Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (2): 2209001.doi: 10.3866/PKU.WHXB202209001
• REVIEW • Previous Articles
Siran Xu1, Qi Wu3, Bang-An Lu1, Tang Tang2, Jia-Nan Zhang1,*(), Jin-Song Hu2,*()
Received:
2022-09-02
Accepted:
2022-10-10
Published:
2022-10-25
Contact:
Jia-Nan Zhang,Jin-Song Hu
E-mail:zjn@zzu.edu.cn;hujs@iccas.ac.cn
About author:
Email: hujs@iccas.ac.cn (J.H.)Supported by:
Siran Xu, Qi Wu, Bang-An Lu, Tang Tang, Jia-Nan Zhang, Jin-Song Hu. Recent Advances and Future Prospects on Industrial Catalysts for Green Hydrogen Production in Alkaline Media[J]. Acta Phys. -Chim. Sin. 2023, 39(2), 2209001. doi: 10.3866/PKU.WHXB202209001
Fig 2
(a) Volcano-type dependence between HBE and exchange current densities log(i0) on monometallic surface 33; (b) steady state CVs of Pt(110) and Pt(100) in different pH electrolytes 34; (c) HBE on Pt(110) (solid symbols) and Pt(100) (empty symbols) surfaces obtained from CVs as a function of solution Pt 34; (d) a correlation between the exchange current density and Hupd peak position for supported Pt-group nanoparticles 35. (a) Adapted with permission from Ref. 33, Copyright 2013, Royal Society of Chemistry. (b, c) Adapted with permission from Ref. 34, Copyright 2015, Nature Publishing Group. (d) Adapted with permission from Ref. 35, Copyright 2016, American Association for the Advancement of Science."
Fig 3
(a) Schematic representation of the alkaline HER on a Ni(OH)2/Pt(111) heterointerface 46; (b) using Pt(553) as the H adsorption site, the volcanic diagram between OH binding energy and alkaline HER activity; (c) 3D volcano curves considering dissociation energy of H2O and adsorption energy of OHad and Had during alkaline HER process; (d) reaction energy diagram to illustrate the HER reaction mechanism 41. (a) Adapted with permission from Ref. 46, Copyright 2012, Nature Publishing Group; (b–d) Adapted with permission from Ref. 41, Copyright 2020, Nature Publishing Group."
Fig 4
(a) Schematic illustration showing reaction paths in alkaline HER on the surface of a Ni catalyst doped with oxophilic metal (M) atoms; (b) comparison plot of DFT calculation of hydrogen binding energy (ΔEH) and hydroxyl binding energy (ΔEOH) for Ni(111) and M—Ni(111) surfaces; (c) volcano plot of M—Ni and Ni catalysts with ?10 and Tafel slope as a function 49; (d) HER mechanism of PtSA-NiO/Ni 51"
Fig 5
(a) AEM pathway on single metal site. Metal site, the lattice oxygen and oxygen from the electrolyte are marked in yellow, green color and green ball, respectively. The black arrow means join, and the yellow arrow means release. (b–d) LOM mechanism with oxygen vacancy, single metal and dual-metal as active site, respectively. Chemically inert lattice oxygen, active lattice oxygen involving OER, and oxygen in the electrolyte are marked with green, red, and green spheres, respectively, and dotted lines represent oxygen vacancies."
Fig 6
(a) The scaling relationship between the free energy of the water dissociation on top of oxygen (ΔG*OOH ? ΔG*O (eV)) and the free energy of proton removal (ΔG*O ? ΔG*OH (eV)) 70; (b) The schematic representations of cation/anion redox chemistry guided by d–d Coulomb interaction (U) and charge transfer energy (Δ), which manifest conventional metal cation oxidation (left), oxygen anion oxidation (middle) and direct oxygen anion release (right) for OER, respectively; (c) Schematic formation of oxygen holes in |O 2p lone-pair states for NaxMn3O7; (d) Projected density of states of NaxMn3O7 slabs (x = 2, 1.5, 1, 0.5) 79; (e) Schematic energy bands of CoO2 and zinc-substituted CoO2 slabs in consideration of Mott-Hubbard splitting; (f) Transformation of OER mechanism due to Na+ introduction, including AEM (left) and LOM (right) 84. (a) Adapted with permission from Ref. 70, Copyright 2011, Wiley-VCH Verlag GmbH & Co. KGaA; (c, d) Adapted with permission from Ref. 79, Copyright 2021, Nature Publishing Group; (e–f) Adapted with permission from Ref. 84, Copyright 2019, Nature Publishing Group."
Fig 7
(a) Schematic of the synthesis route of Co2P/CoN-NCNT prepared with two-step pyrolysis process; (b) HRTEM images of Co2P/CoN-NCNT core-shell structure; (c) Calculated free-energy diagram of different catalyst samples 104; (d) Synthesis process of Ru2B3@BNC catalysts; (e) HER activity of Ru2B3@BNC in 1 mol·L−1 KOH; (f) Calculated free-energy diagram of H adsorption 105; (g) Synthesis process, (h) TEM image and (i) HRTEM image of Ir-NBD-C; (j) LSV curves and Tafel slopes of Ir-NBD-C and other samples 112; (k) Synthesis and microstructure design of Ru1SACs@FeCo-LDH catalyst in alkaline; (l) FE-SEM image with the yellow dashed line showing the defect intensity curve; (m) Long-term stability measure of RuxSACs@FeCo-LDH catalyst during overall water splitting 119. (a–c) Adapted with permission from Ref. 104, Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA. (d–f) Adapted with permission from Ref. 105, Copyright 2020, Royal Society of Chemistry. (g–j) Adapted with permission from Ref. 112, Copyright 2022, Wiley-VCH Verlag GmbH & Co. KGaA. (k–m) Adapted with permission from Ref. 119, Copyright 2022, Royal Society of Chemistry."
Fig 8
(a–c) Schematic of the roll-to-roll system and design principle of catalyst prepared by electrophoretic deposition 130; (d) diagram of high-throughput production step and structure of MoS2-based ink-type electrocatalysts; (e) LSV curves of MoS2-based electrocatalysts 5; (f) synthesis and characterization of the h-NiMoFe catalyst; (g) LSV curves of h-NiMoFe, Ni foam and commercial Pt/C 126. (a–c) Adapted with permission from Ref. 130, Copyright 2015, American Chemical Society. (d, e) Adapted with permission from Ref. 5, Copyright 2020, Nature Publishing Group. (f, g) Adapted with permission from Ref. 126, Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA."
Fig 9
(a) Diagram of the formation of bubbles on the catalyst surface; (b) Schematic diagram of synthesis steps and corresponding morphologies of FeCoNi-HNTAs catalyst; Superaerophobic and superhydrophilic measurements of (c) FeCoNi-HNTAs, (d) FeCoNi-LDH-HWAs, (e) MoS2/NF and (f) NF; (g) Comparison of overall water splitting performance of catalysts; (h) Long-term stability measurement of FeCoNi-HNTAs 134; (i) Illustration of synthesis of NiMoB-HF/NF hollow nanotube catalyst; Optical photos of H2 bubbles attached to Nickel foam (j-k) and NiMoB-HF/NF (m–n) at (j, m) low current density (20 mA∙cm−2) and (k, n) large current density (100 mA∙cm−2), respectivity; Schematic diagram of bubbles attached to Ni foam surface (l) and NiMoB-HF/NF (o). (p–r) Long-term stability measurement of NiMoB-HF/NF at different current densities 135. (b–h) Adapted with permission from Ref. 134, Copyright 2018, Nature Publishing Group. (i–r) Adapted with permission from Ref. 135, Copyright 2022, Nature Publishing Group."
Table 1
Introduce of electrode performance of AEMWE."
Electrode | GDL | Substrate | Anode/Cathode | Cell Voltage/V (precious-metal) | Current density (mA?cm?2) | Stability/h | Ref. |
NiFeOOH | Ti paper | Ti paper | Anode | 1.8 | 3600 | 100 (500 mA?cm?2) | |
Ni/C | MPLs | SUS paper | Anode/Cathode | 1.9 | 500 | 120 | |
NiFeV LDH | Ni foam | Ni foam | Anode | 1.8 | 2100 | 100 | |
Pt | CNTSs | SUS paper | Cathode | 1.9 | 4000 | 3 (1 A?cm?2) | |
Ir-Ni/Mo5N6 | Ni foam | Ni foam | Anode/Cathode | 2.0 | 2100 | 30 | |
Ni0.75Fe2.25O4 | Ni foam | Ni foam | Anode | 1.9 | 2000 | 21 | |
g-CN-CNF-800 | – | Ni foam | Anode | 1.9 | 734 | – | |
CE-CCO | Ni foam | Ni foam | Anode | 1.8 | 1390 | 64 (500 mA?cm?2) |
Table 2
Introduction of common electrolytic cell characteristics."
AWE | AEMWE | PEMWE | SOEC | |
Common electrode materials | Ni-based materials | Ni, Co, Fe, etc.non-noble metal catalyst | Ir, Ru and other precious metals and their alloys/mixed oxides | Y2O3, ZrO3 |
Membrane | Insulation materials such as asbestos cloth or polysulfone | Anion exchange membrane | Proton Exchange Membrane | Solid Oxide |
Current density | ~0.8 A?cm?2 | ~2 A?cm?2 | ~4 A?cm?2 | ~0.4 A?cm?2 |
Electrolyte | KOH, NaOH | No corrosive medium | No corrosive medium | – |
Operating temperature/℃ | ≤ 90 | ≤ 60 | ≤ 80 | ≥ 800 |
Hydrogen purity | 99.8% | 99.99% | 99.99% | – |
Intermittent energy response speed | Slow | Fast | Fast (< 5 s) | – |
Start/Stop Rate | Slow | Fast | Fast | Difficult |
Industrialization degree | Mature | Laboratory | Preliminary | Expected Stage |
Advantages | Mature technology, low cost | Low cost, high efficiency and excellent performance | High security and efficiency | Expected efficiency of 100% |
Disadvantages | Low efficiency and poor performance | Limited anionic conductivity, not commercialized | High cost | High temperature accelerates material deactivation |
Fig 11
(a) Schematic cross section of an AEM water electrolysis system; (b) AEM electrolyzer components; (c) plane diagram of PEM electrolyzer; (d) the components and assembly of the membrane-free flow electrolyzer 148. Adapted with permission from Ref. 148, Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA."
Table 3
The performance of industrial catalysts (≥ 500 mA∙cm?2) in alkaline media in the past five years."
Number | Application | Catalyst | η (Current density) | Stability (Current density) | Ref. |
1 | HER | RuxSACs@FeCo-LDH | 110 mV (1 A?cm?2) | 1000 h (1 A?cm?2) | |
OER | 246 mV (1 A?cm?2) | 1000 h (1 A?cm?2) | |||
2 | HER | Mo2S3@NiMo3S4 | 174 mV (1 A?cm?2) | 24 h (500 mA?cm?2) | |
OER | 390 mV (1 A?cm?2) | ||||
3 | HER | Fe-Ni2P@C/NF | 313 mV (1 A?cm?2) | 15 h (20 mA?cm?2) | |
4 | OER | FeWO4-Ni3S2@C | 340 mV (1 A?cm?2) | 100 h (1 A?cm?2) | |
HER | 370 mV (1 A?cm?2) | 100 h (1 A?cm?2) | |||
5 | OER | NiO/RuO2/NF | 560 mV (1 A?cm?2) | 72 h (1.5 A?cm?2) | |
HER | 270 mV (1 A?cm?2) | 72 h (1.5 A?cm?2) | |||
6 | HER | Ni-Mo-B/NF | 260 mV (500 mA?cm?2) | – | |
OER | 293 mV (5 A?cm?2) | – | |||
7 | HER | IrNi-FeNi3 | 288 mV (1 A?cm?2) | 120 h (1 A?cm?2) | |
OER | 330 mV (1 A?cm?2) | 120 h (1 A?cm?2) | |||
8 | HER | K2Fe4O7 | 343 mV (2 A?cm?2) | 60 h (1.5 A?cm?2) | |
OER | 421 mV (2 A?cm?2) | 60 h (1.5 A?cm?2) | |||
9 | HER | Pt/Ni-Mo | 113 mV (2 A?cm?2) | 140 h (2 A?cm?2) | |
10 | HER | H-NiMoFe/NF | 100 mV (1 A?cm?2) | – | |
11 | HER | Co3Mo/Cu | 96 mV (400 mA?cm?2) | 1000 h (50 mA?cm?2) | |
12 | HER | CoOx-RuO2/NF | 215 mV (1.5 A?cm?2) | 48 h (1.5 A?cm?2) | |
OER | 420 mV (1.5 A?cm?2) | 48 h (1.5 A?cm?2) | |||
13 | HER | Co-P foam | 290 mV (1 A?cm?2) | 3000 h (1 A?cm?2) | |
OER | 380 mV (1 A?cm?2) | 3000 h (1 A?cm?2) | |||
14 | HER | F-Co2P-Fe2P-IF | 304 mV (2 A?cm?2) | 10 h (2 A?cm?2) | |
15 | HER | Co2P-Fe2P/CF | 254 mV (1 A?cm?2) | 300 h (0.1–1 A?cm?2) | |
OER | 317 mV (1 A?cm?2) | 250 h (0.1–1 A?cm?2) | |||
16 | HER | HC-MoS2/Mo2C | 412 mV (1 A?cm?2) | 24 h (?400 mV) | |
17 | HER | MoS2/Ni3S2/NF | 200 mV (1 A?cm?2) | 12 h (1 A?cm?2) | |
18 | HER | NC/Ni3Mo3N/NF | 954 mV (1 A?cm?2) | 50 h (1.1 A?cm?2) | |
19 | HER | A-NiCo LDH/NF | 381 mV (1 A?cm?2) | 72 h (1 A?cm?2) | |
20 | HER | NiCo/NiCo-OH | 184 mV (500 mA?cm?2) | 24 h (500 mA?cm?2) | |
21 | OER | NiFe/NiFe-OH | 296 mV (500 mA?cm?2) | 24 h (500 mA?cm?2) | |
22 | HER | NiMoOx/NiMoS/NF | 186 mV (500 mA?cm?2) | 25 h (500 mA?cm?2) | |
OER | 278 mV (500 mA?cm?2) | 25 h (500 mA?cm?2) | |||
23 | HER | Ni0.2Mo0.8N/Ni | ~90 mV (500 mA?cm?2 | 60 h (100 mA?cm?2) | |
24 | HER OER | Ni@C-MoO2/NF | 332 mV (2 A?cm?2) 400 mV (1 A?cm?2) | 172 h (1 A?cm?2) 172 h (1 A?cm?2) | |
25 | HER | Ni2P nanoarray/NF | 368 mV (1.5 A?cm?2) | 24 h | |
26 | HER | MoS2/Mo2C | 220 mV (1 A?cm?2) | – | |
27 | HER | Fe-Ni2P | 300 mV (1 A?cm?2) | – | |
OER | 183 mV (1 A?cm?2) | – | |||
28 | HER | Ni-Co-P/NF | 350 mV (1.5 A?cm?2) | 24 h (10 mA?cm?2) | |
29 | OER | NiFe nanowire | 258 mV (1 A?cm?2) | 120 h (1 A?cm?2) | |
30 | HER | Ni-P-B/NF | 254 mV (500 mA?cm?2) | 240 h (1 A?cm?2) | |
OER | 335 mV (500 mA?cm?2) | 240 h (1 A?cm?2) | |||
31 | OER | Se-FeOOH/IF | 348 mV (500 mA?cm?2) | 14 h (10 mA?cm?2) | |
32 | OER | Fe-CoP/NF | 428 mV (1 A?cm?2) | 30 h (1 A?cm?2) | |
33 | OER | FeP/Ni2P | ~310 mV (1.5 A?cm?2) | 24 h (100 mA?cm?2) | |
34 | HER | Co-B-P/NF | ~225 mV (2 A?cm?2) | 20 h (1 A?cm?2) |
1 |
Jiang W.-J. ; Tang T. ; Zhang Y. ; Hu J.-S. Acc. Chem. Res. 2020, 53 (6), 1111.
doi: 10.1021/acs.accounts.0c00127 |
2 |
Chen Z. ; Xu Y. ; Ding D. ; Song G. ; Gan X. ; Li H. ; Wei W. ; Chen J. ; Li Z. ; Gong Z. ; et al Nat. Commun. 2022, 13 (1), 763.
doi: 10.1038/s41467-022-28413-6 |
3 |
Huang L.-B. ; Zhao L. ; Zhang Y. ; Chen Y.-Y. ; Zhang Q.-H. ; Luo H. ; Zhang X. ; Tang T. ; Gu L. ; Hu J.-S. Adv. Energy Mater. 2018, 8 (21), 1800734.
doi: 10.1002/aenm.201800734 |
4 |
Luo Y. ; Zhang Z. ; Chhowalla M. ; Liu B. Adv. Mater. 2022, 34 (16), 2108133.
doi: 10.1002/adma.202108133 |
5 |
Zhang C. ; Luo Y. ; Tan J. ; Yu Q. ; Yang F. ; Zhang Z. ; Yang L. ; Cheng H.-M. ; Liu B. Nat. Commun. 2020, 11 (1), 3724.
doi: 10.1038/s41467-020-17121-8 |
6 |
Li D. ; Liu H. ; Feng L. Energy & Fuels 2020, 34 (11), 13491.
doi: 10.1021/acs.energyfuels.0c03084 |
7 | Yu J. Acta Phys. -Chim. Sin. 2021, 37 (7), 2011004. |
于吉红. 物理化学学报, 2021, 37 (7), 2011004.
doi: 10.3866/PKU.WHXB202011004 |
|
8 |
Wu T. ; Xu S. ; Zhang Z. ; Luo M. ; Wang R. ; Tang Y. ; Wang J. ; Huang F. Adv. Sci. 2022, 9, 2202750.
doi: 10.1002/advs.202202750 |
9 |
Jin H. ; Ruqia B. ; Park Y. ; Kim H. J. ; Oh H.-S. ; Choi S.-I. ; Lee K. Adv. Energy Mater. 2021, 11 (4), 2003188.
doi: 10.1002/aenm.202003188 |
10 |
Yeo K.-R. ; Lee K.-S. ; Kim H. ; Lee J. ; Kim S.-K. Energy Environ. Sci. 2022, 15 (8), 3449.
doi: 10.1039/D2EE01042A |
11 |
López-Fernández E. ; Gómez-Sacedón C. ; Gil-Rostra J. ; Espinós J. P. ; González-Elipe A. R. ; Yubero F. ; de Lucas-Consuegra A. Chem. Eng. J. 2022, 433, 133774.
doi: 10.1016/j.cej.2021.133774 |
12 |
Zakaria Z. ; Kamarudin S. K. Int. J. Energy Res. 2021, 45 (13), 18337.
doi: 10.1002/er.6983 |
13 |
Khataee A. ; Shirole A. ; Jannasch P. ; Krüger A. ; Cornell A. J. Mater. Chem. A 2022, 10 (30), 16061.
doi: 10.1039/D2TA03291K |
14 |
Mayerhöfer B. ; Ehelebe K. ; Speck F. D. ; Bierling M. ; Bender J. ; Kerres J. A. ; Mayrhofer K. J. J. ; Cherevko S. ; Peach R. ; Thiele S. J. Mater. Chem. A 2021, 9 (25), 14285.
doi: 10.1039/D1TA00747E |
15 |
Wan L. ; Liu J. ; Xu Z. ; Xu Q. ; Pang M. ; Wang P. ; Wang B. Small 2022, 18 (21), 2200380.
doi: 10.1002/smll.202200380 |
16 |
Cao X. ; Novitski D. ; Holdcroft S. ACS Mater. Lett. 2019, 1 (3), 362.
doi: 10.1021/acsmaterialslett.9b00195 |
17 |
Cho M. K. ; Park H.-Y. ; Choe S. ; Yoo S. J. ; Kim J. Y. ; Kim H.-J. ; Henkensmeier D. ; Lee S. Y. ; Sung Y.-E. ; Park H. S. ; et al J. Power Sources 2017, 347, 283.
doi: 10.1016/j.jpowsour.2017.02.058 |
18 |
Zhang X.-Y. ; Yu W.-L. ; Zhao J. ; Dong B. ; Liu C.-G. ; Chai Y.-M. Appl. Mater. Today 2021, 22, 100913.
doi: 10.1016/j.apmt.2020.100913 |
19 |
Villagra A. ; Millet P. Int. J. Hydrogen Energy 2019, 44 (20), 9708.
doi: 10.1016/j.ijhydene.2018.11.179 |
20 |
Dong Z.-H. ; Jiang Z. ; Tang T. ; Yao Z.-C. ; Xue D. ; Niu S. ; Zhang J. ; Hu J.-S. J. Mater. Chem. A 2022, 10 (24), 12764.
doi: 10.1039/D2TA02374A |
21 |
Zheng Y. ; Jiao Y. ; Vasileff A. ; Qiao S.-Z. Angew. Chem. Int. Ed. 2018, 57 (26), 7568.
doi: 10.1002/anie.201710556 |
22 |
Xu Q. ; Zhang J. ; Zhang H. ; Zhang L. ; Chen L. ; Hu Y. ; Jiang H. ; Li C. Energy Environ. Sci. 2021, 14 (10), 5228.
doi: 10.1039/D1EE02105B |
23 |
Xue S. ; Haid R. W. ; Kluge R. M. ; Ding X. ; Garlyyev B. ; Fichtner J. ; Watzele S. ; Hou S. ; Bandarenka A. S. Angew. Chem. Int. Ed. 2020, 59 (27), 10934.
doi: 10.1002/anie.202000383 |
24 |
Danilovic N. ; Subbaraman R. ; Strmcnik D. ; Chang K.-C. ; Paulikas A. P. ; Stamenkovic V. R. ; Markovic N. M. Angew. Chem. Int. Ed. 2012, 51 (50), 12495.
doi: 10.1002/anie.201204842 |
25 |
Lao M. ; Li P. ; Jiang Y. ; Pan H. ; Dou S. X. ; Sun W. Nano Energy 2022, 98, 107231.
doi: 10.1016/j.nanoen.2022.107231 |
26 |
Mao B. ; Sun P. ; Jiang Y. ; Meng T. ; Guo D. ; Qin J. ; Cao M. Angew. Chem. Int. Ed. 2020, 59 (35), 15232.
doi: 10.1002/anie.202006722 |
27 |
Morales-Guio C. G. ; Stern L.-A. ; Hu X. Chem. Soc. Rev. 2014, 43 (18), 6555.
doi: 10.1039/C3CS60468C |
28 |
Yu Z.-Y. ; Duan Y. ; Feng X.-Y. ; Yu X. ; Gao M.-R. ; Yu S.-H. Adv. Mater. 2021, 33 (31), 2007100.
doi: 10.1002/adma.202007100 |
29 |
Anantharaj S. ; Noda S. ; Jothi V. R. ; Yi S. ; Driess M. ; Menezes P. W. Angew. Chem. Int. Ed. 2021, 60 (35), 18981.
doi: 10.1002/anie.202015738 |
30 | Li M. ; Zheng X. ; Li L. ; Wei Z. Acta Phys. -Chim. Sin. 2021, 37 (9), 2007054. |
李孟婷; 郑星群; 李莉; 魏子栋. 物理化学学报, 2021, 37 (9), 2007054.
doi: 10.3866/PKU.WHXB202007054 |
|
31 |
Hu C. ; Zhang L. ; Gong J. Energy Environ. Sci. 2019, 12 (9), 2620.
doi: 10.1039/C9EE01202H |
32 |
Deng C. ; Toe C. Y. ; Li X. ; Tan J. ; Yang H. ; Hu Q. ; He C. Adv. Energy Mater. 2022, 12 (25), 2201047.
doi: 10.1002/aenm.202201047 |
33 |
Sheng W. ; Myint M. ; Chen J. G. ; Yan Y. Energy Environ. Sci. 2013, 6 (5), 1509.
doi: 10.1039/C3EE00045A |
34 |
Sheng W. ; Zhuang Z. ; Gao M. ; Zheng J. ; Chen J. G. ; Yan Y. Nat. Commun. 2015, 6 (1), 5848.
doi: 10.1038/ncomms6848 |
35 |
Zheng J. ; Sheng W. ; Zhuang Z. ; Xu B. ; Yan Y. Sci. Adv. 2016, 2 (3), e1501602.
doi: 10.1126/sciadv.1501602 |
36 |
Mahmood J. ; Li F. ; Jung S.-M. ; Okyay M. S. ; Ahmad I. ; Kim S.-J. ; Park N. ; Jeong H. Y. ; Baek J.-B. Nat. Nanotechnol. 2017, 12 (5), 441.
doi: 10.1038/nnano.2016.304 |
37 |
Cheng T. ; Wang L. ; Merinov B. V. ; Goddard W. A. J. Am. Chem. Soc. 2018, 140 (25), 7787.
doi: 10.1021/jacs.8b04006 |
38 |
Ledezma-Yanez I. ; Wallace W. D. Z. ; Sebastián-Pascual P. ; Climent V. ; Feliu J. M. ; Koper M. T. M. Nat. Energy 2017, 2 (4), 17031.
doi: 10.1038/nenergy.2017.31 |
39 |
Rebollar L. ; Intikhab S. ; Zhang S. ; Deng H. ; Zeng Z. ; Snyder J. D. ; Tang M. H. J. Catal. 2021, 398, 161.
doi: 10.1016/j.jcat.2021.04.008 |
40 |
Liu E. ; Li J. ; Jiao L. ; Doan H. T. T. ; Liu Z. ; Zhao Z. ; Huang Y. ; Abraham K. M. ; Mukerjee S. ; Jia Q. J. Am. Chem. Soc. 2019, 141 (7), 3232.
doi: 10.1021/jacs.8b13228 |
41 |
McCrum I. T. ; Koper M. T. M. Nat. Energy 2020, 5 (11), 891.
doi: 10.1038/s41560-020-00710-8 |
42 |
Jeong S. ; Mai H. D. ; Nam K.-H. ; Park C.-M. ; Jeon K.-J. ACS Nano 2022, 16 (1), 930.
doi: 10.1021/acsnano.1c08506 |
43 | Wu Y. ; Luo J. Acta Phys. -Chim. Sin. 2016, 32 (11), 2745. |
吴昱; 罗键. 物理化学学报, 2016, 32 (11), 2745.
doi: 10.3866/PKU.WHXB201608083 |
|
44 |
Tang T. ; Ding L. ; Yao Z.-C. ; Pan H.-R. ; Hu J.-S. ; Wan L.-J. Adv. Funct. Mater. 2022, 32 (2), 2107479.
doi: 10.1002/adfm.202107479 |
45 |
Subbaraman R. ; Tripkovic D. ; Strmcnik D. ; Chang K.-C. ; Uchimura M. ; Paulikas A. P. ; Stamenkovic V. ; Markovic N. M. Science 2011, 334 (6060), 1256.
doi: 10.1126/science.1211934 |
46 |
Subbaraman R. ; Tripkovic D. ; Chang K.-C. ; Strmcnik D. ; Paulikas A. P. ; Hirunsit P. ; Chan M. ; Greeley J. ; Stamenkovic V. ; Markovic N. M. Nat. Mater. 2012, 11 (6), 550.
doi: 10.1038/nmat3313 |
47 |
Wang X. ; Zheng Y. ; Sheng W. ; Xu Z. J. ; Jaroniec M. ; Qiao S.-Z. Mater. Today 2020, 36, 125.
doi: 10.1016/j.mattod.2019.12.003 |
48 |
Wei J. ; Zhou M. ; Long A. ; Xue Y. ; Liao H. ; Wei C. ; Xu Z. J. Nano-Micro Lett. 2018, 10 (4), 75.
doi: 10.1007/s40820-018-0229-x |
49 |
Kim J. ; Jung H. ; Jung S.-M. ; Hwang J. ; Kim D. Y. ; Lee N. ; Kim K.-S. ; Kwon H. ; Kim Y.-T. ; Han J. W. ; Kim J. K. J. Am. Chem. Soc. 2021, 143 (3), 1399.
doi: 10.1021/jacs.0c10661 |
50 |
Gong M. ; Zhou W. ; Tsai M.-C. ; Zhou J. ; Guan M. ; Lin M.-C. ; Zhang B. ; Hu Y. ; Wang D.-Y. ; Yang J. ; et al Nat. Commun. 2014, 5 (1), 4695.
doi: 10.1038/ncomms5695 |
51 |
Zhou K. L. ; Wang Z. ; Han C. B. ; Ke X. ; Wang C. ; Jin Y. ; Zhang Q. ; Liu J. ; Wang H. ; Yan H. Nat. Commun. 2021, 12 (1), 3783.
doi: 10.1038/s41467-021-24079-8 |
52 |
Li J. ; Xia Z. ; Xue Q. ; Zhang M. ; Zhang S. ; Xiao H. ; Ma Y. ; Qu Y. Small 2021, 17 (39), 2103018.
doi: 10.1002/smll.202103018 |
53 |
Guo T. ; Li L. ; Wang Z. Adv. Energy Mater. 2022, 12 (24), 2200827.
doi: 10.1002/aenm.202200827 |
54 |
Kasian O. ; Geiger S. ; Li T. ; Grote J.-P. ; Schweinar K. ; Zhang S. ; Scheu C. ; Raabe D. ; Cherevko S. ; Gault B. ; et al Energy Environ. Sci. 2019, 12 (12), 3548.
doi: 10.1039/C9EE01872G |
55 |
He R. ; Huang X. ; Feng L. Energy Fuels 2022, 36 (13), 6675.
doi: 10.1021/acs.energyfuels.2c01429 |
56 |
Zagalskaya A. ; Alexandrov V. ACS Catal. 2020, 10 (6), 3650.
doi: 10.1021/acscatal.9b05544 |
57 |
Sun H. ; Yan Z. ; Liu F. ; Xu W. ; Cheng F. ; Chen J. Adv. Mater. 2020, 32 (3), 1806326.
doi: 10.1002/adma.201806326 |
58 |
Zagalskaya A. ; Evazzade I. ; Alexandrov V. ACS Energy Lett. 2021, 6 (3), 1124.
doi: 10.1021/acsenergylett.1c00234 |
59 |
Pan Y. ; Xu X. ; Zhong Y. ; Ge L. ; Chen Y. ; Veder J.-P. M. ; Guan D. ; O'Hayre R. ; Li M. ; Wang G. ; et al Nat. Commun. 2020, 11 (1), 2002.
doi: 10.1038/s41467-020-15873-x |
60 |
Wang X. ; Zhong H. ; Xi S. ; Lee W. S. V. ; Xue J. Adv. Mater. 2022, 2107956
doi: 10.1002/adma.202107956 |
61 |
Wu Y. ; Zhao Y. ; Zhai P. ; Wang C. ; Gao J. ; Sun L. ; Hou J. Adv. Mater. 2022, 34 (29), 2202523.
doi: 10.1002/adma.202202523 |
62 |
Zhang N. ; Chai Y. Energy Environ. Sci. 2021, 14 (9), 4647.
doi: 10.1039/D1EE01277K |
63 |
Grimaud A. ; Diaz-Morales O. ; Han B. ; Hong W. T. ; Lee Y.-L. ; Giordano L. ; Stoerzinger K. A. ; Koper M. T. M. ; Shao-Horn Y. Nat. Chem. 2017, 9 (5), 457.
doi: 10.1038/nchem.2695 |
64 |
Li X. ; Liu H. ; Sun Y. ; Zhu L. ; Yin X. ; Sun S. ; Fu Z. ; Lu Y. ; Wang X. ; Cheng Z. Adv. Sci. 2020, 7 (22), 2002242.
doi: 10.1002/advs.202002242 |
65 |
Mefford J. T. ; Rong X. ; Abakumov A. M. ; Hardin W. G. ; Dai S. ; Kolpak A. M. ; Johnston K. P. ; Stevenson K. J. Nat. Commun. 2016, 7 (1), 11053.
doi: 10.1038/ncomms11053 |
66 |
Huang W. ; Li J. ; Liao X. ; Lu R. ; Ling C. ; Liu X. ; Meng J. ; Qu L. ; Lin M. ; Hong X. ; et al Adv. Mater. 2022, 34 (18), 2200270.
doi: 10.1002/adma.202200270 |
67 |
Grimaud A. ; Hong W. T. ; Shao-Horn Y. ; Tarascon J. M. Nat. Mater. 2016, 15 (2), 121.
doi: 10.1038/nmat4551 |
68 |
Zhang N. ; Feng X. ; Rao D. ; Deng X. ; Cai L. ; Qiu B. ; Long R. ; Xiong Y. ; Lu Y. ; Chai Y. Nat. Commun. 2020, 11 (1), 4066.
doi: 10.1038/s41467-020-17934-7 |
69 |
Bai L. ; Hsu C.-S. ; Alexander D. T. L. ; Chen H. M. ; Hu X. Nat. Energy 2021, 6 (11), 1054.
doi: 10.1038/s41560-021-00925-3 |
70 |
Man I. C. ; Su H.-Y. ; Calle-Vallejo F. ; Hansen H. A. ; Martínez J. I. ; Inoglu N. G. ; Kitchin J. ; Jaramillo T. F. ; Nørskov J. K. ; Rossmeisl J. ChemCatChem 2011, 3 (7), 1159.
doi: 10.1002/cctc.201000397 |
71 |
May K. J. ; Carlton C. E. ; Stoerzinger K. A. ; Risch M. ; Suntivich J. ; Lee Y.-L. ; Grimaud A. ; Shao-Horn Y. J. Phys. Chem. Lett. 2012, 3 (22), 3264.
doi: 10.1021/jz301414z |
72 |
Wang Z. ; Heng N. ; Wang X. ; He J. ; Zhao Y. J. Catal. 2019, 374, 51.
doi: 10.1016/j.jcat.2019.04.016 |
73 |
Gao L. ; Cui X. ; Sewell C. D. ; Li J. ; Lin Z. Chem. Soc. Rev. 2021, 50 (15), 8428.
doi: 10.1039/D0CS00962H |
74 |
Xiao Z. ; Huang Y.-C. ; Dong C.-L. ; Xie C. ; Liu Z. ; Du S. ; Chen W. ; Yan D. ; Tao L. ; Shu Z. ; et al J. Am. Chem. Soc. 2020, 142 (28), 12087.
doi: 10.1021/jacs.0c00257 |
75 |
Zeng L. ; Zhao Z. ; Lv F. ; Xia Z. ; Lu S.-Y. ; Li J. ; Sun K. ; Wang K. ; Sun Y. ; Huang Q. ; et al Nat. Commun. 2022, 13 (1), 3822.
doi: 10.1038/s41467-022-31406-0 |
76 |
Shi Z. ; Wang Y. ; Li J. ; Wang X. ; Wang Y. ; Li Y. ; Xu W. ; Jiang Z. ; Liu C. ; Xing W. ; Ge J. Joule 2021, 5 (8), 2164.
doi: 10.1016/j.joule.2021.05.018 |
77 |
Eum D. ; Kim B. ; Song J.-H. ; Park H. ; Jang H.-Y. ; Kim S. J. ; Cho S.-P. ; Lee M. H. ; Heo J. H. ; Park J. ; et al Nat. Mater. 2022, 21 (6), 664.
doi: 10.1038/s41563-022-01209-1 |
78 |
Li J. Nano-Micro Lett. 2022, 14 (1), 112.
doi: 10.1007/s40820-022-00857-x |
79 |
Huang Z.-F. ; Xi S. ; Song J. ; Dou S. ; Li X. ; Du Y. ; Diao C. ; Xu Z. J. ; Wang X. Nat. Commun. 2021, 12 (1), 3992.
doi: 10.1038/s41467-021-24182-w |
80 |
Assat G. ; Tarascon J.-M. Nat. Energy 2018, 3 (5), 373.
doi: 10.1038/s41560-018-0097-0 |
81 |
Yang H. ; Li F. ; Zhan S. ; Liu Y. ; Li W. ; Meng Q. ; Kravchenko A. ; Liu T. ; Yang Y. ; Fang Y. ; et al Nat. Catal. 2022, 5 (5), 414.
doi: 10.1038/s41929-022-00783-6 |
82 |
Nong H. N. ; Reier T. ; Oh H.-S. ; Gliech M. ; Paciok P. ; Vu T. H. T. ; Teschner D. ; Heggen M. ; Petkov V. ; Schlögl R. ; et al Nat. Catal. 2018, 1 (11), 841.
doi: 10.1038/s41929-018-0153-y |
83 |
Ren X. ; Wei C. ; Sun Y. ; Liu X. ; Meng F. ; Meng X. ; Sun S. ; Xi S. ; Du Y. ; Bi Z. ; et al Adv. Mater. 2020, 32 (30), 2001292.
doi: 10.1002/adma.202001292 |
84 |
Huang Z.-F. ; Song J. ; Du Y. ; Xi S. ; Dou S. ; Nsanzimana J. M. V. ; Wang C. ; Xu Z. J. ; Wang X. Nat. Energy 2019, 4 (4), 329.
doi: 10.1038/s41560-019-0355-9 |
85 |
Xu X. ; Pan Y. ; Zhong Y. ; Shi C. ; Guan D. ; Ge L. ; Hu Z. ; Chin Y.-Y. ; Lin H.-J. ; Chen C.-T. ; et al Adv. Sci. 2022, 9 (14), 2200530.
doi: 10.1002/advs.202200530 |
86 |
Li X. ; Cheng Z. ; Wang X. Electrochem. Energy Rev. 2021, 4 (1), 136.
doi: 10.1007/s41918-020-00084-1 |
87 |
Han W.-K. ; Wei J.-X. ; Xiao K. ; Ouyang T. ; Peng X. ; Zhao S. ; Liu Z.-Q. Angew. Chem. Int. Ed. 2022, 61 (31), e202206050.
doi: 10.1002/anie.202206050 |
88 |
Li Z. ; Yang J. ; Chen Z. ; Zheng C. ; Wei L. Q. ; Yan Y. ; Hu H. ; Wu M. ; Hu Z. Adv. Funct. Mater. 2021, 31 (9), 2008822.
doi: 10.1002/adfm.202008822 |
89 |
Tang T. ; Jiang W.-J. ; Niu S. ; Liu N. ; Luo H. ; Chen Y.-Y. ; Jin S.-F. ; Gao F. ; Wan L.-J. ; Hu J.-S. J. Am. Chem. Soc. 2017, 139 (24), 8320.
doi: 10.1021/jacs.7b03507 |
90 |
Li S. ; Li E. ; An X. ; Hao X. ; Jiang Z. ; Guan G. Nanoscale 2021, 13 (30), 12788.
doi: 10.1039/D1NR02592A |
91 |
Ji Y. ; Yang L. ; Ren X. ; Cui G. ; Xiong X. ; Sun X. ACS Sustain. Chem. Eng. 2018, 6 (8), 9555.
doi: 10.1021/acssuschemeng.8b01841 |
92 |
Song F. ; Bai L. ; Moysiadou A. ; Lee S. ; Hu C. ; Liardet L. ; Hu X. J. Am. Chem. Soc. 2018, 140 (25), 7748.
doi: 10.1021/jacs.8b04546 |
93 |
Xu S. ; Zhao H. ; Li T. ; Liang J. ; Lu S. ; Chen G. ; Gao S. ; Asiri A. M. ; Wu Q. ; Sun X. J. Mater. Chem. A 2020, 8 (38), 19729.
doi: 10.1039/D0TA05628F |
94 |
Guo Y. ; Park T. ; Yi J. W. ; Henzie J. ; Kim J. ; Wang Z. ; Jiang B. ; Bando Y. ; Sugahara Y. ; Tang J. ; et al Adv. Mater. 2019, 31 (17), 1807134.
doi: 10.1002/adma.201807134 |
95 |
Zhao Y. ; Wei S. ; Pan K. ; Dong Z. ; Zhang B. ; Wu H.-H. ; Zhang Q. ; Lin J. ; Pang H. Chem. Eng. J. 2021, 421, 129645.
doi: 10.1016/j.cej.2021.129645 |
96 |
Song J. ; Chen Y. ; Huang H. ; Wang J. ; Huang S.-C. ; Liao Y.-F. ; Fetohi A. E. ; Hu F. ; Chen H.-Y. ; Li L. ; et al Adv. Sci. 2022, 9 (6), 2104522.
doi: 10.1002/advs.202104522 |
97 |
Chen P. ; Xu K. ; Tao S. ; Zhou T. ; Tong Y. ; Ding H. ; Zhang L. ; Chu W. ; Wu C. ; Xie Y. Adv. Mater. 2016, 28 (34), 7527.
doi: 10.1002/adma.201601663 |
98 |
Shao W. ; Xiao M. ; Yang C. ; Cheng M. ; Cao S. ; He C. ; Zhou M. ; Ma T. ; Cheng C. ; Li S. Small 2022, 18 (7), 2105763.
doi: 10.1002/smll.202105763 |
99 |
Wang P. ; Luo Y. ; Zhang G. ; Chen Z. ; Ranganathan H. ; Sun S. ; Shi Z. Nano-Micro Lett. 2022, 14 (1), 120.
doi: 10.1007/s40820-022-00860-2 |
100 |
Li S. ; Wang L. ; Su H. ; Hong A. N. ; Wang Y. ; Yang H. ; Ge L. ; Song W. ; Liu J. ; Ma T. ; et al Adv. Funct. Mater. 2022, 32 (23), 2200733.
doi: 10.1002/adfm.202200733 |
101 |
Niu S. ; Jiang W.-J. ; Wei Z. ; Tang T. ; Ma J. ; Hu J.-S. ; Wan J.-S. J. Am. Chem. Soc. 2019, 41 (17), 7005.
doi: 10.1021/jacs.9b01214 |
102 |
Joo J. ; Kim T. ; Lee J. ; Choi S.-I. ; Lee K. Adv. Mater. 2019, 31 (14), 1806682.
doi: 10.1002/adma.201806682 |
103 |
Wang Y. Z. ; Yang M. ; Ding Y.-M. ; Li N.-W. ; Yu L. Adv. Funct. Mater. 2022, 32 (6), 2108681.
doi: 10.1002/adfm.202108681 |
104 |
Guo Y. ; Yuan P. ; Zhang J. ; Xia H. ; Cheng F. ; Zhou M. ; Li J. ; Qiao Y. ; Mu S. ; Xu Q. Adv. Funct. Mater. 2018, 28 (51), 1805641.
doi: 10.1002/adfm.201805641 |
105 |
Qiao Y. ; Yuan P. ; Pao C.-W. ; Cheng Y. ; Pu Z. ; Xu Q. ; Mu S. ; Zhang J. Nano Energy 2020, 75, 104881.
doi: 10.1016/j.nanoen.2020.104881 |
106 |
Luo X. ; Ji P. ; Wang P. ; Cheng R. ; Chen D. ; Lin C. ; Zhang J. ; He J. ; Shi Z. ; Li N. ; et al Adv. Energy Mater. 2020 2020, 10 (17), 1903891.
doi: 10.1002/aenm.201903891 |
107 |
Ahsan M. A. ; He T. ; Noveron J. C. ; Reuter K. ; Puente-Santiago A. R. ; Luque R. Chem. Soc. Rev. 2022, 51 (3), 812.
doi: 10.1039/D1CS00498K |
108 |
Wang Y. ; Cui X. ; Zhang J. ; Qiao J. ; Huang H. ; Shi J. ; Wang G. Prog. Mater. Sci. 2022, 128, 100964.
doi: 10.1016/j.pmatsci.2022.100964 |
109 |
Li J. ; Cheng Y. ; Zhang J. ; Fu J. ; Yan W. ; Xu Q. ACS Appl. Mater. Interfaces 2019, 11 (31), 27798.
doi: 10.1021/acsami.9b07469 |
110 |
Jiang S. ; Xue D. ; Zhang J.-N. Chem. -Asian J. 2022, 17 (14), e202200319.
doi: 10.1002/asia.202200319 |
111 |
Liang Q. ; Li Q. ; Xie L. ; Zeng H. ; Zhou S. ; Huang Y. ; Yan M. ; Zhang X. ; Liu T. ; Zeng J. ; et al ACS Nano 2022, 16 (5), 7993.
doi: 10.1021/acsnano.2c00901 |
112 |
Xue D. ; Cheng J. ; Yuan P. ; Lu B.-A. ; Xia H. ; Yang C.-C. ; Dong C.-L. ; Zhang H. ; Shi F. ; Mu S.-C. ; et al Adv. Funct. Mater. 2022, 32 (21), 2113191.
doi: 10.1002/adfm.202113191 |
113 |
Qiao B. ; Wang A. ; Yang X. ; Allard L. F. ; Jiang Z. ; Cui Y. ; Liu J. ; Li J. ; Zhang T. Nat. Chem. 2011, 3 (8), 634.
doi: 10.1038/nchem.1095 |
114 |
Hu Q. ; Gao K. ; Wang X. ; Zheng H. ; Cao J. ; Mi L. ; Huo Q. ; Yang H. ; Liu J. ; He C. Nat. Commun. 2022, 13 (1), 3958.
doi: 10.1038/s41467-022-31660-2 |
115 |
Cao D. ; Wang J. ; Xu H. ; Cheng D. Small 2021, 17 (31), 2101163.
doi: 10.1002/smll.202101163 |
116 |
Yao H. ; Wang X. ; Li K. ; Li C. ; Zhang C. ; Zhou J. ; Cao Z. ; Wang H. ; Gu M. ; Huang M. ; Jiang H. Appl. Catal. B: Environ. 2022, 312, 121378.
doi: 10.1016/j.apcatb.2022.121378 |
117 |
Chen X. ; Wan J. ; Wang J. ; Zhang Q. ; Gu L. ; Zheng L. ; Wang N. ; Yu R. Adv. Mater. 2021, 33 (44), 2104764.
doi: 10.1002/adma.202104764 |
118 |
Wei J. ; Xiao K. ; Chen Y. ; Guo X.-P. ; Huang B. ; Liu Z.-Q. Energy Environ. Sci. 2022,
doi: 10.1039/D2EE02151J |
119 |
Mu X. ; Gu X. ; Dai S. ; Chen J. ; Cui Y. ; Chen Q. ; Yu M. ; Chen C. ; Liu S. ; Mu S. Energy Environ. Sci. 2022, 15, 4048.
doi: 10.1039/D2EE01337A |
120 |
Zhu J. ; Tu Y. ; Cai L. ; Ma H. ; Chai Y. ; Zhang L. ; Zhang W. Small 2022, 18 (4), 2104824.
doi: 10.1002/smll.202104824 |
121 |
Hu F. ; Yu D. ; Ye M. ; Wang H. ; Hao Y. ; Wang L. ; Li L. ; Han X. ; Peng S. Adv. Energy Mater. 2022, 12 (19), 2200067.
doi: 10.1002/aenm.202200067 |
122 |
He T. ; Wang W. ; Shi F. ; Yang X. ; Li X. ; Wu J. ; Yin Y. ; Jin M. Nature 2021, 598 (7879), 76.
doi: 10.1038/s41586-021-03870-z |
123 |
Wang J. ; Han L. ; Huang B. ; Shao Q. ; Xin H. L. ; Huang X. Nat. Commun. 2019, 10 (1), 5692.
doi: 10.1038/s41467-019-13519-1 |
124 |
He Y. ; Liu L. ; Zhu C. ; Guo S. ; Golani P. ; Koo B. ; Tang P. ; Zhao Z. ; Xu M. ; Zhu C. ; et al Nat. Catal. 2022, 5 (3), 212.
doi: 10.1038/s41929-022-00753-y |
125 |
Liu J. ; Qian G. ; Yu T. ; Chen J. ; Zhu C. ; Li Y. ; He J. ; Luo L. ; Yin S. Chem. Eng. J. 2022, 431, 134247.
doi: 10.1016/j.cej.2021.134247 |
126 |
Wen Q. ; Yang K. ; Huang D. ; Cheng G. ; Ai X. ; Liu Y. ; Fang J. ; Li H. ; Yu L. ; Zhai T. Adv. Energy Mater. 2021, 11 (46), 2102353.
doi: 10.1002/aenm.202102353 |
127 |
Chen Y.-Y. ; Zhang Y. ; Zhang X. ; Tang T. ; Luo H. ; Niu S. ; Dai Z.-H. ; Wan L.-J. ; Hu J.-S. Adv. Mater. 2017, 29 (39), 1703311.
doi: 10.1002/adma.201703311 |
128 |
Zhang G. ; Zeng J. ; Yin J. ; Zuo C. ; Wen P. ; Chen H. ; Qiu Y. Appl. Catal. B: Environ. 2021, 286, 119902.
doi: 10.1016/j.apcatb.2021.119902 |
129 |
Zeng Y. ; Zhao M. ; Huang Z. ; Zhu W. ; Zheng J. ; Jiang Q. ; Wang Z. ; Liang H. Adv. Energy Mater. 2022, 12, 2201713.
doi: 10.1002/aenm.202201713 |
130 |
Oakes L. ; Hanken T. ; Carter R. ; Yates W. ; Pint C. L. ACS Appl. Mater. Interfaces 2015, 7 (26), 14201.
doi: 10.1021/acsami.5b01315 |
131 |
Luo Y. ; Zhang Z. ; Yang F. ; Li J. ; Liu Z. ; Ren W. ; Zhang S. ; Liu B. Energy Environ. Sci. 2021, 14 (8), 4610.
doi: 10.1039/D1EE01487K |
132 |
Shan X. ; Liu J. ; Mu H. ; Xiao Y. ; Mei B. ; Liu W. ; Lin G. ; Jiang Z. ; Wen L. ; Jiang L. Angew. Chem. Int. Ed. 2020, 59 (4), 1659.
doi: 10.1002/anie.201911617 |
133 |
Xu W. ; Lu Z. ; Sun X. ; Jiang L. ; Duan X. Acc. Chem. Res. 2018, 51 (7), 1590.
doi: 10.1021/acs.accounts.8b00070 |
134 |
Li H. ; Chen S. ; Zhang Y. ; Zhang Q. ; Jia X. ; Zhang Q. ; Gu L. ; Sun X. ; Song L. ; Wang X. Nat. Commun. 2018, 9 (1), 2452.
doi: 10.1038/s41467-018-04888-0 |
135 |
Liu H. ; Li X. ; Chen L. ; Zhu X. ; Dong P. ; Chee M. O. L. ; Ye M. ; Guo Y. ; Shen J. Adv. Funct. Mater. 2022, 32 (4), 2107308.
doi: 10.1002/adfm.202107308 |
136 |
Du N. ; Roy C. ; Peach R. ; Turnbull M. ; Thiele S. ; Bock C. Chem. Rev. 2022, 122 (13), 11830.
doi: 10.1021/acs.chemrev.1c00854 |
137 |
Park J. E. ; Park S. ; Kim M.-J. ; Shin H. ; Kang S. Y. ; Cho Y.-H. ; Sung Y.-E. ACS Catal. 2022, 12 (1), 135.
doi: 10.1021/acscatal.1c04117 |
138 |
Razmjooei F. ; Morawietz T. ; Taghizadeh E. ; Hadjixenophontos E. ; Mues L. ; Gerle M. ; Wood B. D. ; Harms C. ; Gago A. S. ; Ansar S. A. ; et al Joule 2021, 5 (7), 1776.
doi: 10.1016/j.joule.2021.05.006 |
139 |
Lee J. ; Jung H. ; Park Y. S. ; Woo S. ; Yang J. ; Jang M. J. ; Jeong J. ; Kwon N. ; Lim B. ; Han J. W. ; et al Small 2021, 17 (28), 2100639.
doi: 10.1002/smll.202100639 |
140 |
Park J. E. ; Sung Y.-E. ; Choi C. J. Mater. Chem. A 2022, 10, 20517.
doi: 10.1039/D2TA04526E |
141 |
Wang H. ; Tong Y. ; Li K. ; Chen P. J. Colloid Interface Sci. 2022, 628, 306.
doi: 10.1016/j.jcis.2022.08.056 |
142 |
Lee J. ; Jung H. ; Park Y. S. ; Woo S. ; Kwon N. ; Xing Y. ; Oh S. H. ; Choi S. M. ; Han J. W. ; Lim B. Chem. Eng. J. 2021, 420, 127670.
doi: 10.1016/j.cej.2020.127670 |
143 |
Park J. E. ; Kim M.-J. ; Lim M. S. ; Kang S. Y. ; Kim J. K. ; Oh S.-H. ; Her M. ; Cho Y.-H. ; Sung Y.-E. Appl. Catal. B: Environ. 2018, 237, 140.
doi: 10.1016/j.apcatb.2018.05.073 |
144 |
Park Y. S. ; Yang J. ; Lee J. ; Jang M. J. ; Jeong J. ; Choi W.-S. ; Kim Y. ; Yin Y. ; Seo M. H. ; Chen Z. ; et al Appl. Catal. B: Environ. 2020, 278, 119276.
doi: 10.1016/j.apcatb.2020.119276 |
145 |
Hongmei Yu Z. S. M. H. B. Y. F. D. Y. Y. Strateg. Study Chin. Acad. Eng. 2021, 23 (2), 146.
doi: 10.15302/J-SSCAE-2021.02.020 |
146 |
Liu Z. ; Sajjad S. D. ; Gao Y. ; Yang H. ; Kaczur J. J. ; Masel R. I. Int. J. Hydrogen Energy 2017, 42 (50), 29661.
doi: 10.1016/j.ijhydene.2017.10.050 |
147 |
Jang D. ; Cho H.-S. ; Kang S. Appl. Energy 2021, 287, 116554.
doi: 10.1016/j.apenergy.2021.116554 |
148 |
Yan X. ; Biemolt J. ; Zhao K. ; Zhao Y. ; Cao X. ; Yang Y. ; Wu X. ; Rothenberg G. ; Yan N. Nat. Commun. 2021, 12 (1), 4143.
doi: 10.1038/s41467-021-24284-5 |
149 |
Phillips R. ; Dunnill C. W. RSC Adv. 2016, 6 (102), 100643.
doi: 10.1039/C6RA22242K |
150 |
Gou W. ; Chen Y. ; Zhong Y. ; Xue Q. ; Li J. ; Ma Y. Chem. Commun. 2022, 58 (55), 7626.
doi: 10.1039/D2CC02182J |
151 |
Wang T. ; Tao L. ; Zhu X. ; Chen C. ; Chen W. ; Du S. ; Zhou Y. ; Zhou B. ; Wang D. ; Xie C. ; et al Nat. Catal. 2022, 5 (1), 66.
doi: 10.1038/s41929-021-00721-y |
152 |
Wu T. ; Xu S. ; Zhang Z. ; Luo M. ; Wang R. ; Tang Y. ; Wang J. ; Huang F. Adv. Sci. 2022, 9 (25), 2202750.
doi: 10.1002/advs.202202750 |
153 |
Li D. ; Li Z. ; Zou R. ; Shi G. ; Huang Y. ; Yang W. ; Yang W. ; Liu C. ; Peng X. Appl. Catal. B: Environ. 2022, 307, 121170.
doi: 10.1016/j.apcatb.2022.121170 |
154 |
Wang Z. ; Qian G. ; Yu T. ; Chen J. ; Shen F. ; Luo L. ; Zou Y. ; Yin S. Chem. Eng. J. 2022, 434, 134669.
doi: 10.1016/j.cej.2022.134669 |
155 |
Yu T. ; Xu Q. ; Luo L. ; Liu C. ; Yin S. Chem. Eng. J. 2022, 430, 133117.
doi: 10.1016/j.cej.2021.133117 |
156 |
Wang Y. ; Qian G. ; Xu Q. ; Zhang H. ; Shen F. ; Luo L. ; Yin S. Appl. Catal. B: Environ. 2021, 286, 119881.
doi: 10.1016/j.apcatb.2021.119881 |
157 |
Jian J. ; Chen W. ; Zeng D. ; Chang L. ; Zhang R. ; Jiang M. ; Yu G. ; Huang X. ; Yuan H. ; Feng S. J. Mater. Chem. A 2021, 9 (12), 7586.
doi: 10.1039/D1TA00693B |
158 |
Yang F. ; Luo Y. ; Yu Q. ; Zhang Z. ; Zhang S. ; Liu Z. ; Ren W. ; Cheng H.-M. ; Li J. ; Liu B. Adv. Funct. Mater. 2021, 31 (21), 2010367.
doi: 10.1002/adfm.202010367 |
159 |
Shi H. ; Zhou Y.-T. ; Yao R.-Q. ; Wan W.-B. ; Ge X. ; Zhang W. ; Wen Z. ; Lang X.-Y. ; Zheng W.-T. ; Jiang Q. Nat. Commun. 2020, 11 (1), 2940.
doi: 10.1038/s41467-020-16769-6 |
160 |
Yu T. ; Xu Q. ; Qian G. ; Chen J. ; Zhang H. ; Luo L. ; Yin S. ACS Sustain. Chem. Eng. 2020, 8 (47), 17520.
doi: 10.1021/acssuschemeng.0c06782 |
161 |
Li Y. ; Wei B. ; Yu Z. ; Bondarchuk O. ; Araujo A. ; Amorim I. ; Zhang N. ; Xu J. ; Neves I. C. ; Liu L. ACS Sustain. Chem. Eng. 2020, 8 (27), 10193.
doi: 10.1021/acssuschemeng.0c02671 |
162 |
Zhang X.-Y. ; Zhu Y.-R. ; Chen Y. ; Dou S.-Y. ; Chen X.-Y. ; Dong B. ; Guo B.-Y. ; Liu D.-P. ; Liu C.-G. ; Chai Y.-M. Chem. Eng. J. 2020, 399, 125831.
doi: 10.1016/j.cej.2020.125831 |
163 |
Liu X. ; Yao Y. ; Zhang H. ; Pan L. ; Shi C. ; Zhang X. ; Huang Z.-F. ; Zou J.-J. ACS Sustain. Chem. Eng. 2020, 8 (48), 17828.
doi: 10.1021/acssuschemeng.0c06987 |
164 |
Xue S. ; Liu Z. ; Ma C. ; Cheng H.-M. ; Ren W. Sci. Bull. 2020, 65 (2), 123.
doi: 10.1016/j.scib.2019.10.024 |
165 |
Chen Y. ; Yu J. ; Jia J. ; Liu F. ; Zhang Y. ; Xiong G. ; Zhang R. ; Yang R. ; Sun D. ; Liu H. ; et al Appl. Catal. B: Environ. 2020, 272, 118956.
doi: 10.1016/j.apcatb.2020.118956 |
166 |
Yang H. ; Chen Z. ; Guo P. ; Fei B. ; Wu R. Appl. Catal. B: Environ. 2020, 261, 118240.
doi: 10.1016/j.apcatb.2019.118240 |
167 |
Zhu W. ; Chen W. ; Yu H. ; Zeng Y. ; Ming F. ; Liang H. ; Wang Z. Appl. Catal. B: Environ. 2020, 278, 119326.
doi: 10.1016/j.apcatb.2020.119326 |
168 |
Zhai P. ; Zhang Y. ; Wu Y. ; Gao J. ; Zhang B. ; Cao S. ; Zhang Y. ; Li Z. ; Sun L. ; Hou J. Nat. Commun. 2020, 11 (1), 5462.
doi: 10.1038/s41467-020-19214-w |
169 |
Zhang B. ; Zhang L. ; Tan Q. ; Wang J. ; Liu J. ; Wan H. ; Miao L. ; Jiang J. Energy Environ. Sci. 2020, 13 (9), 3007.
doi: 10.1039/D0EE02020F |
170 |
Qian G. ; Yu G. ; Lu J. ; Luo L. ; Wang T. ; Zhang C. ; Ku R. ; Yin S. ; Chen W. ; Mu S. J. Mater. Chem. A 2020, 8 (29), 14545.
doi: 10.1039/D0TA04388E |
171 |
Yu X. ; Yu Z.-Y. ; Zhang X.-L. ; Zheng Y.-R. ; Duan Y. ; Gao Q. ; Wu R. ; Sun B. ; Gao M.-R. ; Wang G. ; et al J. Am. Chem. Soc. 2019, 141 (18), 7537.
doi: 10.1021/jacs.9b02527 |
172 |
Luo Y. ; Tang L. ; Khan U. ; Yu Q. ; Cheng H.-M. ; Zou X. ; Liu B. Nat. Commun. 2019, 10 (1), 269.
doi: 10.1038/s41467-018-07792-9 |
173 |
Sun H. ; Min Y. ; Yang W. ; Lian Y. ; Lin L. ; Feng K. ; Deng Z. ; Chen M. ; Zhong J. ; Xu L. ; et al ACS Catal. 2019, 9 (10), 8882.
doi: 10.1021/acscatal.9b02264 |
174 |
Yu C. ; Xu F. ; Luo L. ; Abbo H. S. ; Titinchi S. J. J. ; Shen P. K. ; Tsiakaras P. ; Yin S. Electrochim. Acta 2019, 317, 191.
doi: 10.1016/j.electacta.2019.05.150 |
175 |
Liang C. ; Zou P. ; Nairan A. ; Zhang Y. ; Liu J. ; Liu K. ; Hu S. ; Kang F. ; Fan H. J. ; Yang C. Energy Environ. Sci. 2020, 13 (1), 86.
doi: 10.1039/C9EE02388G |
176 |
Hao W. ; Wu R. ; Huang H. ; Ou X. ; Wang L. ; Sun D. ; Ma X. ; Guo Y. Energy Environ. Sci. 2020, 13 (1), 102.
doi: 10.1039/C9EE00839J |
177 |
Cao L.-M. ; Hu Y.-W. ; Tang S.-F. ; Iljin A. ; Wang J.-W. ; Zhang Z.-M. ; Lu T.-B. Adv. Sci. 2018, 5 (10), 1800949.
doi: 10.1002/advs.201800949 |
178 |
Yu F. ; Zhou H. ; Huang Y. ; Sun J. ; Qin F. ; Bao J. ; Goddard W. A. ; Chen S. ; Ren Z. Nat. Commun. 2018, 9 (1), 2551.
doi: 10.1038/s41467-018-04746-z |
179 |
Sun H. ; Xu X. ; Yan Z. ; Chen X. ; Jiao L. ; Cheng F. ; Chen J. J. Mater. Chem. A 2018, 6 (44), 22062.
doi: 10.1039/C8TA02999G |
[1] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[2] | Rong Hu, Liyun Wei, Jinglin Xian, Guangyu Fang, Zhiao Wu, Miao Fan, Jiayue Guo, Qingxiang Li, Kaisi Liu, Huiyu Jiang, Weilin Xu, Jun Wan, Yonggang Yao. Microwave Shock Process for Rapid Synthesis of 2D Porous La0.2Sr0.8CoO3 Perovskite as an Efficient Oxygen Evolution Reaction Catalyst [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212025-0. |
[3] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[4] | Tao Sun, Chenxi Li, Yupeng Bao, Jun Fan, Enzhou Liu. S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212009-. |
[5] | Wenjie Zhou, Qihang Jing, Jiaxin Li, Yingzhi Chen, Guodong Hao, Lu-Ning Wang. Organic Photocatalysts for Solar Water Splitting: Molecular- and Aggregate-Level Modifications [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211010-0. |
[6] | Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2301023-0. |
[7] | Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2211029-0. |
[8] | Yang Hu, Bin Liu, Luyao Xu, Ziqiang Dong, Yating Wu, Jie Liu, Cheng Zhong, Wenbin Hu. High-Throughput Synthesis and Screening of Pt-Based Ternary Electrocatalysts Using a Microfluidic-Based Platform [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209004-0. |
[9] | Jingxue Li, Yue Yu, Siran Xu, Wenfu Yan, Shichun Mu, Jia-Nan Zhang. Function of Electron Spin Effect in Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302049-. |
[10] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[11] | Qian Wu, Qingping Gao, Bin Shan, Wenzheng Wang, Yuping Qi, Xishi Tai, Xia Wang, Dongdong Zheng, Hong Yan, Binwu Ying, Yongsong Luo, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun. Recent Advances in Self-Supported Transition-Metal-Based Electrocatalysts for Seawater Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303012-. |
[12] | Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301032-. |
[13] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[14] | Zhuonan Lei, Xinyi Ma, Xiaoyun Hu, Jun Fan, Enzhou Liu. Enhancement of Photocatalytic H2-Evolution Kinetics through the Dual Cocatalyst Activity of Ni2P-NiS-Decorated g-C3N4 Heterojunctions [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110049-. |
[15] | Ke Sun, Yongqing Zhao, Jie Yin, Jing Jin, Hanwen Liu, Pinxian Xi. Surface Modification of NiCo2O4 Nanowires using Organic Ligands for Overall Water Splitting [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107005-. |
|