Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (12): 2303028.doi: 10.3866/PKU.WHXB202303028
Special Issue: Electrocatalysis in Energy Conversion
• ARTICLE • Previous Articles
Zheng-Min Wang1, Qing-Ling Hong2, Xiao-Hui Wang1, Hao Huang3,*(), Yu Chen2,*(), Shu-Ni Li1,*()
Received:
2023-03-13
Accepted:
2023-04-04
Published:
2023-04-10
Contact:
Hao Huang, Yu Chen, Shu-Ni Li
E-mail:huanghao881015@163.com;ndchenyu@gmail.com;lishuni@snnu.edu.cn
Supported by:
Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production[J]. Acta Phys. -Chim. Sin. 2023, 39(12), 2303028. doi: 10.3866/PKU.WHXB202303028
"
Electrocatalyst | Electrolyte | Overpotential/mV | Ref. |
RuP/N-GA-900 | 1 mol∙L−1 KOH | 19.6 | This work |
RuP nanoparticles | 1 mol∙L−1 KOH | 22 | |
RuPx nanoparticles in N, P-codoped carbon nanospheres | 1 mol∙L−1 KOH | 74 | |
RuP nanoparticles | 1 mol∙L−1 KOH | 31 | |
RuP2 in N, P-codoped carbon | 1 mol∙L−1 KOH | 52 | |
Ru nanocrystal | 1 mol∙L−1 KOH | 81 | |
Ru nanoparticles on multi-walled carbon nanotubes | 1 mol∙L−1 KOH | 17 | |
NiTe nanoarrays with RuO2 | 1 mol∙L−1 KOH | 19 | |
P-doped Ru supported on XC-72 carbon | 1 mol∙L−1 KOH | 31 | |
S-doped RuP nanoparticles in N, P, and S-codoped carbon | 1 mol∙L−1 KOH | 92 | |
Ru/CoO hybrid | 1 mol∙L−1 KOH | 55 | |
RuBe nanosheets | 1 mol∙L−1 KOH | 34.8 | |
Ru MOF-assisted CoFe nanoarrays | 1 mol∙L−1 KOH | 50 | |
Ru nanoparticles on N-doped porous carbon nanosheets | 1 mol∙L−1 KOH | 50 |
"
Catalyst | Electrolyte | Work potential/mV | Ref. |
RuP/N-GA-900 | 1.0 mol∙L−1 KOH + 0.4 mol∙L−1 N2H4 | −54 | This work |
Ru single atoms into WO3 | 1.0 mol∙L−1 KOH + 0.5 mol∙L−1 N2H4 | −58 | |
Ru nanoparticles on N-doped carbon | 1.0 mol∙L−1 KOH + 0.5 mol∙L−1 N2H4 | −39 | |
RuP2 nanoparticles on carbon microsheets | 1.0 mol∙L−1 KOH + 0.3 mol∙L−1 N2H4 | −70 | |
CoRuOx in N-doped carbon shell | 1.0 mol∙L−1 KOH + 0.5 mol∙L−1 N2H4 | −19 | |
carbon-coated RuP2 porous microsheets | 1.0 mol∙L−1 KOH + 0.3 mol∙L−1 N2H4 | −36 | |
NiFeP on nickel foam | 1.0 mol∙L−1 KOH + 0.1 mol∙L−1 N2H4 | 77 | |
Co-doped Ni2P | 1.0 mol∙L−1 KOH + 0.1 mol∙L−1 N2H4 | 10 | |
PdCo nanoparticles into carbon nanofibers | 3.0 mol∙L−1 KOH + 0.2 mol∙L−1 N2H4 | 25 | |
CoP/Co nanoparticles on carbon layers | 1.0 mol∙L−1 KOH + 0.5 mol∙L−1 N2H4 | −69 | |
V-doped Ni3N nanosheet self-supported on Ni foam | 1.0 mol∙L−1 KOH + 0.1 mol∙L−1 N2H4 | 2 | |
Low-crystalline Rh metallene | 1.0 mol∙L−1 KOH + 0.1 mol∙L−1 N2H4 | −2 | |
RhIr mesoporous nanospheres | 1.0 mol∙L−1 KOH + 0.5 mol∙L−1 N2H4 | −12 mV |
1 | Gao Z. Q. ; Wang C. Y. ; Li J. J. ; Zhu Y. T. ; Zhang Z. C. ; Hu W. P. Acta Phys. -Chim. Sin. 2021, 37, 2010025. |
高增强; 王聪勇; 李俊俊; 朱亚廷; 张志成; 胡文平; 物理化学学报, 2021, 37, 2010025.
doi: 10.3866/PKU.WHXB202010025 |
|
2 |
Wang T. J. ; Jiang Y. C. ; He J. W. ; Li F. M. ; Ding Y. ; Chen P. ; Chen Y. Carbon Energy 2022, 4, 283.
doi: 10.1002/cey2.170 |
3 |
Hong Q. L. ; Miao B. Q. ; Wang T. J. ; Li F. M. ; Chen Y. Energy Lab. 2023, 1, 220022.
doi: 10.54227/elab.20220022 |
4 | Qin R. ; Wang P. Y. ; Lin C. ; Cao F. ; Zhang J. Y. ; Chen L. ; Mu S. C. Acta Phys. -Chim. Sin. 2021, 37, 2009099. |
秦睿; 王鹏彦; 林灿; 曹菲; 张金咏; 陈磊; 木士春; 物理化学学报, 2021, 37, 2009099.
doi: 10.3866/PKU.WHXB202009099 |
|
5 | Lei Z. N. ; Ma X. Y. ; Hu X. Y. ; Fan J. ; Liu E. Z. Acta Phys. -Chim. Sin. 2022, 38, 2110049. |
雷卓楠; 马心怡; 胡晓云; 樊君; 刘恩周; 物理化学学报, 2022, 38, 2110049.
doi: 10.3866/PKU.WHXB202110049 |
|
6 |
Xue Q. ; Bai X. Y. ; Zhao Y. ; Li Y. N. ; Wang T. J. ; Li Y. N. ; Sun H. Y. ; Li F. M. ; Chen P. ; Jin P. J. ; Yin S. B. ; et al J. Energy Chem. 2022, 65, 94.
doi: 10.1016/j.jechem.2021.05.034 |
7 |
Song W. ; Li M. ; Wang C. ; Lu X. Carbon Energy 2021, 3, 101.
doi: 10.1002/cey2.85 |
8 |
Zhao T. W. ; Wang Y. ; Karuturi S. ; Catchpole K. ; Zhang Q. ; Zhao C. Carbon Energy 2020, 2, 582.
doi: 10.1002/cey2.79 |
9 | Liu Y. ; Li W. D. ; Wu H. ; Lu S. Y. Acta Phys. -Chim. Sin. 2021, 37, 2009082. |
刘源; 李卫东; 吴捍; 卢思宇; 物理化学学报, 2021, 37, 2009082.
doi: 10.3866/PKU.WHXB202009082 |
|
10 |
Hu Q. ; Gao K. ; Wang X. ; Zheng H. J. ; Cao J. G. ; Mi L. R. ; Huo Q. H. ; Yang H. P. ; Liu J. H. ; He C. X. Nat. Commun. 2022, 13, 3958.
doi: 10.1038/s41467-022-31660-2 |
11 |
Li C. ; Jang H. ; Kim M. G. ; Hou L. ; Liu X. ; Cho J. Appl. Catal. B 2022, 307, 121204.
doi: 10.1016/j.apcatb.2022.121204 |
12 |
Ding Y. ; Cao K. W. ; He J. W. ; Li F. M. ; Huang H. ; Chen P. ; Chen Y. Chin. J. Catal. 2022, 43, 1535.
doi: 10.1016/S1872-2067(21)63977-3 |
13 |
Zhang F. ; Zhu Y. L. ; Chen Y. ; Lu Y. ; Lin Q. ; Zhang L. ; Tao S. W. ; Zhang X. W. ; Wang H. T. J. Mater. Chem. A 2020, 8, 12810.
doi: 10.1039/D0TA04491A |
14 |
Chang Q. B. ; Ma J. W. ; Zhu Y. Z. ; Li Z. ; Xu D. Y. ; Duan X. Z. ; Peng W. C. ; Li Y. ; Zhang G.L. ; Zhang F. B. ACS Sustain. Chem. Eng. 2018, 6, 6388.
doi: 10.1021/acssuschemeng.8b00187 |
15 |
Chi J. Q. ; Gao W. K. ; Lin J. H. ; Dong B. ; Yan K. L. ; Qin J. F. ; Liu Bin. ; Chai Y. M. ; Liu C.G. ChemSusChem 2018, 11, 743.
doi: 10.1002/cssc.201702010 |
16 |
Guo L. ; Luo F. ; Guo F. ; Zhang Q. ; Qu K. ; Yang Z. H. ; Cai W. W. Chem. Commun. 2019, 55, 7623.
doi: 10.1039/C9CC03675J |
17 |
Li Y. ; Luo Y. ; Zhang Z. Q. ; Yu ; Li C. ; Zhang Q. ; Zheng Z. ; Liu H. K. ; Liu B. L. ; Dou S. X. Carbon 2021, 183, 362.
doi: 10.1016/j.carbon.2021.07.039 |
18 |
Chen Y. J. ; Li J. ; Wang N. ; Zhou Y. N. ; Zheng J. ; Chu W. J. Energy Chem. 2022, 448, 137611.
doi: 10.1016/j.cej.2022.137611 |
19 |
Zhu Y. ; Zhang J. ; Qian Q. ; Li Y. ; Li Z. ; Liu Y. ; Xiao C. ; Zhang G. Q. ; Xie Y. Angew. Chem. Int. Ed. 2022, 61, e202113082.
doi: 10.1002/anie.202113082 |
20 |
Qian Q. Z. ; Zhang J. H. ; Li J. M. ; Li Y. P. ; Jin X. ; Zhu Y. ; Liu Y. ; Li Z. Y. ; El-Harairy A. ; Xiao C. ; Zhang G. Q. ; Xie Y. Angew. Chem. Int. Ed. 2021, 60, 5984.
doi: 10.1002/anie.202014362 |
21 |
Wang Z. ; Xu L. ; Huang F. ; Qu L. ; Li J. ; Owusu K. A. ; Liu Z. A. ; Lin Z. F. ; Xiang B. H. ; Liu X. Adv. Energy Mater. 2019, 9, 1900390.
doi: 10.1002/aenm.201900390 |
22 |
Liu Y. ; Zhang J. ; Li Y. ; Qian ; Li Q. Z. ; Zhu Y. ; Zhang G. Q. Nat. Commun. 2020, 11, 1853.
doi: 10.1038/s41467-020-15563-8 |
23 |
Cui S. F. ; Wu W. ; Liu C. ; Wang Y. ; Chen Q. M. ; Liu X. R. Nanoscale 2021, 13, 18247.
doi: 10.1039/D1NR04075H |
24 |
Xue Q. ; Ding Y. ; Xue Y. Y. ; Li F. M. ; Chen P. ; Chen Y. Carbon 2018, 139, 137.
doi: 10.1016/j.Carbon.2018.06.052 |
25 |
Wang Y. H. ; Li R. Q. ; Li H. B. ; Huang H. L. ; Guo Z. J. ; Chen H. Y. ; Zheng Y. ; Qu K. G. Rare Metals 2021, 40, 1040.
doi: 10.1007/s12598-020-01665-1 |
26 |
Primo A. ; Neatu F. ; Florea M. ; Parvulescu V. ; Garcia H. Nat. Commun. 2014, 5, 5291.
doi: 10.1038/ncomms6291 |
27 |
Ge R. ; Wang S. ; Su J. ; Dong Y. ; Lin Y. ; Zhang Q. ; Chen L. Nanoscale 2018, 10, 13930.
doi: 10.1039/C8NR03554G |
28 |
Li Y. ; Sun Y. ; Qin Y. ; Zhang W. ; Wang L. ; Luo M. H. ; Yang H. ; Guo S. Adv. Energy Mater. 2020, 10, 1903120.
doi: 10.1002/aenm.201903120 |
29 |
Li Y. ; Chu F. ; Liu Y. ; Kong Y. ; Tao Y. ; Li Y. ; Qin Y. Chem. Commun. 2018, 54, 13076.
doi: 10.1039/C8CC08276F |
30 |
Kweon D. H. ; Okyay M. S. ; Kim S. J. ; Jeon J. P. ; Noh H. J. ; Park N. ; Mahmood J. ; Baek J. B. Nat. Commun. 2020, 11, 1278.
doi: 10.1038/s41467-020-15069-3 |
31 |
Sun H. C. ; Yang J. M. ; Li J. G. ; Li Z. S. ; Ao X. ; Liu Y. Z. ; Zhang Y. ; Li Y. ; Wang C. ; Tang H. Appl. Catal. B 2020, 272, 118988.
doi: 10.1016/j.apcatb.2020.118988 |
32 |
Zhao Y. M. ; Wang X. W. ; Cheng G. Z. ; Luo W. ACS Catal. 2020, 10, 11751.
doi: 10.1021/acscatal.0c03148 |
33 |
Liu X. ; Liu F. ; Yu J. ; Xiong G. ; Zhao L. ; Sang Y. ; Zuo S. ; Zhang J. ; Liu H. ; Zhou W. Adv. Sci. 2020, 7, 2001526.
doi: 10.1002/advs.202001526 |
34 |
Guo J. X. ; Yan D. Y. ; Qiu K. W. ; Mu C. ; Jiao D. ; Wang H. ; Lin T. J. Energy Chem. 2019, 37, 143.
doi: 10.1016/j.jechem.2018.12.011 |
35 |
Xu J. ; Wang S. I. ; Yang C. L. ; Li T. T. ; Liu Q. C. ; Kong X. Chem. Eng. J. 2021, 421, 129741.
doi: 10.1016/j.cej.2021.129741 |
36 |
Muthurasu A. ; Chhetri K. ; Dahal B. ; Kim H. Y. Nanoscale 2022, 14, 6557.
doi: 10.1039/D2NR00060A |
37 |
Yang Q. ; Zhu B. ; Wang F. ; Zhang C. ; Cai J. J. Nano Res. 2022, 15, 5134.
doi: 10.1007/s12274-022-4148-2 |
38 |
Li J. ; Zhang C. ; Zhang C. ; Ma H. ; Yang Y. ; Guo Z. ; Wang Y. ; Ma H. Chem. Eng. J. 2022, 430, 132953.
doi: 10.1016/j.cej.2021.132953 |
39 |
Wang J. ; Guan X. ; Li H. ; Zeng S. ; Li R. ; Yao Q. ; Chen H. ; Zheng Y. ; Qu K. Nano Energy 2022, 100, 107467.
doi: 10.1016/j.nanoen.2022.107467 |
40 |
Li Y. ; Zhang J. ; Liu Y. ; Qian Q. ; Li Z. ; Zhu Y. ; Zhang G. Sci. Adv. 2020, 6, 131099.
doi: 10.1126/sciadv.abb4197 |
41 |
Yang Q. F. ; Cui Y. C. ; Li Q. Y. ; Cai J. H. ; Wang D. ; Feng L. Chem. Eng. 2020, 8, 12089.
doi: 10.1021/acssuschemeng.0c03410 |
42 |
Li Y. ; Wang W. ; Cheng M. ; Qian Q. ; Zhu Y. ; Zhang G. Catal. Sci. Technol. 2022, 12, 6258.
doi: 10.1039/D2CY00055E |
43 |
Wang H. ; Tao S. Nanoscale Adv. 2021, 3, 2280.
doi: 10.1039/D1NA00043H |
44 |
Zhou B. ; Li M. Y. ; Li Y. Y. ; Liu Y. B. ; Lu Y. X. ; Li W. ; Wu Y. J. ; Huo J. ; Wang Y. Y. ; Tao L. ; Wang S. Y. Chin. J. Catal. 2022, 43, 1131.
doi: 10.1016/S1872-2067(21)63951-7 |
45 |
Ao Y. ; Chen S. ; Wang C. ; Lu X. J. Colloid Interface Sci. 2021, 601, 495.
doi: 10.1016/j.jcis.2021.05.119 |
46 |
Chen S. ; Wang C. ; Liu S. ; Huang M. ; Lu J. J. Phys. Chem. Lett. 2021, 12, 4849.
doi: 10.1021/acs.jpclett.1c00963 |
47 |
Zhang J. ; Liu Y. ; Li J. ; Jin X. ; Li Y. ; Qian Q. ; Wang Y. ; El-Harairy A. ; Li Z. ; Zhu Y. ; et al ACS Appl. Mater. Interfaces 2021, 13, 3881.
doi: 10.1021/acsami.0c18684 |
48 |
Deng K. ; Mao Q. ; Wang W. ; Wang P. ; Wang Z. ; Xu Y. ; Li X. ; Wang H. J. ; Wang L. Appl. Catal. B 2022, 310, 121338.
doi: 10.1016/j.apcatb.2022 |
49 |
Zhang M. ; Wang Z. ; Duan Z. ; Wang S. ; Xu Y. ; Li X. N. ; Wang L. ; Wang H. J. J. Mater. Chem. A 2021, 9, 18323.
doi: 10.1039/D1TA05564J |
50 |
Song Q. ; Li J. ; Wang S. ; Liu J. ; Liu X. ; Pang L. Y. ; Li H. ; Liu H. Small 2019, 15, e1903395.
doi: 10.1002/smll.201903395 |
51 |
Zhou L. ; Shao M. ; Zhang C. ; Zhao J. ; He S. ; Rao D. ; Wei M. ; Evans D. G. ; Duan X. Adv. Mater. 2017, 29, 1604080.
doi: 10.1002/adma.201604080 |
[1] | Yuqiong Li, Bing Lan, Bin Guan, Chunlong Dai, Fan Zhang, Zifeng Lin. Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2024, 40(9): 2306031-. |
[2] | Wei Sun, Yongjing Wang, Kun Xiang, Saishuai Bai, Haitao Wang, Jing Zou, Arramel, Jizhou Jiang. CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2024, 40(8): 2308015-. |
[3] | Wenjuan Tan, Yong Ye, Xiujuan Sun, Bei Liu, Jiajia Zhou, Hailong Liao, Xiulin Wu, Rui Ding, Enhui Liu, Ping Gao. Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation [J]. Acta Phys. -Chim. Sin., 2024, 40(6): 2306054-. |
[4] | Huasen Lu, Shixu Song, Qisen Jia, Guangbo Liu, Luhua Jiang. Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting [J]. Acta Phys. -Chim. Sin., 2024, 40(2): 2304035-. |
[5] | Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2211029-0. |
[6] | Siran Xu, Qi Wu, Bang-An Lu, Tang Tang, Jia-Nan Zhang, Jin-Song Hu. Recent Advances and Future Prospects on Industrial Catalysts for Green Hydrogen Production in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2209001-0. |
[7] | Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301032-. |
[8] | Xiaoming Li, Yidan Gao, Qingqiang Kong, Lijing Xie, Zhuo liu, Xiaoqian Guo, Yanzhen Liu, Xianxian Wei, Xiao Yang, Xinghua Zhang, Chengmeng Chen. Fabrication of Three-Dimensional Copper@Graphene Phase Change Composite with High Structural Stability and Low Leakage Rate [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2012091-. |
[9] | Mengting Li, Xingqun Zheng, Li Li, Zidong Wei. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007054-. |
[10] | Yufei Bao, Ligang Feng. Formic Acid Electro-Oxidation Catalyzed by PdNi/Graphene Aerogel [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2008031-. |
[11] | Yuan Liu, Weidong Li, Han Wu, Siyu Lu. Carbon Dots Enhance Ruthenium Nanoparticles for Efficient Hydrogen Production in Alkaline [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009082-. |
[12] | Daqiang Yan, Lin Zhang, Zupeng Chen, Weiping Xiao, Xiaofei Yang. Nickel-Based Metal-Organic Framework-Derived Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009054-. |
[13] | Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2010025-. |
[14] | Jingxuan Ge, Jun Hu, Yingting Zhu, Zonish Zeb, Dejin Zang, Zhaoxian Qin, Yichao Huang, Jiangwei Zhang, Yongge Wei. Recent Advances in Polyoxometalates for Applications in Electrocatalytic Hydrogen Evolution Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1906063-. |
[15] | Zhou LIN,Linfan SHEN,Ximing QU,Junming ZHANG,Yanxia JIANG,Shigang SUN. Molybdenum Carbide Prepared by a Salt Sealing Approach as an Electrocatalyst for Enhanced Hydrogen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 523-530. |
|