Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (7): 2110014.doi: 10.3866/PKU.WHXB202110014
Special Issue: Heterojunction Photocatalytic Materials
• ARTICLE • Previous Articles Next Articles
Rongchen Shen1, Lei Hao1, Qing Chen2, Qiaoqing Zheng2, Peng Zhang3, Xin Li1,*()
Received:
2021-10-12
Accepted:
2021-11-03
Published:
2021-11-08
Contact:
Xin Li
E-mail:xinli@scau.edu.cn; xinliscau@126.com
About author:
Xin Li, Email: xinli@scau.edu.cn, xinliscau@126.com; Tel.: +86-20-85282633; Fax: +86-20-85285596Supported by:
Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution[J]. Acta Phys. -Chim. Sin. 2022, 38(7), 2110014. doi: 10.3866/PKU.WHXB202110014
"
Photocatalyst | Light source | Activity (μmol·h-1·g-1) | AQE (%) | Reference |
PCNS-CoNiFeP | 300 W Xe lamp, λ > 420 nm | 1200 | 1.4% (420 nm) | this work |
CNS-Ni2P-MoS2 | 300 W Xe lamp, λ > 420 nm | 532.41 | 1.4% (420 nm) | 14 |
CNS-CoP | 300 W Xe lamp, λ > 420 nm | 956 | 50 | |
CNS-CoP | 300 W Xe lamp, λ > 420 nm | 948 | 4.3% (420 nm) | 51 |
CNS-CoP | 300 W Xe lamp, λ > 420 nm | 201.5 | 0.12% (420 nm) | 35 |
CNS-CoP | 300 W Xe lamp, λ > 420 nm | 840 | 52 | |
CNS-CoP | 300 W Xe lamp, λ > 420 nm | 474.4 | 34 | |
CNS-Co2P-K2HPO4 | 300 W Xe lamp, λ > 420 nm | 556 | 53 | |
CNS-CoNiP | 300 W Xe lamp, λ > 420 nm | 230 | 54 | |
Ni2P/Ni@C-CNS | 300 W Xe lamp, λ > 420 nm | 210 | 55 | |
EY-CNS- Ni2P | 300 W Xe lamp, λ > 400 nm | 1540 | 56 | |
CNS-Ni2P | 300 W Xe lamp, λ > 420 nm | 270 | 2.85% (42 0nm) | 57 |
CNS-Ni2P | 300 W Xe lamp | 3344 | 9.1% (420 nm) | 58 |
Cu3P-CNS | 300 W Xe lamp, λ > 420 nm | 159.41 | 37 | |
CNS-Ni2P | 300 W Xe lamp, λ > 420 nm | 474.7 | 3.2% (420 nm) | 59 |
CNS-Ni12P5 | 300 W Xe lamp, λ > 420 nm | 126.61 | 60 | |
CNS-Ni2P | Xe lamp, λ > 420 nm | 162 | 61 |
1 |
Zhao D. ; Zhuang Z. ; Cao X. ; Zhang C. ; Peng Q. ; Chen C. ; Li Y. Chem. Soc. Rev. 2020, 49, 2215.
doi: 10.1039/c9cs00869a |
2 | Li Y. ; Zhang M. ; Zhou L ; Yang S. ; Wu Z. ; Ma Y. Acta Phys. -Chim. Sin. 2021, 37, 2009030. |
李云锋; 张敏; 周亮; 杨思佳; 武占省; 马玉花; 物理化学学报, 2021, 37, 2009030.
doi: 10.3866/PKU.WHXB202009030 |
|
3 | Jiang Z. ; Chen Q. ; Zheng Q. Shen ; R . ; Zhang P. ; Li X. Acta Phys. -Chim. Sin. 2021, 37, 2010059. |
姜志民; 陈晴; 郑巧清; 沈荣晨; 张鹏; 李鑫; 物理化学学报, 2021, 37, 2010059.
doi: 10.3866/PKU.WHXB202010059 |
|
4 |
Shen R. ; Ren D. ; Ding Y. ; Guang Y. ; Ng Y. H. ; Zhang P. ; Li X. Sci. China-Mater. 2020, 63, 2153.
doi: 10.1007/s40843-020-1456-x |
5 |
Liang Z. ; Shen R. ; Ng Y. H. ; Zhang P. ; Xiang Q. ; Li X. J. Mater. Sci. Technol. 2020, 56, 89.
doi: 10.1016/j.jmst.2020.04.032 |
6 |
Shen R. ; Xie J. ; Xiang Q. ; Chen X. ; Jiang J. ; Li X. Chin. J. Catal. 2019, 40, 240.
doi: 10.1016/s1872-2067(19)63294-8 |
7 |
Bie C. ; Cheng B. ; Fan J. ; Ho W. ; Yu J. Energy Chem 2021, 3, 100051.
doi: 10.1016/j.enchem.2021.100051 |
8 |
Wang Z. ; Fan J. ; Cheng B. ; Yu J. ; Xu J. Mater. Today Phys. 2020, 15, 100279.
doi: 10.1016/j.mtphys.2020.100279 |
9 |
Wang B. ; Ding Y. ; Deng Z. ; Li Z. Chin. J. Catal. 2019, 40, 335.
doi: 10.1016/s1872-2067(18)63159-6 |
10 |
Wang M. ; Cheng J. ; Wang X. ; Hong X. ; Fan J. ; Yu H. Chin. J. Catal. 2021, 42, 37.
doi: 10.1016/s1872-2067(20)63633-6 |
11 |
Shen R. ; Zhang L. ; Chen X. ; Jaroniec M. ; Li N. ; Li X. Appl. Catal. B-Environ. 2020, 266, 118619.
doi: 10.1016/j.apcatb.2020.11861 |
12 | Liu Y. ; Hao X. ; Hu H. ; Jin Z. Acta Phys. -Chim. Sin. 2021, 37, 2008030. |
刘阳; 郝旭强; 胡海强; 靳治良; 物理化学学报, 2021, 37, 2008030.
doi: 10.3866/PKU.WHXB202008030 |
|
13 |
Shen R. ; Lu X. ; Zheng Q. ; Chen Q. ; Ng Y. H. ; Zhang P. ; Li X. Solar RRL 2021, 5, 2100177.
doi: 10.1002/solr.202100177 |
14 |
Lu X. ; Xie J. ; Chen X. ; Li X. Appl. Catal. B-Environ. 2019, 252, 250.
doi: 10.1016/j.apcatb.2019.04.012 |
15 |
Zhang S. ; Duan S. ; Chen G. ; Meng S. ; Zheng X. ; Fan Y. ; Fu X. ; Chen S. Chin. J. Catal. 2021, 42, 193.
doi: 10.1016/s1872-2067(20)63584-7 |
16 |
Ma S. ; Deng Y. ; Xie J. ; He K. ; Liu W. ; Chen X. ; Li X. Appl. Catal. B-Environ. 2018, 227, 218.
doi: 10.1016/j.apcatb.2018.01.031 |
17 |
Shen R. ; He K. ; Zhang A. ; Li N. ; Ng Y. H. ; Zhang P. ; Hu J. ; Li X. Appl. Catal. B-Environ. 2021, 291, 120104.
doi: 10.1016/j.apcatb.2021.120104 |
18 |
Liu Q. ; Huang J. ; Tang H. ; Yu X. ; Shen J. J. Mater. Sci. Technol. 2020, 56, 196.
doi: 10.1016/j.jmst.2020.04.026 |
19 |
Lin B. ; Li J. ; Xu B. ; Yan X. ; Yang B. ; Wei J. ; Yang G. Appl. Catal. B-Environ. 2019, 243, 94.
doi: 10.1016/j.apcatb.2018.10.029 |
20 |
Yan X. ; Jin Z. Chem. Eng. J. 2021, 420, 127681.
doi: 10.1016/j.cej.2020.127681 |
21 |
Wang Z. ; Li L. ; Liu M. ; Miao T. ; Ye X. ; Meng S. ; Chen S. ; Fu X. J. Energy Chem. 2020, 48, 241.
doi: 10.1016/j.jechem.2020.01.01 |
22 |
Zeng D. ; Zhou T. ; Ong W. J. ; Wu M. ; Duan X. ; Xu W. ; Chen Y. ; Zhu Y. A. ; Peng D. L. ACS Appl. Mater. Interfaces 2019, 11, 5651.
doi: 10.1021/acsami.8b20958 |
23 |
Xu J. ; Qi Y. ; Wang C. ; Wang L. Appl. Catal. B-Environ. 2019, 241, 178.
doi: 10.1016/j.apcatb.2018.09.035 |
24 |
Liu W. ; Shen J. ; Liu Q. ; Yang X. ; Tang H. Appl. Surf. Sci. 2018, 462, 822.
doi: 10.1016/j.apsusc.2018.08.189 |
25 |
Yang F. ; Liu D. ; Li Y. ; Ning S. ; Cheng L. ; Ye J. Chem. Eng. J. 2021, 406, 126838.
doi: 10.1016/j.cej.2020.126838 |
26 |
Cheng C. ; Zong S. ; Shi J. ; Xue F. ; Zhang Y. ; Guan X. ; Zheng B. ; Deng J. ; Guo L. Appl. Catal. B-Environ. 2020, 265, 118620.
doi: 10.1016/j.apcatb.2020.118620 |
27 |
Li J. ; Yan M. ; Zhou X. ; Huang Z. Q. ; Xia Z. ; Chang C. R. ; Ma Y. ; Qu Y. Adv. Funct. Mater. 2016, 26, 6785.
doi: 10.1002/adfm.201601420 |
28 |
Yu J. ; Li Q. ; Li Y. ; Xu C. Y. ; Zhen L. ; Dravid V. P. ; Wu J. Adv. Funct. Mater. 2016, 26, 7644.
doi: 10.1002/adfm.201603727 |
29 |
Wang P. Y. ; Pu Z. H. ; Li Y. H. ; Wu L. ; Tu Z. K. ; Jiang M. ; Kou Z. K. ; Arniinu I. S. ; Mu S. C. ACS Appl. Mater. Interfaces 2017, 9, 26001.
doi: 10.1021/acsami.7b06305 |
30 |
Yang N. ; Tang C. ; Wang K. ; Du G. ; Asiri A. M. ; Sun X. Nano Res. 2016, 9, 3346.
doi: 10.1007/s12274-016-1211-x |
31 |
Tang C. ; Gan L. F. ; Zhang R. ; Lu W. B. ; Jiang X. E. ; Asiri A. M. ; Sun X. P. ; Wang J. ; Chen L. Nano Lett. 2016, 16, 6617.
doi: 10.1021/acs.nanolett.6b03332 |
32 |
Jiao Y. ; Li Y. ; Wang J. ; He Z. ; Li Z. J. Colloid Interface Sci. 2021, 595, 69.
doi: 10.1016/j.jcis.2021.03.134 |
33 |
Luo B. ; Song R. ; Geng J. ; Liu X. ; Jing D. ; Wang M. ; Cheng C. Appl. Catal. B-Environ. 2019, 256, 117819.
doi: 10.1016/j.apcatb.2019.117819 |
34 |
Yi S. S. ; Yan J. M. ; Wulan B. R. ; Li S. J. ; Liu K. H. ; Jiang Q. Appl. Catal. B-Environ. 2017, 200, 477.
doi: 10.1016/j.apcatb.2016.07.046 |
35 |
Sun X. J. ; Yang D. D. ; Dong H. ; Meng X. B. ; Sheng J. L. ; Zhang X. ; Wei J. Z. ; Zhang F. M. Sustain. Energy Fuel 2018, 2, 1356.
doi: 10.1039/c8se00063h |
36 |
Wen J. ; Xie J. ; Chen X. ; Li X. Appl. Surf. Sci. 2017, 391, 72.
doi: 10.1016/j.apsusc.2016.07.030 |
37 |
Shen R. ; Xie J. ; Lu X. ; Chen X. ; Li X. ACS Sustain. Chem. Eng. 2018, 6, 4026.
doi: 10.1021/acssuschemeng.7b04403 |
38 |
Zhang J. ; Wang Y. ; Jin J. ; Zhang J. ; Lin Z. ; Huang F. ; Yu J. ACS Appl. Mater. Interfaces 2013, 5, 10317.
doi: 10.1021/am403327g |
39 |
Xia P. ; Zhu B. ; Yu J. ; Cao S. ; Jaroniec M. J. Mater. Chem. A 2017, 5, 3230.
doi: 10.1039/c6ta08310b |
40 |
Ray C. ; Lee S. C. ; Jin B. ; Kundu A. ; Park J. H. ; Jun S. C. ACS Sustain. Chem. Eng. 2018, 6, 6146.
doi: 10.1021/acssuschemeng.7b04808 |
41 |
Huang Z. F. ; Song J. ; Wang X. ; Pan L. ; Li K. ; Zhang X. ; Wang L. ; Zou J. J. Nano Energy. 2017, 40, 308.
doi: 10.1016/j.nanoen.2017.08.032 |
42 | Jin Z. ; Li Y. ; Hao X. Acta Phys. -Chim. Sin 2021, 37, 1912033. |
靳治良; 李彦兵; 郝旭强; 物理化学学报, 2021, 37, 1912033.
doi: 10.3866/PKU.WHXB201912033 |
|
43 | Li H. ; Li F. ; Yu J. ; Cao S. Acta Phys. -Chim. Sin. 2021, 37, 2010073. |
李瀚; 李芳; 余家国; 曹少文; 物理化学学报, 2021, 37, 2010073.
doi: 10.3866/PKU.WHXB202010073 |
|
44 |
Jiang Z. ; Wan W. ; Li H. ; Yuan S. ; Zhao H. ; Wong P. K. Adv. Mater. 2018, 30, 1706108.
doi: 10.1002/adma.201706108 |
45 |
Ai C. ; Tong L. ; Wang Z. ; Zhang X. ; Wang G. ; Deng S. ; Li J. ; Lin S. Chin. J. Catal. 2020, 41, 1645.
doi: 10.1016/s1872-2067(19)63512-6 |
46 |
Chen Q. ; Li S. ; Xu H. ; Wang G. ; Qu Y. ; Zhu P. ; Wang D. Chin. J. Catal. 2020, 41, 514.
doi: 10.1016/s1872-2067(19)63497-2 |
47 |
Li C. ; Du Y. ; Wang D. ; Yin S. ; Tu W. ; Chen Z. ; Kraft M. ; Chen G. ; Xu R. Adv. Funct. Mater. 2017, 27, 1604328.
doi: 10.1002/adfm.201604328 |
48 |
Liu W. ; Cao L. ; Cheng W. ; Cao Y. ; Liu X. ; Zhang W. ; Mou X. ; Jin L. ; Zheng X. ; Che W. ; et al Angew. Chem. Int. Edit. 2017, 56, 9312.
doi: 10.1002/anie.201704358 |
49 |
Zhang Y. ; Mori T. ; Ye J. ; Antonietti M. Am. Chem. Soc. 2010, 132, 6294.
doi: 10.1021/ja101749y |
50 |
Zhang F. ; Zhang J. ; Li J. ; Jin X. ; Li Y. ; Wu M. ; Kang X. ; Hu T. ; Wang X. ; Ren W. ; Zhang G. J. Mater. Chem. A 2019, 7, 6939.
doi: 10.1039/c9ta00765b |
51 |
Wang X. J. ; Tian X. ; Sun Y. J. ; Zhu J. Y. ; Li F. T. ; Mu H. Y. ; Zhao J. Nanoscale 2018, 10, 12315.
doi: 10.1039/c8nr03846e |
52 |
Zhao H. ; Jiang P. ; Cai W. Chem-Asian J. 2017, 12, 361.
doi: 10.1002/asia.201601543 |
53 |
Shen R. C. ; Xie J. ; Zhang H. D. Zhang ; A. P. ; Chen X. B. ; Li X. ACS Sustain. Chem. Eng. 2018, 6, 816.
doi: 10.1021/acssuschemeng.7b03169 |
54 |
Shen R. ; Liu W. ; Ren D. ; Xie J. ; Li X. Appl. Surf. Sci. 2019, 466, 393.
doi: 10.1016/j.apsusc.2018.10.033 |
55 |
Xu J. ; Qi Y. ; Wang L. Appl. Catal. B-Environ. 2019, 246, 72.
doi: 10.1016/j.apcatb.2019.01.045 |
56 |
Zhang Y. ; Wang G. ; Jin Z. Int. J. Hydrog. Energy 2019, 44, 10316.
doi: 10.1016/j.ijhydene.2019.03.006 |
57 |
Ge J. ; Jiang D. ; Zhang L. ; Du P. Catal. Lett. 2018, 148, 3741.
doi: 10.1007/s10562-018-2562-6 |
58 |
Liu E. ; Jin C. ; Xu C. ; Fan J. ; Hu X. Int. J. Hydrog. Energy 2018, 43, 21355.
doi: 10.1016/j.ijhydene.2018.09.195 |
59 |
Zeng D. ; Xu W. ; Ong W. J ; Xu J. ; Ren H. ; Chen Y. ; Zheng H. ; Peng D. L. Appl. Catal. B-Environ. 2018, 221, 47.
doi: 10.1016/j.apcatb.2017.08.041 |
60 |
Wen J. ; Xie J. ; Shen R. ; Li X. ; Luo X. ; Zhang H. ; Zhang A. ; Bi G. Dalton Trans. 2017, 46, 1794.
doi: 10.1039/c6dt04575h |
61 |
Sun Z. ; Zhu M. ; Fujitsuka M. ; Wang A. ; Shi C. ; Majima T. ACS Appl. Mater. Interfaces 2017, 9, 30583.
doi: 10.1021/acsami.7b06386 |
62 |
Li X. ; Yu J. ; Low J. ; Fang Y. ; Xiao J. ; Ch en ; X J. Mater. Chem. A 2015, 3, 2485.
doi: 10.1039/c4ta04461d |
63 | Jia X. ; Bai X. ; Ji Z. ; Li Y. ; Sun Y. ; Mi X. ; Zhan S. Acta Phys. -Chim. Sin. 2021, 37, 2010042. |
贾晓庆; 白晓宇; 吉喆喆; 李轶; 孙妍; 秘雪岳; 展思辉; 物理化学学报, 2021, 37, 2010042.
doi: 10.3866/PKU.WHXB202010042 |
|
64 | Li X. ; Liu J. ; Huang J. ; He C. ; Feng Z. ; Chen Z. ; Wan L. ; Deng F. Acta Phys. -Chim. Sin. 2021, 37, 2010030. |
李喜宝; 刘积有; 黄军同; 何朝政; 冯志军; 陈智; 万里鹰; 邓芳; 物理化学学报, 2021, 37, 2010030.
doi: 10.3866/PKU.WHXB202010030 |
|
65 | Wang W. ; Huang Y. ; Wang Z. Acta Phys. -Chim. Sin. 2021, 37, 2011073. |
王薇; 黄宇; 王震宇; 物理化学学报, 2021, 37, 2011073.
doi: 10.3866/PKU.WHXB202011073 |
|
66 |
Chen X. ; Chen Y. ; Liu X. ; Wang Q. ; Li L. ; Du L. ; Tian G. Sci. China-Mater. 2021,
doi: 10.1007/s40843-021-1744-5 |
67 |
Han C. ; Li J. ; Ma Z. ; Xie H. ; Waterhouse G. I. N. ; Ye L. ; Zhang T. Sci. China-Mater. 2018, 61, 1159.
doi: 10.1007/s40843-018-9245-y |
68 |
Ma B. ; Zhao J. ; Ge Z. ; Chen Y. ; Yuan Z. Sci. China-Mater. 2020, 63, 258.
doi: 10.1007/s40843-019-1181-y |
69 |
Ran J. ; Ma T. Y. ; Gao G. ; Du X. W. ; Qiao S. Z. Energy Environ. Sci. 2015, 8, 3708.
doi: 10.1039/C5EE02650D |
[1] | Lijun Zhang, Youlin Wu, Noritatsu Tsubaki, Zhiliang Jin. 2D/3D S-Scheme Heterojunction Interface of CeO2-Cu2O Promotes Ordered Charge Transfer for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302051-. |
[2] | Na Zhao, Jing Peng, Jianping Wang, Maolin Zhai. Novel Carboxy-Functionalized PVP-CdS Nanopopcorns with Homojunctions for Enhanced Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004046-. |
[3] | Peng Zhang, Jiquan Wang, Yuan Li, Lisha Jiang, Zhuangzhuang Wang, Gaoke Zhang. Non-Noble-Metallic Cocatalyst Ni2P Nanoparticles Modified Graphite-Like Carbonitride with Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009102-. |
[4] | Wei Wang, Yu Huang, Zhenyu Wang. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2011073-. |
[5] | Zihui Mei, Guohong Wang, Suding Yan, Juan Wang. Rapid Microwave-Assisted Synthesis of 2D/1D ZnIn2S4/TiO2 S-Scheme Heterojunction for Catalyzing Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009097-. |
[6] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-. |
[7] | Zhimin Jiang, Qing Chen, Qiaoqing Zheng, Rongchen Shen, Peng Zhang, Xin Li. Constructing 1D/2D Schottky-Based Heterojunctions between Mn0.2Cd0.8S Nanorods and Ti3C2 Nanosheets for Boosted Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010059-. |
[8] | Yiqing Wang,Shaohua Shen. Progress and Prospects of Non-Metal Doped Graphitic Carbon Nitride for Improved Photocatalytic Performances [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905080-. |
[9] | Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution [J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445. |
[10] | Jin BAI,Xin CHEN,Zhao-Yi XI,Xiang WANG,Qiang LI,Shao-Zheng HU. Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst [J]. Acta Phys. -Chim. Sin., 2017, 33(3): 611-619. |
[11] | Dong-Mei LIANG,Xia LENG,Yu-Chen MA. Quasiparticle Band Structures and Optical Properties of Graphitic Carbon Nitrides [J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1967-1976. |
[12] | Yue WANG,Quan JIANG,Jie-Kun SHANG,Jie XU,Yong-Xin LI. Advances in the Synthesis of Mesoporous Carbon Nitride Materials [J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1913-1928. |
[13] | Hui-Wen ZUO,Chun-Hai LU,Yu-Rong REN,Yi LI,Yong-Fan ZHANG,Wen-Kai CHEN. Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-Principles Study [J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1183-1190. |
[14] | ZHANG Jian, WANG Yan-Juan, HU Shao-Zheng. Effect of K+ Doping on the Band Structure and Photocatalytic Performance of Graphitic Carbon Nitride Photocatalysts [J]. Acta Phys. -Chim. Sin., 2015, 31(1): 159-165. |
[15] | JIN Rui-Rui, YOU Ji-Guang, ZHANG Qian, LIU Dan, HU Shao-Zheng, GUI Jian-Zhou. Preparation of Fe-Doped Graphitic Carbon Nitride with Enhanced Visible-Light Photocatalytic Activity [J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1706-1712. |
|