Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (3): 2209002.doi: 10.3866/PKU.WHXB202209002
• REVIEW • Previous Articles Next Articles
Yanpeng Fu1, Changbao Zhu2,*()
Received:
2022-09-05
Accepted:
2022-11-02
Published:
2022-11-09
Contact:
Changbao Zhu
E-mail:zhuchangbao123@gmail.com
About author:
Changbao Zhu, Email: zhuchangbao123@gmail.comSupported by:
Yanpeng Fu, Changbao Zhu. Design Strategies for Sodium Electrode Materials: Solid-State Ionics Perspective[J]. Acta Phys. -Chim. Sin. 2023, 39(3), 2209002. doi: 10.3866/PKU.WHXB202209002
Fig 1
(a) Na ion migration path along the b-axis in olivine NaMPO4 20; (b) crystal structure of alluaudite Na2.5Fe1.75(SO4)3 projected along [001] 30; (c) maximum scattering-length density around Na2 and Na3 sites along c-axis and corresponding effective one-particle potential Veff for Na 30; (d) impedance spectrum (AC) of alluaudite Na2.56Fe1.72(SO4)3 at 424 K with its equivalent circuit, insets are the current responses under an applied potential step 20 mV during potentiostatic polarization (DC) 33; (e) temperature-dependent ionic and electronic conductivities of alluaudite Na2.56Fe1.72(SO4)3 obtained by AC and DC 33."
Fig 2
(a) Side view of the N-doped and N, S dual-doped carbon sheet with different interlayer distances according to XRD results 43; (b) diffusion barrier energies of the C-N and C-NS models with actual or envisioned interlayer spacing 43; (c) EDS mapping of O3-NaNi0.5Mn0.2Ti0.3O2 samples 44; (d) crystal structure illustrations of the pristine and doped Na0.67Mn0.5Fe0.5O2 samples 45; TEM image (e) and rate performance (f) of Na3V2(PO4)3 prepared by a "double carbon-embedding" approach 54."
Fig 3
Defect chemistry models for LiFePO4 (a–c) 63; defect chemistry models for TiO2 (d–f) 64. Dependence of defect concentration on lithium activity (a), donor content (b), acceptor content (c); (d) dependence of defect concentration on x in LixTiO2?δ (with constant δ) for the initial situation of weak Li+/e? association, (e) variation in defect concentration in TiO2?δ (with constant δ) as a function of Li activity aLi for the initial situation of a weak Li+/e? association, (f) defect concentration as a function of oxygen stoichiometry δ (with constant Li content) for the initial situation of weak Li+/e? association."
Fig 4
(a) Schematic representation of the electrochemical mechanism during charge/discharge cycling in maricite NaFePO4 67; (b, c) HAADF-STEM images of cross-section of Na[Li0.05Mn0.50Ni0.30Cu0.10Mg0.05]O2 nanoplate 72; (d) charge and discharge curves for Na[Li0.05Mn0.50Ni0.30Cu0.10Mg0.05]O2 electrode 72; (e) enlarged view of the (111) reflections for the pristine Li4Ti5O12 with different sizes 84; (f) XRD patterns of the submicrosized, 44 and 120 nm Li4Ti5O12 84; (g) the charge-discharge curves of Na storage into Li4Ti5O12 with various sizes 84."
Table 1
Excess lithium potential for various metastable cases (Colon indicates two phase coexistence) 69."
nano 1 (single phase) | nano 1 : nano 2 | nano 1 : macro 2 | |
amorphous 1 (single phase) | amorphous 1 : amorphous 2 | amorphous 1 : nano 2 | amorphous 1 : macro 2 |
Fig 5
(a) HAADF-STEM image and (b)overlay of Ti, F, and Na elemental maps for TiF3/Carbon nanofiber after being discharged to 0.01 V 85; (c) the initial discharge-charge voltage profiles of TiF3/Carbon nanofiber 85; (d) schematic of controlling the nanopores of a typical porous carbon (left) to produce the target sieving carbon (right), and the comparison between their different IEDLs 88; (e, f) charge/discharge curves for the first two cycles at a current density of 50 mA g?1 of PC and SC anodes 88."
Fig 7
Strategies for electrochemical circuit constructing based on the transport properties 100. (a) Leon* > > Lion*, porous carbon monolith anode; (b) Leon* > Lion*, Li2MnO3-LiNi0.5Mn0.5O2-C cathode; (c) Leon* ≈ Lion*, LiMn2O4-C cathode; (d) Leon* < Lion*, Na3V2(PO4)3-C sodium cathode and (e) Leon* < < Lion*, Li10GeP2S12-C electrode."
1 |
Armand M. ; Tarascon J. M. Nature 2008, 451, 652.
doi: 10.1038/451652a |
2 |
Dunn B. ; Kamath H. ; Tarascon J.-M. Science 2011, 334, 928.
doi: 10.1126/science.1212741 |
3 |
Tarascon J.-M. Nat. Chem. 2010, 2, 510.
doi: 10.1038/nchem.680 |
4 |
Kim S.-W. ; Seo D.-H. ; Ma X. ; Ceder G. ; Kang K. Adv. Energy Mater. 2012, 2, 710.
doi: 10.1002/aenm.201200026 |
5 |
Palomares V. ; Serras P. ; Villaluenga I. ; Hueso K. B. ; Carretero-Gonzalez J. ; Rojo T. Energy Environ. Sci. 2012, 5, 5884.
doi: 10.1039/c2ee02781j |
6 |
Berthelot R. ; Carlier D. ; Delmas C. Nat. Mater. 2011, 10, 74.
doi: 10.1038/nmat2920 |
7 |
Yabuuchi N. ; Kajiyama M. ; Iwatate J. ; Nishikawa H. ; Hitomi S. ; Okuyama R. ; Usui R. ; Yamada Y. ; Komaba S. Nat. Mater. 2012, 11, 512.
doi: 10.1038/nmat3309 |
8 |
Bianchini M. ; Brisset N. ; Fauth F. ; Weill F. ; Elkaim E. ; Suard E. ; Masquelier C. ; Croguennec L. Chem. Mater. 2014, 26, 4238.
doi: 10.1021/cm501644g |
9 | Pan W. L. ; Guan W. H. ; Jiang Y. Z. Acta Phys. -Chim. Sin. 2020, 36, 1905017. |
潘雯丽; 关文浩; 姜银珠. 物理化学学报, 2020, 36, 1905017.
doi: 10.3866/PKU.WHXB201905017 |
|
10 | Cao X. X. ; Zhou J. ; Pan A. Q. ; Liang S. Q. Acta Phys. -Chim. Sin. 2020, 36, 1905018. |
曹鑫鑫; 周江; 潘安强; 梁叔全. 物理化学学报, 2020, 36, 1905018.
doi: 10.3866/PKU.WHXB201905018 |
|
11 |
Qian J. F. ; Wu C. ; Cao Y. L. ; Ma Z. F. ; Huang Y. H. ; Ai X. P. ; Yang H. X. Adv. Energy Mater. 2018, 8, 1702619.
doi: 10.1002/aenm.201702619 |
12 |
Zhao Q. ; Lu Y. ; Chen J. Adv. Energy Mater. 2017, 7, 1601792.
doi: 10.1002/aenm.201601792 |
13 |
Yin X. P. ; Lu Z. X. ; Wang J. ; Feng X. C. ; Roy S. ; Liu X. S. ; Yang Y. ; Zhao Y. F. ; Zhang J. J. Adv. Mater. 2022, 34, 2109282.
doi: 10.1002/adma.202109282 |
14 | Cao B. ; Li X. F. Acta Phys. -Chim. Sin. 2020, 36, 1905018. |
曹斌; 李喜飞. 物理化学学报, 2020, 36, 1905018.
doi: 10.3866/PKU.WHXB201905003 |
|
15 |
Yan Y. ; Yin Y.-X. ; Guo Y. -G. ; Wan L.-J. Adv. Energy Mater. 2014, 4, 1301584.
doi: 10.1002/aenm.201301584 |
16 |
Farbod B. ; Cui K. ; Kalisvaart W. P. ; Kupsta M. ; Zahiri B. ; Kohandehghan A. ; Lotfabad E. M. ; Li Z. ; Luber E. J. ; Mitlin D. ACS Nano 2014, 8, 4415.
doi: 10.1021/nn4063598 |
17 |
Xu X. ; Zhao R. ; Ai W. ; Chen B. ; Du H. ; Wu L. ; Zhang H. ; Huang W. ; Yu T. Adv. Mater. 2018, 30, 1800658.
doi: 10.1002/adma.201800658 |
18 |
Wu C. ; Kopold P. ; Ding Y.-L. ; van Aken P. A. ; Maier J. ; Yu Y. ACS Nano 2015, 9, 6610.
doi: 10.1021/acsnano.5b02787 |
19 |
Maier J. Nat. Mater. 2005, 4, 805.
doi: 10.1038/nmat1513 |
20 |
Tripathi R. ; Wood S. M. ; Islam M. S. ; Nazar L. F. Energy Environ. Sci. 2013, 6, 2257.
doi: 10.1039/c3ee40914g |
21 |
Tripathi R. ; Gardiner G. R. ; Islam M. S. ; Nazar L. F. Chem. Mater. 2011, 23, 2278.
doi: 10.1021/cm200683n |
22 |
Aparicio P. A. ; de Leeuw N. H. Phys. Chem. Chem. Phys. 2020, 22, 6653.
doi: 10.1039/c9cp05559b |
23 |
Quinzeni I. ; Fujii K. ; Bini M. ; Yashima M. ; Tealdi C. Mater. Adv. 2022, 3, 986.
doi: 10.1039/d1ma00901j |
24 |
Clark J. M. ; Barpanda P. ; Yamada A. ; Islam M. S. J. Mater. Chem. A 2014, 2, 11807.
doi: 10.1039/c4ta02383h |
25 |
Kuganathan N. ; Chroneos A. Materials 2019, 12, 3243.
doi: 10.3390/ma12081348 |
26 |
Kuganathan N. ; Kelaidis N. ; Chroneos A. Materials 2019, 12, 1348.
doi: 10.3390/ma12193243 |
27 |
Watcharatharapong T. ; T-Thienprasert J. ; Chakraborty S. ; Ahuja R. Nano Energy 2019, 55, 123.
doi: 10.1016/j.nanoen.2018.10.038 |
28 |
Nordstrand J. ; Toledo-Carrillo E. ; Vafakhah S. ; Guo L. ; Yang H. Y. ; Kloo L. ; Dutta J. ACS Appl. Mater. Interfaces 2022, 14, 1102.
doi: 10.1021/acsami.1c20910 |
29 |
Barpanda P. ; Oyama G. ; Nishimura S.-i. ; Chung S.-C. ; Yamada A. Nat. Commun. 2014, 5, 4358.
doi: 10.1038/ncomms5358 |
30 |
Nishimura S. ; Suzuki Y. ; Lu J. C. ; Torii S. ; Kamiyama T. ; Yamada A. Chem. Mater. 2016, 28, 2393.
doi: 10.1021/acs.chemmater.6b00604 |
31 |
Tang K. ; Yu X. ; Sun J. ; Li H. ; Huang X. Electrochim. Acta 2011, 56, 4869.
doi: 10.1016/j.electacta.2011.02.119 |
32 |
Zhu C. ; Wu C. ; Chen C.-C. ; Kopold P. ; van Aken P. A. ; Maier J. ; Yu Y. Chem. Mater. 2017, 29, 5207.
doi: 10.1021/acs.chemmater.7b00927 |
33 |
Lu J. C. ; Yamada A. ChemElectroChem 2016, 3, 902.
doi: 10.1002/celc.201500535 |
34 |
Lalere F. ; Leriche J. B. ; Courty M. ; Boulineau S. ; Viallet V. ; Masquelier C. ; Seznec V. J. Power Sources 2014, 247, 975.
doi: 10.1016/j.jpowsour.2013.09.051 |
35 |
Liu J. ; Chang D. H. ; Whitfield P. ; Janssen Y. ; Yu X. Q. ; Zhou Y. N. ; Bai J. M. ; Ko J. ; Nam K. W. ; Wu L. J. ; et al Chem. Mater. 2014, 26, 3295.
doi: 10.1021/cm5011218 |
36 |
Kundu D. ; Tripathi R. ; Popov G. ; Makahnouk W. R. M. ; Nazar L. F. Chem. Mater. 2015, 27, 885.
doi: 10.1021/cm504058k |
37 |
Amin R. ; Balaya P. ; Maier J. Electrochem. Solid State Lett. 2007, 10, A13.
doi: 10.1149/1.2388240 |
38 |
Shu G. J. ; Chou F. C. Phys. Rev. B 2008, 78, 052101.
doi: 10.1103/PhysRevB.78.052101 |
39 |
Li Y. ; Chen M. H. ; Liu B. ; Zhang Y. ; Liang X. Q. ; Xia X. H. Adv. Energy Mater. 2020, 10, 2000927.
doi: 10.1002/aenm.202000927 |
40 |
Han Y. L. ; Yang M. H. ; Zhang Y. ; Xie J. J. ; Yin D. G. ; Li C. L. Chem. Mater. 2016, 28, 3139.
doi: 10.1021/acs.chemmater.6b00729 |
41 |
Xu J. T. ; Wang M. ; Wickramaratne N. P. ; Jaroniec M. ; Dou S. X. ; Dai L. M. Adv. Mater. 2015, 27, 2042.
doi: 10.1002/adma.201405370 |
42 |
Hong Z. S. ; Zhen Y. C. ; Ruan Y. R. ; Kang M. L. ; Zhou K. Q. ; Zhang J. M. ; Huang Z. G. ; Wei M. D. Adv. Mater. 2018, 30, 1802035.
doi: 10.1002/adma.201802035 |
43 |
Pei Z. X. ; Meng Q. Q. ; Wei L. ; Fan J. ; Chen Y. ; Zhi C. Y. Energy Storage Mater. 2020, 28, 55.
doi: 10.1016/j.ensm.2020.02.033 |
44 |
Wang P. F. ; Yao H. R. ; Liu X. Y. ; Zhang J. N. ; Gu L. ; Yu X. Q. ; Yin Y. X. ; Guo Y. G. Adv. Mater. 2017, 29, 1700210.
doi: 10.1002/adma.201700210 |
45 |
Wang H. B. ; Gao R. ; Li Z. Y. ; Sun L. M. ; Hu Z. B. ; Liu X. F. Inorg. Chem. 2018, 57, 5249.
doi: 10.1021/acs.inorgchem.8b00284 |
46 |
Li H. ; Tang H. ; Ma C. ; Bai Y. ; Alvarado J. ; Radhakrishnan B. ; Ong S. P. ; Wua F. ; Meng Y. S. ; Wu C. Chem. Mater. 2018, 30, 2498.
doi: 10.1021/acs.chemmater.7b03903 |
47 |
Liu R. ; Xu G. ; Li Q. ; Zheng S. ; Zheng G. ; Gong Z. ; Li Y. ; Kruskop E. ; Fu R. ; Chen Z. ; et al ACS Appl. Mater. Interfaces 2017, 9, 43632.
doi: 10.1021/acsami.7b13018 |
48 |
Park J.-S. ; Kim J. ; Jo J. H. ; Myung S.-T. J. Mater. Chem. A 2018, 6, 16627.
doi: 10.1039/c8ta06162a |
49 |
Zheng Q. ; Ni X. ; Lin L. ; Yi H. ; Han X. ; Li X. ; Bao X. ; Zhang H. J. Mater. Chem. A 2018, 6, 4209.
doi: 10.1039/c8ta00117k |
50 |
Zhu Q. ; Cheng H. ; Zhang X. ; He L. ; Hu L. ; Yang J. ; Chen Q. ; Lu Z. Electrochim. Acta 2018, 281, 208.
doi: 10.1016/j.electacta.2018.05.174 |
51 |
Chen Y. ; Xu Y. ; Sun X. ; Wang C. J. Power Sources 2018, 375, 82.
doi: 10.1016/j.jpowsour.2017.11.043 |
52 |
Li X. ; Huang Y. ; Wang J. ; Miao L. ; Li Y. ; Liu Y. ; Qiu Y. ; Fang C. ; Han J. ; Huang Y. J. Mater. Chem. A 2018, 6, 1390.
doi: 10.1039/c7ta08970h |
53 |
Jian Z. ; Zhao L. ; Pan H. ; Hu Y.-S. ; Li H. ; Chen W. ; Chen L. Electrochem. Commun. 2012, 14, 86.
doi: 10.1016/j.elecom.2011.11.009 |
54 |
Zhu C. ; Song K. ; van Aken P. A. ; Maier J. ; Yu Y. Nano Lett. 2014, 14, 2175.
doi: 10.1021/nl500548a |
55 |
Fang Y. ; Xiao L. ; Ai X. ; Cao Y. ; Yang H. Adv. Mater. 2015, 27, 5895.
doi: 10.1002/adma.201502018 |
56 |
Zhao X. Y. ; Luo M. W. ; Peng K. Y. ; Zhang Z. B. ; Cheng B. ; Wang B. B. ; Zhu C. B. ; Yan X. B. ; Shi K. Y. ACS Appl. Mater. Interfaces 2021, 13, 57442.
doi: 10.1021/acsami.1c18800 |
57 |
Liu Y. L. ; Xu Y. H. ; Han X. G. ; Pellegrinelli C. ; Zhu Y. J. ; Zhu H. L. ; Wan J. Y. ; Chung A. C. ; Vaaland O. ; Wang C. S. ; et al Nano Lett. 2012, 12, 5664.
doi: 10.1021/nl302819f |
58 |
Amin R. ; Lin C. T. ; Maier J. Phys. Chem. Chem. Phys. 2008, 10, 3519.
doi: 10.1039/B801234B |
59 |
Amin R. ; Lin C. T. ; Maier J. Phys. Chem. Chem. Phys. 2008, 10, 3524.
doi: 10.1039/B801795F |
60 |
Amin R. ; Lin C. T. ; Peng J. B. ; Weichert K. ; Acarturk T. ; Starke U. ; Maier J. Adv. Funct. Mater. 2009, 19, 1697.
doi: 10.1002/adfm.200801604 |
61 |
Amin R. ; Maier J. Solid State Ion. 2008, 178, 1831.
doi: 10.1016/j.ssi.2007.11.017 |
62 |
Amin R. ; Maier J. ; Balaya P. ; Chen D. P. ; Lin C. T. Solid State Ion. 2008, 179, 1683.
doi: 10.1016/j.ssi.2008.01.079 |
63 |
Maier J. ; Amin R. J. Electrochem. Soc. 2008, 155, A339.
doi: 10.1149/1.2839626 |
64 |
Shin J. Y. ; Samuelis D. ; Maier J. Solid State Ion. 2012, 225, 590.
doi: 10.1016/j.ssi.2011.12.003 |
65 |
Gerbig O. ; Merkle R. ; Maier J. Adv. Mater. 2013, 25, 3129.
doi: 10.1002/adma.201300264 |
66 |
Whiteside A. ; Fisher C. A. J. ; Parker S. C. ; Islam M. S. Phys. Chem. Chem. Phys. 2014, 16, 21788.
doi: 10.1039/c4cp02356k |
67 |
Kim J. ; Seo D. H. ; Kim H. ; Park I. ; Yoo J. K. ; Jung S. K. ; Park Y. U. ; Goddard W. A. ; Kang K. Energy Environ. Sci. 2015, 8, 540.
doi: 10.1039/c4ee03215b |
68 |
Gao H. ; Seymour I. D. ; Xin S. ; Xue L. ; Henkelman G. ; Goodenough J. B. J. Am. Chem. Soc. 2018, 140, 18192.
doi: 10.1021/jacs.8b11388 |
69 |
Zhu C. ; Mu X. ; Popovic J. ; Weichert K. ; van Aken P. A. ; Yu Y. ; Maier J. Nano Lett. 2014, 14, 5342.
doi: 10.1021/nl5024063 |
70 |
Zhu C. ; Wen Y. ; van Aken P. A. ; Maier J. ; Yu Y. Adv. Funct. Mater. 2015, 25, 2335.
doi: 10.1002/adfm.201404468 |
71 |
Zhu C. ; Mu X. ; van Aken P. A. ; Yu Y. ; Maier J. Angew. Chem.-Int. Edit. 2014, 53, 2152.
doi: 10.1002/anie.201308354 |
72 |
Deng J. Q. ; Luo W. B. ; Lu X. ; Yao Q. R. ; Wang Z. M. ; Liu H. K. ; Zhou H. Y. ; Dou S. X. Adv. Energy Mater. 2018, 8, 1701610.
doi: 10.1002/aenm.201701610 |
73 |
Cui Z. H. ; Li C. L. ; Yu P. F. ; Yang M. H. ; Guo X. X. ; Yin C. L. J. Mater. Chem. A 2015, 3, 509.
doi: 10.1039/c4ta05241b |
74 |
Cao D. P. ; Yin C. L. ; Shi D. R. ; Fu Z. W. ; Zhang J. C. ; Li C. L. Adv. Funct. Mater. 2017, 27, 1701130.
doi: 10.1002/adfm.201701130 |
75 |
Liu Y. ; Qiao Y. ; Zhang W. X. ; Li Z. ; Ji X. ; Miao L. ; Yuan L. X. ; Hu X. L. ; Huang Y. H. Nano Energy 2015, 12, 386.
doi: 10.1016/j.nanoen.2015.01.012 |
76 |
Chao D. L. ; Zhu C. R. ; Yang P. H. ; Xia X. H. ; Liu J. L. ; Wang J. ; Fan X. F. ; Savilov S. V. ; Lin J. Y. ; Fan H. J. ; et al Nat. Commun. 2016, 7, 12122.
doi: 10.1038/ncomms12122 |
77 |
Malik R. ; Burch D. ; Bazant M. ; Ceder G. Nano Lett. 2010, 10, 4123.
doi: 10.1021/nl1023595 |
78 |
Ge P. ; Hou H. S. ; Li S. J. ; Yang L. ; Ji X. B. Adv. Funct. Mater. 2018, 28, 1801765.
doi: 10.1002/adfm.201801765 |
79 |
Meethong N. ; Huang H. Y. S. ; Carter W. C. ; Chiang Y. M. Electrochem. Solid State Lett. 2007, 10, A134.
doi: 10.1149/1.2710960 |
80 |
Kobayashi G. ; Nishimura S. I. ; Park M. S. ; Kanno R. ; Yashima M. ; Ida T. ; Yamada A. Adv. Funct. Mater. 2009, 19, 395.
doi: 10.1002/adfm.200801522 |
81 |
Gibot P. ; Casas-Cabanas M. ; Laffont L. ; Levasseur S. ; Carlach P. ; Hamelet S. ; Tarascon J. M. ; Masquelier C. Nat. Mater. 2008, 7, 741.
doi: 10.1038/nmat2245 |
82 |
Gu L. ; Zhu C. ; Li H. ; Yu Y. ; Li C. ; Tsukimoto S. ; Maier J. ; Ikuhara Y. J. Am. Chem. Soc. 2011, 133, 4661.
doi: 10.1021/ja109412x |
83 |
Zhu C. ; Gu L. ; Suo L. ; Popovic J. ; Li H. ; Ikuhara Y. ; Maier J. Adv. Funct. Mater. 2014, 24, 312.
doi: 10.1002/adfm.201301792 |
84 |
Yu X. Q. ; Pan H. L. ; Wan W. ; Ma C. ; Bai J. M. ; Meng Q. P. ; Ehrlich S. N. ; Hu Y. S. ; Yang X. Q. Nano Lett. 2013, 13, 4721.
doi: 10.1021/nl402263g |
85 |
Zhang Y. ; Srot V. ; Moudrakovski I. ; Feng Y. Z. ; van Aken P. A. ; Maier J. ; Yu Y. Adv. Energy Mater. 2019, 9, 1901470.
doi: 10.1002/aenm.201901470 |
86 |
Yu P. F. ; Li C. L. ; Guo X. X. J. Phys. Chem. C 2014, 118, 10616.
doi: 10.1021/jp5010693 |
87 |
Zhang Z. ; Chen Z. ; Mai Z. ; Peng K. ; Deng Q. ; Bayaguud A. ; Zhao P. ; Fu Y. ; Yu Y. ; Zhu C. Small 2019, 15, 1900356.
doi: 10.1002/smll.201900356 |
88 |
Li Q. ; Liu X. ; Tao Y. ; Huang J. ; Zhang J. ; Yang C. ; Zhang Y. ; Zhang S. ; Jia Y. ; Lin Q. ; et al Nat. Sci. Rev. 2022, 9, nwac084.
doi: 10.1093/nsr/nwac084 |
89 |
He M. ; Kraychyk K. ; Walter M. ; Kovalenko M. V. Nano Lett. 2014, 14, 1255.
doi: 10.1021/nl404165c |
90 |
Zhao F. P. ; Shen S. D. ; Cheng L. ; Ma L. ; Zhou J. H. ; Ye H. L. ; Han N. ; Wu T. P. ; Li Y. G. ; Lu J. Nano Lett. 2017, 17, 4137.
doi: 10.1021/acs.nanolett.7b00915 |
91 |
Ou X. ; Yang C. H. ; Xiong X. H. ; Zheng F. H. ; Pan Q. C. ; Jin C. ; Liu M. L. ; Huang K. Adv. Funct. Mater. 2017, 27, 1606242.
doi: 10.1002/adfm.201606242 |
92 |
Zhang B. A. ; Ghimbeu C. M. ; Laberty C. ; Vix-Guterl C. ; Tarascon J. M. Adv. Energy Mater. 2016, 6, 1501588.
doi: 10.1002/aenm.201501588 |
93 |
Liu Y. C. ; Zhang N. ; Wang F. F. ; Liu X. B. ; Jiao L. F. ; Fan L. Z. Adv. Funct. Mater. 2018, 28, 1801917.
doi: 10.1002/adfm.201801917 |
94 |
Wang X. ; Kajiyama S. ; Iinuma H. ; Hosono E. ; Oro S. ; Moriguchi I. ; Okubo M. ; Yamada A. Nat. Commun. 2015, 6, 6544.
doi: 10.1038/ncomms7544 |
95 |
Sun W. P. ; Rui X. H. ; Yang D. ; Sun Z. Q. ; Li B. ; Zhang W. Y. ; Zong Y. ; Madhavi S. ; Dou S. X. ; Yan Q. Y. ACS Nano 2015, 9, 11371.
doi: 10.1021/acsnano.5b05229 |
96 |
Qu B. H. ; Ma C. Z. ; Ji G. ; Xu C. H. ; Xu J. ; Meng Y. S. ; Wang T. H. ; Lee J. Y. Adv. Mater. 2014, 26, 3854.
doi: 10.1002/adma.201306314 |
97 |
Fang Y. ; Xiao L. ; Qian J. ; Cao Y. ; Ai X. ; Huang Y. ; Yang H. Adv. Energy Mater. 2016, 6, 1502197.
doi: 10.1002/aenm.201502197 |
98 |
Fang Y. J. ; Yu X. Y. ; Lou X. W. Angew. Chem.-Int. Edit. 2017, 56, 5801.
doi: 10.1002/anie.201702024 |
99 |
Zhu C. ; Kopold P. ; van Aken P. A. ; Maier J. ; Yu Y. Adv. Mater. 2016, 28, 2409.
doi: 10.1002/adma.201505943 |
100 |
Zhu C. ; Usiskin R. E. ; Yu Y. ; Maier J. Science 2017, 358, eaao2808.
doi: 10.1126/science.aao2808 |
[1] | Guoguang Xu, Qi Wang, Yi Su, Meinan Liu, Qingwen Li, Yuegang Zhang. Revealing Electrochemical Sodiation Mechanism of Orthogonal-Nb2O5 Nanosheets by In Situ Transmission Electron Microscopy [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2009073-. |
[2] | Yishun Yang, Min Zhou, Yanxia Xing. Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003004-. |
[3] | Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204049-. |
[4] | Houfu Song, Feiyu Kang. Recent Progress on Thermal Conduction of Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2101013-. |
[5] | Hui Li, Shuangyu Liu, Tianci Yuan, Bo Wang, Peng Sheng, Li Xu, Guangyao Zhao, Huitao Bai, Xin Chen, Zhongxue Chen, Yuliang Cao. Influence of NaOH Concentration on Sodium Storage Performance of Na0.44MnO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 1907049-. |
[6] | Silan Wang, Guorui Yang, Nasir Muhammad Salman, Xiaojun Wang, Jianan Wang, Wei Yan. Research Progress on Phosphorus-based Anode Materials for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2001003-. |
[7] | Guanghai Chen,Ying Bai,Yongsheng Gao,Feng Wu,Chuan Wu. Chalcogenide Electrolytes for All-Solid-State Sodium Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905009-. |
[8] | Hui Li,Shuangyu Liu,Tianci Yuan,Bo Wang,Peng Sheng,Li Xu,Guangyao Zhao,Huitao Bai,Xin Chen,Zhongxue Chen,Yuliang Cao. Electrochemical Mechanism of Na0.44MnO2 in Alkaline Aqueous Solution [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905027-. |
[9] | Xinxin Cao,Jiang Zhou,Anqiang Pan,Shuquan Liang. Recent Advances in Phosphate Cathode Materials for Sodium-ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905018-. |
[10] | Xiaoxia Lu,Shengyang Dong,Zhijie Chen,Langyuan Wu,Xiaogang Zhang. Preparation of Carbon Coated Ti2Nb2O9 Nanosheets and Its Sodium Ion Storage Properties [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1906024-. |
[11] | Peng Zhou,Jinzhi Sheng,Chongwei Gao,Jun Dong,Qinyou An,Liqiang Mai. Synthesis of V2O5/Fe2V4O13 Nanocomposite Materials using In situ Phase Separation and the Electrochemical Performance for Sodium Storage [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1906046-. |
[12] | Di Tian,Xiaofeng Lu,Weimo Li,Yue Li,Ce Wang. Research on Electrospun Nanofiber-Based Binder-Free Electrode Materials for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904056-. |
[13] | Nannan Guo,Su Zhang,Luxiang Wang,Dianzeng Jia. Application of Plant-Based Porous Carbon for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903055-. |
[14] | Liping Kang,Gaini Zhang,Yunlong Bai,Huanjing Wang,Zhibin Lei,Zonghuai Liu. Two-Dimensional Nanosheet Hole Strategy and Their Assembled Materials for Supercapacitor Application [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1905032-. |
[15] | Yi Wang,Wangchen Huo,Xiaoya Yuan,Yuxin Zhang. Composite of Manganese Dioxide and Two-dimensional Materials Applied to Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904007-. |
|