwarth J. ; Cunin F. ; Monconduit L. J. Mater. Chem. A 2016, 4, 3228.
doi: 10.1039/C6TA00103C |
181 |
Coquil G. ; Fraisse B. ; Dupre N. ; Monconduit L. ACS Appl. Energy Mater. 2018, 1, 3778.
doi: 10.1021/acsaem.8b00567 |
[1] | Meng Li, Fulin Yang, Jinfa Chang, Alex Schechter, Ligang Feng. MoP-NC Nanosphere Supported Pt Nanoparticles for Efficient Methanol Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2301005-0. |
[2] | Yanpeng Fu, Changbao Zhu. Design Strategies for Sodium Electrode Materials: Solid-State Ionics Perspective [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209002-0. |
[3] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[4] | Guoguang Xu, Qi Wang, Yi Su, Meinan Liu, Qingwen Li, Yuegang Zhang. Revealing Electrochemical Sodiation Mechanism of Orthogonal-Nb2O5 Nanosheets by In Situ Transmission Electron Microscopy [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2009073-. |
[5] | Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110014-. |
[6] | Haoran Lu, Yaqing Wei, Run Long. Charge Localization Induced by Nanopore Defects in Monolayer Black Phosphorus for Suppressing Nonradiative Electron-Hole Recombination through Time-Domain Simulation [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006064-. |
[7] | Chengyu Ye, Xiaofei Yu, Wencui Li, Lei He, Guangping Hao, Anhui Lu. Engineering of Bifunctional Nickel Phosphide@Ni-N-C Catalysts for Selective Electroreduction of CO2-H2O to Syngas [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004054-. |
[8] | Xuewei Liu, Ying Niu, Ruixiong Cao, Xiaohong Chen, Hongyan Shang, Huaihe Song. Is there a Demand of Conducting Agent of Acetylene Black for Graphene-Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries? [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012062-. |
[9] | Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204049-. |
[10] | Hui Li, Shuangyu Liu, Tianci Yuan, Bo Wang, Peng Sheng, Li Xu, Guangyao Zhao, Huitao Bai, Xin Chen, Zhongxue Chen, Yuliang Cao. Influence of NaOH Concentration on Sodium Storage Performance of Na0.44MnO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 1907049-. |
[11] | Huifang An, Li Jiang, Feng Li, Ping Wu, Xiaoshu Zhu, Shaohua Wei, Yiming Zhou. Hydrogel-Derived Three-Dimensional Porous Si-CNT@G Nanocomposite with High-Performance Lithium Storage [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905034-. |
[12] | Xiaoxia Lu,Shengyang Dong,Zhijie Chen,Langyuan Wu,Xiaogang Zhang. Preparation of Carbon Coated Ti2Nb2O9 Nanosheets and Its Sodium Ion Storage Properties [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1906024-. |
[13] | Bin Cao,Xifei Li. Recent Progress on Carbon-based Anode Materials for Na-ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905003-. |
[14] | Peng Zhou,Jinzhi Sheng,Chongwei Gao,Jun Dong,Qinyou An,Liqiang Mai. Synthesis of V2O5/Fe2V4O13 Nanocomposite Materials using In situ Phase Separation and the Electrochemical Performance for Sodium Storage [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1906046-. |
[15] | Haixia Li,Jiwei Wang,Lifang Jiao,Zhanliang Tao,Jing Liang. Spherical Nano-SnSb/C Composite as a High-Performance Anode Material for Sodium Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1904017-. |
|