Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (12): 2301032.doi: 10.3866/PKU.WHXB202301032
Special Issue: Electrocatalysis in Energy Conversion
• ARTICLE • Previous Articles Next Articles
Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin()
Received:
2023-01-24
Accepted:
2023-04-06
Published:
2023-04-13
Contact:
Shibin Yin
E-mail:yinshibin@gxu.edu.cn
Supported by:
Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution[J]. Acta Phys. -Chim. Sin. 2023, 39(12), 2301032. doi: 10.3866/PKU.WHXB202301032
1 |
Tang C. ; Zheng Y. ; Jaroniec M. ; Qiao S. Z. Angew. Chem. Int. Ed. 2021, 60, 19572.
doi: 10.1002/anie.202101522 |
2 |
Prabhu P. ; Wan Y. ; Lee J. M. Matter 2020, 3, 1162.
doi: 10.1016/j.matt.2020.09.002 |
3 |
Gérardy R. ; Debecker D. P. ; Estager J. ; Luis P. ; Monbaliu J. C. M. Chem. Rev. 2020, 120, 7219.
doi: 10.1021/acs.chemrev.9b00846 |
4 | Zhou H. ; Jing Y. X. ; Wang Y. Q. Acta Phys. -Chim. Sin. 2022, 38, 2203016. |
周浩; 景亚轩; 王艳芹; 物理化学学报, 2022, 38, 2203016.
doi: 10.3866/PKU.WHXB202203016 |
|
5 |
Muhammad S. ; Zhao X. B. ; Liu D. H. Green Chem. 2018, 20, 5427.
doi: 10.1039/c8gc02680g |
6 |
Xu S. ; Zhou P. ; Zhang Z. H. ; Yang C. J. ; Zhang B. G. ; Deng K. J. ; Bottle S. ; Zhu H. Y. J. Am. Chem. Soc. 2017, 139, 14775.
doi: 10.1021/jacs.7b08861 |
7 |
Xu C. ; Paone E. ; Rodríguez-Padrón D. ; Luque R. ; Mauriello F. Chem. Soc. Rev. 2020, 49, 4273.
doi: 10.1039/d0cs00041h |
8 |
Giannakoudakis D. A. ; Colmenares J. C. ; Tsiplakides D. ; Triantafyllidis K. S. ACS Sustain. Chem. Eng. 2021, 9, 1970.
doi: 10.1021/acssuschemeng.0c07480 |
9 | Yang Y. ; He B. W. ; Ma H. L. ; Yang S. ; Ren Z. H. ; Qin T. ; Lu F. G. ; Ren L. W. ; Zhang Y. X. ; Wang T. F. ; et al Acta Phys. -Chim. Sin. 2022, 38, 2201050. |
杨艳; 何博文; 马华隆; 杨森; 任州宏; 秦天; 卢发贵; 任力闻; 张熠霄; 王天富; 等. 物理化学学报, 2022, 38, 2201050.
doi: 10.3866/PKU.WHXB202201050 |
|
10 |
Pasini T. ; Piccinini M. ; Blosi M. ; Bonelli R. ; Albonetti S. ; Dimitratos N. ; Lopez-Sanchez J. A. ; Sankar M. ; He Q. ; Kiely C. J. ; et al Green Chem. 2011, 13, 2091.
doi: 10.1039/c1gc15355b |
11 |
Rass H. A. ; Essayem N. ; Besson M. Green Chem. 2013, 15, 2240.
doi: 10.1039/c3gc40727f |
12 |
Zheng L. F. ; Zhao J. Q. ; Du Z. X. ; Zong B. N. ; Liu H. C. Sci. China Chem. 2017, 60, 950.
doi: 10.1007/s11426-016-0489-3 |
13 |
Park M. ; Gu M. ; Kim B. S. ACS Nano 2020, 14, 6812.
doi: 10.1021/acsnano.0c00581 |
14 |
Chadderdon X. H. ; Chadderdon D. J. ; Pfennig T. ; Shanks B. H. ; Li W. Z. Green Chem. 2019, 21, 6210.
doi: 10.1039/c9gc02264c |
15 |
Cao G. X. ; Chen Z. J. ; Yin H. ; Gan L. Y. ; Zang M. J. ; Xu N. ; Wang P. J. Mater. Chem. A 2019, 7, 10338.
doi: 10.1039/c9ta00899c |
16 |
Chen Y. Y. ; Zhang Y. ; Zhang X. ; Tang T. ; Luo H. ; Niu S. ; Dai Z. H. ; Wan L. J. ; Hu J. S. Adv. Mater. 2017, 29, 1703311.
doi: 10.1002/adma.201703311 |
17 |
An Y. M. ; Long X. ; Ma M. ; Hu J. ; Lin H. ; Zhou D. ; Xing Z. ; Huang B. L. ; Yang S. H. Adv. Energy Mater. 2019, 9, 1901454.
doi: 10.1002/aenm.201901454 |
18 |
Gouda L. ; Sévery L. ; Moehl T. ; Mas-Marzá E. ; Adams P. ; Fabregat-Santiago F. ; Tilley S. D. Green Chem. 2021, 23, 8061.
doi: 10.1039/d1gc02031e |
19 |
Taitt B. J. ; Nam D. H. ; Choi K. S. ACS Catal. 2018, 9, 660.
doi: 10.1021/acscatal.8b04003 |
20 |
Gao F. ; He J. Q. ; Wang H. W. ; Lin J. H. ; Chen R. X. ; Yi K. ; Huang F. ; Lin Z. ; Wang M. Y. Nano Res. Energy 2022, 1, 9120029.
doi: 10.26599/nre.2022.9120029 |
21 |
Wang J. ; Liao T. ; Wei Z. Z. ; Sun J. T. ; Guo J. J. ; Sun Z. Q. Small Methods 2021, 5, 2000988.
doi: 10.1002/smtd.202000988 |
22 |
Zhang A. ; Liang Y. X. ; Zhang H. ; Geng Z. G. ; Zeng J. Chem. Soc. Rev. 2021, 50, 9817.
doi: 10.1039/d1cs00330e |
23 |
Wang H. ; Chen J. M. ; Lin Y. P. ; Wang X. H. ; Li J. M. ; Li Y. ; Gao L. J. ; Zhang L. B. ; Chao D. L. ; Xiao X. ; et al Adv. Mater. 2021, 33, 2008422.
doi: 10.1002/adma.202008422 |
24 | Chen C. ; Zhang X. ; Zhou Z. Y. ; Zhang X. S. ; Sun S. G. Acta Phys. -Chim. Sin. 2017, 33, 1875. |
陈驰; 张雪; 周志有; 张新胜; 孙世刚; 物理化学学报, 2017, 33, 1875.
doi: 10.3866/PKU.WHXB201705088 |
|
25 | Li J. X. ; Feng L. G. J. Electrochem. 2022, 28, 2214001. |
李家欣; 冯立纲; 电化学, 2022, 28, 2214001.
doi: 10.13208/j.electrochem.2214001 |
|
26 |
Wu Z. C. ; Wang X. ; Huang J. S. ; Gao F. J. Mater. Chem. A 2018, 6, 167.
doi: 10.1039/c7ta07956g |
27 |
You B. ; Liu X. ; Liu X. ; Sun Y. J. ACS Catal. 2017, 7, 4564.
doi: 10.1021/acscatal.7b00876 |
28 |
Ou J. Z. ; Campbell J. L. ; Yao D. ; Wlodarski W. ; Kalantar-Zadeh K. J. Phys. Chem. C 2011, 115, 10757.
doi: 10.1021/jp202123a |
29 |
Wu Y. Y. ; Li G. D. ; Liu Y. P. ; Yang L. ; Lian X. R. ; Asefa T. ; Zou X. X. Adv. Funct. Mater. 2016, 26, 4839.
doi: 10.1002/adfm.201601315 |
30 |
Wu K. ; Sun Y. H. ; Liu J. ; Xiong J. X. ; Wu J. L. ; Zhang J. ; Fu M. L. ; Chen L. M. ; Huang H. M. ; Ye D. Q. J. Hazard. Mater. 2021, 405, 124156.
doi: 10.1016/j.jhazmat.2020.124156 |
31 |
Zhang X. ; Yi H. ; Jin M. T. ; Lian Q. ; Huang Y. ; Ai Z. ; Huang R. Q. ; Zuo Z. T. ; Tang C. M. ; Amini A. ; et al Small 2022, 18, 2203710.
doi: 10.1002/smll.202203710 |
32 |
Shen B. X. ; Zhu S. W. ; Zhang X. ; Chi G. L. ; Patel D. ; Si M. ; Wu C. F. Fuel 2018, 224, 241.
doi: 10.1016/j.fuel.2018.03.080 |
33 |
Wang H. ; Wang H. J. ; Huang J. S. ; Zhou X. L. ; Wu Q. X. ; Luo Z. K. ; Wang F. ACS Appl. Mater. Interfaces 2019, 11, 44556.
doi: 10.1021/acsami.9b13329 |
34 |
Guo F. J. ; Zhang M. Y. ; Yi S. C. ; Li X. X. ; Xin R. ; Yang M. ; Liu B. ; Chen H. B. ; Li H. M. ; Liu Y. J. Nano Res. Energy 2022, 1, 9120027.
doi: 10.26599/nre.2022.9120027 |
35 |
Yang C. M. ; Wang C. T. ; Zhou L. H. ; Duan W. ; Song Y. Y. ; Zhang F. C. ; Zhen Y. Z. ; Zhang J. J. ; Bao W. W. ; Lu Y. X. ; et al Chem. Eng. J. 2021, 422, 130125.
doi: 10.1016/j.cej.2021.130125 |
36 |
Lu Y. X. ; Liu T. Y. ; Dong C. L. ; Huang Y. C. ; Li Y. F. ; Chen J. ; Zou Y. Q. ; Wang S. Y. Adv. Mater. 2021, 33, 2007056.
doi: 10.1002/adma.202007056 |
37 |
Sun Y. ; Wang J. ; Qi Y. F. ; Li W. J. ; Wang C. Adv. Sci. 2022, 9, 2200957.
doi: 10.1002/advs.202200957 |
38 |
Wang H. L. ; Li C. ; An J. T. ; Zhuang Y. ; Tao S. Y. J. Mater. Chem. A 2021, 9, 18421.
doi: 10.1039/d1ta05425b |
39 |
Zhou Z. Y. ; Xie Y. N. ; Sun L. Z. ; Wang Z. M. ; Wang W. K. ; Jiang L. Z. ; Tao X. ; Li L. N. ; Li X. H. ; Zhao G. H. Appl. Catal. B 2022, 305, 121072.
doi: 10.1016/j.apcatb.2022.121072 |
40 |
Luo R. P. ; Li Y. Y. ; Xing L. X. ; Wang N. ; Zhong R. Y. ; Qian Z. Y. ; Du C. Y. ; Yin G. P. ; Wang Y. C. ; Du L. Appl. Catal. B 2022, 311, 121357.
doi: 10.1016/j.apcatb.2022.121357 |
41 |
Gao L. F. ; Bao Y. ; Gan S. Y. ; Sun Z. H. ; Song Z. Q. ; Han D. X. ; Li F. H. ; Niu L. ChemSusChem 2018, 11, 2547.
doi: 10.1002/cssc.201800695 |
42 |
Gao L. F. ; Liu Z. B. ; Ma J. L. ; Zhong L. J. ; Song Z. Q. ; Xu J. A. ; Gan S. Y. ; Han D. X. ; Niu L. Appl. Catal. B 2020, 261, 118235.
doi: 10.1016/j.apcatb.2019.118235 |
43 |
Zhang P. L. ; Sheng X. ; Chen X. Y. ; Fang Z. Y. ; Jiang J. ; Wang M. ; Li F. S. ; Fan L. Z. ; Ren Y. S. ; Zhang B. B. ; et al Angew. Chem. Int. Ed. 2019, 58, 9155.
doi: 10.1002/anie.201903936 |
44 |
Liu Q. Q. ; Huang J. F. ; Cao L. Y. ; Kajiyoshi K. ; Li K. ; Feng Y. Q. ; Fu C. L. ; Kou L. J. ; Feng L. L. ACS Sustain. Chem. Eng. 2020, 8, 6222.
doi: 10.1021/acssuschemeng.9b06959 |
45 |
Qiu Z. ; Ma Y. ; Edvinsson T. Nano Energy 2019, 66, 104118.
doi: 10.1016/j.nanoen.2019.104118 |
46 |
Yu T. Q. ; Xu Q. L. ; Luo L. ; Liu C. R. ; Yin S. B. Chem. Eng. J. 2022, 430, 133117.
doi: 10.1016/j.cej.2021.133117 |
47 |
Wu T. ; Xu Z. A. ; Wang X. L. ; Luo M. J. ; Xia Y. ; Zhang X. C. ; Li J. T. ; Liu J. ; Wang J. C. ; Wang H. L. ; et al Appl. Catal. B 2023, 323, 122126.
doi: 10.1016/j.apcatb.2022.122126 |
48 |
Tong X. ; Li Y. ; Pang N. ; Qu Y. H. ; Yan C. H. ; Xiong D. Y. ; Xu S. H. ; Wang L. W. ; Chu P. K. Chem. Eng. J. 2021, 425, 130455.
doi: 10.1016/j.cej.2021.130455 |
49 | Ding M. Y. ; Jiang W. J. ; Yu T. Q. ; Zhuo X. Y. ; Qin X. J. ; Yin S. B. J. Electrochem. 2022, 28, 2214012. |
丁明宇; 蒋文杰; 余天琦; 卓小燕; 覃晓静; 尹诗斌; 电化学, 2022, 28, 2214012.
doi: 10.13208/j.electrochem.2208121 |
|
50 |
Laursen A. B. ; Kegnæs S. ; Dahl S. ; Chorkendorff I. Energy Environ. Sci. 2012, 5, 5577.
doi: 10.1039/c2ee02618j |
51 | Li M. T. ; Zheng X. Q. ; Li L. ; Wei Z. D. Acta Phys. -Chim. Sin. 2021, 37, 2007054. |
李孟婷; 郑星群; 李莉; 魏子栋; 物理化学学报, 2021, 37, 2007054.
doi: 10.3866/PKU.WHXB202007054 |
|
52 |
Zhang L. Y. ; Zheng Y. J. ; Wang J. C. ; Geng Y. ; Zhang B. ; He J. J. ; Xue J. M. ; Frauenheim T. ; Li M. Small 2021, 17, 2006730.
doi: 10.1002/smll.202006730 |
53 |
Yang Y. Q. ; Zhang K. ; Lin H. L. ; Li X. ; Chan H. C. ; Yang L. C. ; Gao Q. S. ACS Catal. 2017, 7, 2357.
doi: 10.1021/acscatal.6b03192 |
54 |
Wu X. L. ; Han S. ; He D. H. ; Yu C. L. ; Lei C. J. ; Liu W. ; Zheng G. K. ; Zhang X. W. ; Lei L. C. ACS Sustain. Chem. Eng. 2018, 6, 8672.
doi: 10.1021/acssuschemeng.8b00968 |
[1] | Yuqiong Li, Bing Lan, Bin Guan, Chunlong Dai, Fan Zhang, Zifeng Lin. Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2024, 40(9): 2306031-. |
[2] | Wei Sun, Yongjing Wang, Kun Xiang, Saishuai Bai, Haitao Wang, Jing Zou, Arramel, Jizhou Jiang. CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2024, 40(8): 2308015-. |
[3] | Wentao Xu, Xuyan Mo, Yang Zhou, Zuxian Weng, Kunling Mo, Yanhua Wu, Xinlin Jiang, Dan Li, Tangqi Lan, Huan Wen, Fuqin Zheng, Youjun Fan, Wei Chen. Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability [J]. Acta Phys. -Chim. Sin., 2024, 40(8): 2308003-. |
[4] | Linfeng Xiao, Wanlu Ren, Shishi Shen, Mengshan Chen, Runhua Liao, Yingtang Zhou, Xibao Li. Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction [J]. Acta Phys. -Chim. Sin., 2024, 40(8): 2308036-. |
[5] | Lutian Zhao, Yangge Guo, Liuxuan Luo, Xiaohui Yan, Shuiyun Shen, Junliang Zhang. Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge [J]. Acta Phys. -Chim. Sin., 2024, 40(7): 2306029-. |
[6] | Xinyi Zhang, Kai Ren, Yanning Liu, Zhenyi Gu, Zhixiong Huang, Shuohang Zheng, Xiaotong Wang, Jinzhi Guo, Igor V. Zatovsky, Junming Cao, Xinglong Wu. Progress on Entropy Production Engineering for Electrochemical Catalysis [J]. Acta Phys. -Chim. Sin., 2024, 40(7): 2307057-. |
[7] | Jingkun Yu, Xue Yong, Ang Cao, Siyu Lu. Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity [J]. Acta Phys. -Chim. Sin., 2024, 40(6): 2307015-. |
[8] | Xueting Feng, Ziang Shang, Rong Qin, Yunhu Han. Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2024, 40(4): 2305005-. |
[9] | Zhuoran Lu, Shengkai Li, Yuxuan Lu, Shuangyin Wang, Yuqin Zou. Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(4): 2306003-. |
[10] | Huiwei Ding, Bo Peng, Zhihao Wang, Qiaofeng Han. Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(4): 2305048-. |
[11] | Liu Lin, Zemin Sun, Huatian Chen, Lian Zhao, Mingyue Sun, Yitao Yang, Zhensheng Liao, Xinyu Wu, Xinxin Li, Cheng Tang. Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production [J]. Acta Phys. -Chim. Sin., 2024, 40(4): 2305019-. |
[12] | Bizhu Shao, Huijun Dong, Yunnan Gong, Jianhua Mei, Fengshi Cai, Jinbiao Liu, Dichang Zhong, Tongbu Lu. Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows [J]. Acta Phys. -Chim. Sin., 2024, 40(4): 2305026-. |
[13] | Jia Wang, Qing Qin, Zhe Wang, Xuhao Zhao, Yunfei Chen, Liqiang Hou, Shangguo Liu, Xien Liu. P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions [J]. Acta Phys. -Chim. Sin., 2024, 40(3): 2304044-. |
[14] | Yajuan Xing, Hui Xue, Jing Sun, Niankun Guo, Tianshan Song, Jiawen Sun, Yi-Ru Hao, Qin Wang. Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity [J]. Acta Phys. -Chim. Sin., 2024, 40(3): 2304046-. |
[15] | Zhaoyu Wen, Na Han, Yanguang Li. Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2024, 40(2): 2304001-. |
|