Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (11): 2204049.doi: 10.3866/PKU.WHXB202204049
Special Issue: Special Issue of Emerging Scientists
• REVIEW • Previous Articles Next Articles
Ying Li1,2, Xueqi Lai1,2, Jinpeng Qu1,2, Qinzhi Lai1,2, Tingfeng Yi1,2,3,*()
Received:
2022-04-26
Accepted:
2022-05-20
Published:
2022-05-25
Contact:
Tingfeng Yi
E-mail:tfyihit@163.com
About author:
Tingfeng Yi, Email: tfyihit@163.comSupported by:
Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries[J]. Acta Phys. -Chim. Sin. 2022, 38(11), 2204049. doi: 10.3866/PKU.WHXB202204049
Fig 2
(a) Crystal structures of Sb; (b) schematic diagram of electrochemical reaction mechanism of Sb materials 53. (c) ex-situ 23Na-NMR and PDF spectra of the cycled antimony electrodes and (d) electrochemical reaction mechanism of Sb obtained from PDF and NMR 54. (b) Adapted with permission from Ref. 53. Copyright 2016, American Chemical Society; (c, d) adapted with permission from Ref. 54. Copyright 2016, American Chemical Society."
Fig 3
(a) Rate capability tests and (b) cycling performance of Sb NCs 59. (c) Schematic diagram of synthesis process for Sb HNS 60. (d) Schematic diagram of the volume change during the Na+/Li+ insertion of Sb HNSs and NSs 60. (e) Schematic illustration of the synthesis, (f) SEM image and (g) rate capability of Sb NTs 63. (a, b) Adapted with permission from Ref. 59. Copyright 2014, American Chemical Society; (c) adapted with permission from Ref. 60. Copyright 2014, American Chemical Society; (d) adapted with permission from Ref. 60. Copyright 2014, American Chemical Society; (e–g) adapted with permission from Ref. 63. Copyright 2019, American Chemical Society."
Fig 4
Schematic diagram of (a) the crystalline phase evolution, (b) ex-situ SAED patterns and (c) electrochemical reaction mechanism for antimonene during the sodiation/desodiation 70. (d) Schematic diagram of synthesis mechanism for porous antimonene 71. (a–c) Adapted with permission from Ref. 70. Copyright 2018, American Chemical Society; (d) adapted with permission from Ref. 71. Copyright 2021, Elsevier."
Fig 5
(a) Schematic illustration of the preparation process and (b) cycling performance of the Sb/MLG hybrid 77. (c) Schematic illustration of synthesis process for Sb/graphene composites by using strong alkali electrolysis process, (d) cyclic voltammograms, and (e) cycling performance for the Sb/graphene composites 80. (a, b) Adapted with permission from Ref. 77. Copyright 2015, American Chemical Society; (c–e) adapted with permission from Ref. 80. Copyright 2019, Elsevier."
Fig 6
(a) Schematic illustration of the synthesis procedure for the Sb/N-C + CNT composite 85. (b) Charge-discharge profiles and (c) cycling performance of Sb/CNT 86. (d) Schematic illustration of the synthesis procedure of Sb NP-MWCNT composite 87. (e) Schematic illustration of the synthesis procedure for the Sb/CNTs composites 88. (a) Adapted with permission from Ref. 85. Copyright 2016, American Chemical Society; (b, c) adapted with permission from Ref. 86. Copyright 2020, Elsevier; (d) adapted with permission from Ref. 87. Copyright 2020, Elsevier; (e) adapted with permission from Ref. 88. Copyright 2021, Elsevier."
Fig 7
(a) Schematic illustration of the synthesis process for the SbNP@C electrode 93. (b) Schematic illustration of the synthesis process for the SbNPs@3D-C 98. (c) Schematic illustration of the synthesis process, (d) cycling performance, and (e) rate capability of Sb|P-S@C foam 99. (a) Adapted with permission from Ref. 93. Copyright 2013, American Chemical Society; (b) adapted with permission from Ref. 98. Copyright 2016, Elsevier; (c–e) adapted with permission from Ref. 99. Copyright 2019, Elsevier."
Fig 8
Schematic illustration for the fabrication of (a) Sb⊂3DPC anode 100, (b) Sb@C yolk-shell structure 102, (c) Sb⊂CTHNs 109 and (d) Sb@PC 110. (a) Adapted with permission from Ref. 100. Copyright 2019, Elsevier; (b) adapted with permission from Ref. 102. Copyright 2017, Elsevier; (c) adapted with permission from Ref. 109. Copyright 2021, Elsevier; (d) adapted with permission from Ref. 110. Copyright 2021, American Chemical Society."
Fig 9
Schematic illustration of the fabrication for (a) Sb@S, N-3DPC 111 and (b) hollow Sb@C yolk-shell spheres 112. (c, d) TEM and SEM images of Sb@S, N-3DPC 111. (e) TEM image of Sb@C yolk-shell spheres 67. (f) Combination styles of 0D active nanoparticles and 2D current-collectors and (g) SEM image of Sb-NDs⊂CNs113. (h) Schematic illustration of sodium storage mechanism for Sb@(N, S?C) 114. (i) Schematic illustration of the fabrication of Sb@NS-3DPCMSs116 and (j) the preparation process of the a-Sb/NC 115. (a) Adapted with permission from Ref. 111. Copyright 2015, Elsevier; (b) adapted with permission from Ref. 112. Copyright 2017, American Chemical Society; (c, d) adapted with permission from Ref. 111. Copyright 2015, Elsevier; (e) adapted with permission from Ref. 112. Copyright 2017, American Chemical Society; (f, g) adapted with permission from Ref. 113. Copyright 2018, Elsevier; (h) adapted with permission from Ref. 114. Copyright 2019, American Chemical Society; (i) adapted with permission from Ref. 116. Copyright 2021, Elsevier; (j) adapted with permission from Ref. 115. Copyright 2019, Elsevier."
Table 1
Effect of carbon coating with different carbon sources on the electrochemical performance of Sb (n: the nth cycle)"
Anode | Carbon source | Rate capability Capacity [mAh?g?1] (current density) | Cycling stability Capacity [mAh?g?1] (n, current density) | Ref. |
Sb-N/C | Urea and citric acid | 142 (10 A?g?1) | 220 (180, 2 A?g?1) | |
Sb@C microsphere | Furfural | 228 (7C) | 456 (300, 0.3C) | |
peapod-like Sb@C | Glucose | 206 (10 A?g?1) | 305 (3000, 1 A?g?1) | |
Sb@C | Bio-oil | 303 (5 A?g?1) | 391 (500, 1 A?g?1) | |
Sb@NC | 1-Ethyl-3-methylimidazolium dicyanamide | 237 (5 A?g?1) | 395 (100, 0.1 A?g?1) | |
Sb/NPC | Phenylamine | 357 (1.6 A?g?1) | 530 (100, 0.1 A?g?1) | |
Sb@NCs | Diethylenetriaminepentaacetic acid | 240 (2 A?g?1) | 360 (250, 0.1 A?g?1) | |
Sb/NPC | Nitrilotriacetic acid | 114 (2 A?g?1) | 401 (100, 0.1 A?g?1) | |
Sb-CNC | 1-methylimidazole and ClCH2CN | 203 (5 A?g?1) | 475 (150, 0.1 A?g?1) | |
a-Sb/C | CaC2 | 164 (10 A?g?1) | 283 (3000, 5 A?g?1) |
Fig 10
(a) SEM image of Sb/Cu2Sb 123. (b) Schematic diagram of fabrication process of Cu2Sb/Cu 124. (c) NiSb hollow nanospheres 121. (d) 3-D Sb/NiSb/Ni composite 125. (e) rGO@Sb-Ni composite 126 and (f) FeSb@NC composite 127. (a) Adapted with permission from Ref. 123. Copyright 2014, Elsevier; (b) adapted with permission from Ref. 124. Copyright 2016, American Chemical Society; (c) adapted with permission from Ref. 121. Copyright 2015, Elsevier; (d) adapted with permission from Ref. 125. Copyright 2015, Elsevier; (e) adapted with permission from Ref. 126. Copyright 2018, American Chemical Society; (f) adapted with permission from Ref. 127. Copyright 2020, Elsevier."
Fig 11
(a) Sodium storage mechanism of Bi2Sb6 133. (b) Sodiation/desodiation processes for the Sb/C and BiSb3/C nanofibers 134. (c, d) SEM images of the ZnSb nanowire 135. (e) Schematic diagram of synthesis process for SnSb@SnOx/SbOx@C 145. (f) Schematic diagram of preparation procedure and (g–i) TEM images and elemental mapping images for SnSb/3D-NPC 146. (a) Adapted with permission from Ref. 133. Copyright 2018, American Chemical Society; (b) adapted with permission from Ref. 134. Copyright 2020, Elsevier; (c, d)adapted with permission from Ref. 135. Copyright 2016, Elsevier; (e) adapted with permission from Ref. 145. Copyright 2019, Elsevier; (f–i) adapted with permission from Ref. 146. Copyright 2021, Elsevier."
Fig 12
Schematic diagram of synthesis process for (a) PNS@SnSb 147, (b) porous carbon-free SnSb 149 and (c) NP-SnSb alloy 150. (d) Operando XRD patterns of SnSb alloy in the initial charge-discharge processes and (e) change of diffraction peaks at different ranges 150. (a) Adapted with permission from Ref. 147. Copyright 2017, American Chemical Society; (b) adapted with permission from Ref. 149. Copyright 2018, Elsevier; (c–e) adapted with permission from Ref. 150. Copyright 2018, Elsevier."
Table 2
Electrochemical performance and synthesis methods of other Sb-based alloy anodes for SIBs (n: the nth cycle)."
Anode | Synthesis method | Rate capability [mAh?g?1] (current density) | Cycling stability [mAh?g?1] (n, current density) | Ref. |
MS_Fe-Sb alloy | Melt-spinning process | 300 (1 A?g?1) | 466 (80, 0.05 A?g?1) | |
FeSb2 | Ball milling | 490 (0.3 A?g?1) | 440 (150, 0.3 A?g?1) | |
FeSb-TiC-C | High energy mechanical milling | 155 (10 A?g?1) | 215 (100, 0.1 A?g?1) | |
Cu2Sb-Al2O3-C | Mechanochemical reaction | 160 (10 A?g?1) | 198 (70, 0.1 A?g?1) | |
NiSb⊂3DCM | Cross-linking and galvanic replacement reaction | 248 (5 A?g?1) | 345 (400, 1 A?g?1) | |
Bi0.2Sb0.8 | Mechanical alloying method | 270 (1.5 A?g?1) | 520 (200, 0.05 A?g?1) | |
Bi0.25Sb1.75Te3/C | Ball milling | 331 (2 A?g?1) | 406 (100, 2 A?g?1) | |
SnSb/NC | One-pot process | 85 (2 A?g?1) | 244 (200, 0.1 A?g?1) | |
SnSb-TiC-C | High energy mechanical milling | 200 (3 A?g?1) | 210 (30, 0.1 A?g?1) | |
CNF-SnSb | Electrospun | 110 (20C) | 345 (200, 0.2C) | |
SnSb@rGO@CMFs | Centrifugally-spun | 190 (0.8 A?g?1) | 325 (200, 0.05 A?g?1) | |
SnSb/CNT@graphene | Hydrothermal method | 268 (1 A?g?1) | 360 (100, 0.1 A?g?1) | |
SnSb NCs | Colloidal synthesis | 230 (20C) | 345 (100, 0.5C) | |
Sn-Sb | Replacement reaction route | 367 (2 A?g?1) | 451 (150, 0.5 A?g?1) | |
SnSb | Ball milling | 400 (4C) | 525 (125, 0.5C) | |
SnS/SnSb@C | Electrospinning | 159 (2 A?g?1) | 495 (100, 0.05 A?g?1) | |
SnSb | Electrodeposited | 440 (4C) | 300 (100, 0.5C) |
1 |
Wang Y. ; Liu Y. ; Liu Y. ; Shen Q. ; Chen C. ; Qiu F. ; Li P. ; Jiao L. ; Qu X. J. Energy Chem. 2021, 54, 225.
doi: 10.1016/j.jechem.2020.05.065 |
2 |
Tian Y. S. ; Zeng G. B. ; Rutt A. ; Shi T. ; Kim H. ; Wang J. Y. ; Koettgen J. ; Sun Y. Z. ; Ouyang B. ; Chen T. N. ; et al Chem. Rev. 2021, 121, 1623.
doi: 10.1021/acs.chemrev.0c00767 |
3 |
Zhang L. P. ; Wang W. ; Lu S. F. ; Xiang Y. Adv. Energy Mater. 2021, 11, 2003640.
doi: 10.1002/aenm.202003640 |
4 |
Wasalathilake K. C. ; Li H. ; Xu L. ; Yan C. J. Energy Chem. 2020, 42, 91.
doi: 10.1016/j.jechem.2019.06.016 |
5 |
Qiu S. ; Wu X. ; Xiao L. ; Ai X. ; Yang H. ; Cao Y. ACS Appl. Mater. Interfaces 2016, 8, 1337.
doi: 10.1021/acsami.5b10182 |
6 |
Yang K. ; Tang J. ; Liu Y. ; Kong M. ; Zhou B. ; Shang Y. ; Zhang W. H. ACS Nano 2020, 14, 5728.
doi: 10.1021/acsnano.0c00366 |
7 |
Qin B. ; Jia H. ; Cai Y. ; Li M. ; Qi J. ; Cao J. ; Feng J. J. Colloid Interface Sci. 2021, 582, 459.
doi: 10.1016/j.jcis.2020.08.050 |
8 |
Edison E. ; Sreejith S. ; Madhavi S. ACS Appl. Mater. Interfaces 2017, 9, 39399.
doi: 10.1021/acsami.7b13096 |
9 | Wang S. ; Yang G. ; Nasir M. S. ; Wang X. ; Wang J. ; Yan W. Acta Phys. -Chim. Sin. 2021, 37, 2001003. |
王思岚; 杨国锐; NasirM. S.; 王筱珺; 王嘉楠; 延卫. 物理化学学报, 2021, 37, 2001003.
doi: 10.3866/PKU.WHXB202001003 |
|
10 |
Dong S. Y. ; Lv N. ; Wu Y. L. ; Zhang Y. Z. ; Zhu G. Y. ; Dong X. C. Nano Today 2022, 42, 101349.
doi: 10.1016/j.nantod.2021.101349 |
11 | Li H. X. ; Wang J. W. ; Jiao L. F. ; Tao Z. L. ; Liang J. Acta Phys. -Chim. Sin. 2020, 36, 1904017. |
李海霞; 王纪伟; 焦丽芳; 陶占良; 梁静. 物理化学学报, 2020, 36, 1904017.
doi: 10.3866/PKU.WHXB201904017 |
|
12 |
Hakim C. ; Sabi N. ; Saadoune I. J. Energy Chem. 2021, 61, 47.
doi: 10.1016/j.jechem.2021.02.027 |
13 |
Chen Z. Z. ; Hou J. G. ; Zhou J. ; Huang P. ; Wang H. Q. ; Xu C. X. Rare Met. 2021, 40, 3185.
doi: 10.1007/s12598-021-01748-7 |
14 |
Peng P. P. ; Wu Y. R. ; Li X. Z. ; Zhang J. H. ; Li Y. W. ; Cui P. ; Yi T. F. Rare Met. 2021, 40, 3049.
doi: 10.1007/s12598-021-01742-z |
15 |
Xia Q. B. ; Liu H. W. ; Zhao X. S. J. Mater. Chem. A 2022, 10, 3889.
doi: 10.1039/d1ta09567f |
16 |
Usiskin R. ; Lu Y. X. ; Popovic J. ; Law M. ; Balaya P. ; Hu Y. S. ; Maier J. Nat. Rev. Mater. 2021, 6, 1020.
doi: 10.1038/s41578-021-00324-w |
17 | Xu G. G. ; Wang Q. ; Su Y. ; Liu M. N. ; Li Q. W. ; Zhang Y. G. Acta Phys. -Chim. Sin. 2022, 38, 2009073. |
许国光; 王琪; 苏毅; 刘美男; 李清文; 张跃钢. 物理化学学报, 2022, 38, 2009073.
doi: 10.3866/PKU.WHXB202009073 |
|
18 |
Cai Z. ; Peng Z. ; Liu X. ; Sun R. ; Qin Z. ; Fan H. ; Zhang Y. Chin. Chem. Lett. 2021, 32, 3607.
doi: 10.1016/j.cclet.2021.04.011 |
19 |
Zhang P. ; Cao B. ; Soomro R. A. ; Sun N. ; Xu B. Chin. Chem. Lett. 2021, 32, 282.
doi: 10.1016/j.cclet.2020.10.006 |
20 |
Sayed S. Y. ; Kalisvaart W. P. ; Luber E. J. ; Olsen B. C. ; Buriak J. M. ACS Appl. Energy Mater. 2020, 3, 9950.
doi: 10.1021/acsaem.0c01641 |
21 |
Liu S. ; Li X. Z. ; Huang B. ; Yang J.W. ; Chen Q.Q. ; Li Y. W. ; Xiao S. H. Rare Met. 2021, 40, 2392.
doi: 10.1007/s12598-021-01729-w |
22 |
Men S. ; Zheng H. ; Ma D. ; Huang X. ; Kang X. J. Energy Chem. 2021, 54, 124.
doi: 10.1016/j.jechem.2020.05.046 |
23 |
Kim I. T. ; Allcorn E. ; Manthiram A. Phys. Chem. Chem. Phys. 2014, 16, 12884.
doi: 10.1039/c4cp01240b |
24 | Cao B. ; Li X. F. Acta Phys. -Chim. Sin. 2020, 36, 1905003. |
曹斌; 李喜飞. 物理化学学报, 2020, 36, 1905003.
doi: 10.3866/PKU.WHXB201905003 |
|
25 |
Zhang H. ; Yang Y. ; Ren D. ; Wang L. ; He X. Energy Storage Mater. 2021, 36, 147.
doi: 10.1016/j.ensm.2020.12.027 |
26 |
Yu. P. ; Tang W. ; Wu F.F. ; Zhang C. ; Luo H.Y. ; Liu H. ; Wang Z.G. Rare Met. 2020, 39, 1019.
doi: 10.1007/s12598-020-01443-z |
27 |
Darwiche A. ; Toiron M. ; Sougrati M. T. ; Fraisse B. ; Stievano L. ; Monconduit L. J. Power Sources 2015, 280, 588.
doi: 10.1016/j.jpowsour.2015.01.138 |
28 |
Lin Z. ; Wang G. ; Xiong X. ; Zheng J. ; Ou X. ; Yang C. Electrochim. Acta 2018, 269, 225.
doi: 10.1016/j.electacta.2018.03.010 |
29 |
Sarkar S. ; Peter S. C. J. Mater. Chem. A 2021, 9, 5164.
doi: 10.1039/d0ta12063d |
30 |
Song J. H. ; Xiao D. D. ; Jia H. P. ; Zhu G. M. ; Engelhard M. ; Xiao B. W. ; Feng S. ; Li D. S. ; Reed D. ; Sprenkle V. L. ; et al Nanoscale 2019, 11, 348.
doi: 10.1039/c8nr08461k |
31 |
Kim I. T. ; Allcorn E. ; Manthiram A. Energy Technol. 2013, 1, 319.
doi: 10.1002/ente.201300023 |
32 |
Usui H. ; Domi Y. ; Itoda Y. ; Sakaguchi H. Energy & Fuels 2021, 35, 18833.
doi: 10.1021/acs.energyfuels.1c02987 |
33 |
Sarkar S. ; Roy S. ; Zhao Y. ; Zhang J. Nano Res. 2021, 14, 3690.
doi: 10.1007/s12274-021-3334-y |
34 |
Liang S. Z. ; Cheng Y. J. ; Zhu J. ; Xia Y. G. ; Muller-Buschbaum P. Small Methods 2020, 4, 2000218.
doi: 10.1002/smtd.202000218 |
35 |
Zhang D. ; Wang C. ; Xue H. ; Wang S. ; Shen Y. ; Wang Z. ; Chang L. ; Liu W. ; Cheng Y. ; Wang L. Appl. Surf. Sci. 2021, 563, 150297.
doi: 10.1016/j.apsusc.2021.150297 |
36 |
Orzech Marcin W. ; Mazzali F. ; McGettrick J. D. ; Pleydell-Pearce C. ; Watson T. M. ; Voice W. ; Jarvis D. ; Margadonna S. J. Mater. Chem. A 2017, 5, 23198.
doi: 10.1039/c7ta07648g |
37 |
Youn D. H. ; Park H. ; Loeffler K. E. ; Kim J.-H. ; Heller A. ; Mullins C. B. ChemElectroChem 2018, 5, 391.
doi: 10.1002/celc.201700828 |
38 |
Yang Q. ; Zhou J. ; Zhang G. ; Guo C. ; Li M. ; Zhu Y. ; Qian Y. J. Mater. Chem. A 2017, 5, 12144.
doi: 10.1039/c7ta03060f |
39 |
Li P. X. ; Guo X. ; Wang S. J. ; Zang R. ; Li X. M. ; Man Z. M. ; Li P. ; Liu S. S. ; Wu Y. H. ; Wang G. X. J. Mater. Chem. A 2019, 7, 2553.
doi: 10.1039/c8ta09551e |
40 |
Gao L. ; Lu D. J. ; Yang Y. H. ; Guan R. Z. ; Zhang D. M. ; Sun C. Y. ; Liu S. ; Bian X. F. J. Non-Cryst. Solids 2022, 581, 121396.
doi: 10.1016/j.jnoncrysol.2022.121396 |
41 |
Mao J. ; Zhou T. ; Zheng Y. ; Gao H. ; Liu H. k. ; Guo Z. J. Mater. Chem. A 2018, 6, 3284.
doi: 10.1039/c7ta10500b |
42 |
Nguyen A.-G. ; Le H. T. T. ; Verma R. ; Vu D.-L. ; Park C. J. Chem. Eng. J. 2022, 429, 132359.
doi: 10.1016/j.cej.2021.132359 |
43 |
Xu X. ; Si L. ; Zhou X. ; Tu F. ; Zhu X. ; Bao J. J. Power Sources 2017, 349, 37.
doi: 10.1016/j.jpowsour.2017.03.026 |
44 |
Yuan Y. ; Jan S. ; Wang Z. ; Jin X. J. Mater. Chem. A 2018, 6, 5555.
doi: 10.1039/c8ta00592c |
45 |
Park J.-S. ; Kang Y. C. Chem. Eng. J. 2019, 373, 227.
doi: 10.1016/j.cej.2019.05.036 |
46 |
Zhang W. ; Liu T. F. ; Wang Y. ; Liu Y. J. ; Nai J. W. ; Zhang L. ; Sheng O. W. ; Tao X. Y. Nano Energy 2021, 90, 106475.
doi: 10.1016/j.nanoen.2021.106475 |
47 |
Su J. ; Li W. ; Duan T. ; Xiao B. ; Wang X. ; Pei Y. ; Zeng X. C. Carbon 2019, 153, 767.
doi: 10.1016/j.carbon.2019.07.053 |
48 |
Song K. ; Liu C. ; Mi L. ; Chou S. ; Chen W. ; Shen C. Small 2021, 17, 1903194.
doi: 10.1002/smll.201903194 |
49 |
He J. ; Wei Y. Q. ; Zhai T. Y. ; Li H. Q. Mat. Chem. Front. 2018, 2, 437.
doi: 10.1039/c7qm00480j |
50 |
Jing W. T. ; Yang C. C. ; Jiang Q. J. Mater. Chem. A 2020, 8, 2913.
doi: 10.1039/c9ta11782b |
51 |
Darwiche A. ; Marino C. ; Sougrati M. T. ; Fraisse B. ; Stievano L. ; Monconduit L. J. Am. Chem. Soc. 2012, 134, 20805.
doi: 10.1021/ja310347x |
52 |
Baggetto L. ; Hah H.-Y. ; Jumas J.-C. ; Johnson C. E. ; Johnson J. A. ; Keum J. K. ; Bridges C. A. ; Veith G. M. J. Power Sources 2014, 267, 329.
doi: 10.1016/j.jpowsour.2014.05.083 |
53 |
Kong B. ; Zu L. ; Peng C. ; Zhang Y. ; Zhang W. ; Tang J. ; Selomulya C. ; Zhang L. ; Chen H. ; Wang Y. ; et al J. Am. Chem. Soc. 2016, 138, 16533.
doi: 10.1021/jacs.6b10782 |
54 |
Allan P. K. ; Griffin J. M. ; Darwiche A. ; Borkiewicz O. J. ; Wiaderek K. M. ; Chapman K. W. ; Morris A. J. ; Chupas P. J. ; Monconduit L. ; Grey C. P. J. Am. Chem. Soc. 2016, 138, 2352.
doi: 10.1021/jacs.5b13273 |
55 |
Liu S. ; Feng J. ; Bian X. ; Liu J. ; Xu H. Energy Environ. Sci. 2016, 9, 1229.
doi: 10.1039/c5ee03699b |
56 |
Chen B. ; Yang L. ; Bai X. ; Wu Q. ; Liang M. ; Wang Y. ; Zhao N. ; Shi C. ; Zhou B. ; He C. Small 2021, 17, e2006824.
doi: 10.1002/smll.202006824 |
57 |
Wang N. ; Bai Z. ; Qian Y. ; Yang J. Adv Mater 2016, 28, 4126.
doi: 10.1002/adma.201505918 |
58 |
Wang N. ; Bai Z. ; Qian Y. ; Yang J. ACS Appl. Mater. Interfaces 2017, 9, 447.
doi: 10.1021/acsami.6b13193 |
59 |
He M. ; Kravchyk K. ; Walter M. ; Kovalenko M. V. Nano Lett. 2014, 14, 1255.
doi: 10.1021/nl404165c |
60 |
Hou H. ; Jing M. ; Yang Y. ; Zhu Y. ; Fang L. ; Song W. ; Pan C. ; Yang X. ; Ji X. ACS Appl. Mater. Interfaces 2014, 6, 16189.
doi: 10.1021/am504310k |
61 |
Hou H. ; Jing M. ; Yang Y. ; Zhang Y. ; Zhu Y. ; Song W. ; Yang X. ; Ji X. J. Mater. Chem. A 2015, 3, 2971.
doi: 10.1039/c4ta06476c |
62 |
Liang L. ; Xu Y. ; Wang C. ; Wen L. ; Fang Y. ; Mi Y. ; Zhou M. ; Zhao H. ; Lei Y. Energy Environ. Sci. 2015, 8, 2954.
doi: 10.1039/c5ee00878f |
63 |
Liu Y. ; Zhou B. ; Liu S. ; Ma Q. ; Zhang W. H. ACS Nano 2019, 13, 5885.
doi: 10.1021/acsnano.9b01660 |
64 |
Upadhyay S. ; Srivastava P. Mater. Chem. Phys. 2020, 241, 122381.
doi: 10.1016/j.matchemphys.2019.122381 |
65 |
Sengupta A. ; Frauenheim T. Mater. Today Energy 2017, 5, 347.
doi: 10.1016/j.mtener.2017.08.002 |
66 |
Ji J. ; Song X. ; Liu J. ; Yan Z. ; Huo C. ; Zhang S. ; Su M. ; Liao L. ; Wang W. ; Ni Z. ; et al Nat. Commun. 2016, 7, 13352.
doi: 10.1038/ncomms13352 |
67 |
Chen H. A. ; Sun H. ; Wu C. R. ; Wang Y. X. ; Lee P. H. ; Pao C. W. ; Lin S. Y. ACS Appl. Mater. Interfaces 2018, 10, 15058.
doi: 10.1021/acsami.8b02394 |
68 |
Ares P. ; Aguilar-Galindo F. ; Rodriguez-San-Miguel D. ; Aldave D. A. ; Diaz-Tendero S. ; Alcami M. ; Martin F. ; Gomez-Herrero J. ; Zamora F. Adv. Mater. 2016, 28, 6332.
doi: 10.1002/adma.201602128 |
69 |
Lin W. ; Lian Y. ; Zeng G. ; Chen Y. ; Wen Z. ; Yang H. Nano Res. 2018, 11, 5968.
doi: 10.1007/s12274-018-2110-0 |
70 |
Tian W. ; Zhang S. ; Huo C. ; Zhu D. ; Li Q. ; Wang L. ; Ren X. ; Xie L. ; Guo S. ; Chu P. K. ; et al ACS Nano 2018, 12, 1887.
doi: 10.1021/acsnano.7b08714 |
71 |
Yang Y. ; Leng S. ; Shi W. Electrochem. Commun. 2021, 126, 107025.
doi: 10.1016/j.elecom.2021.107025 |
72 |
Zheng X.-T. ; Chen K.-T. ; Hsieh Y.-Y. ; Tuan H..-Y. ACS Sustain. Chem. Eng. 2020, 8, 18535.
doi: 10.1021/acssuschemeng.0c06477 |
73 |
Li J. B. ; Ding Z. B. ; Li J. L. ; Wang C. Y. ; Pan L. K. ; Wang G. X. Chem. Eng. J. 2021, 407, 127199.
doi: 10.1016/j.cej.2020.127199 |
74 |
Wang Y. ; Niu P. ; Li J. Z. ; Wang S. L. ; Li L. Energy Storage Mater. 2021, 34, 436.
doi: 10.1016/j.ensm.2020.10.003 |
75 |
Wu J. X. ; Ihsan-Ul-Haq M. ; Ciucci F. ; Huang B. L. ; Kim J. K. Energy Storage Mater. 2021, 34, 582.
doi: 10.1016/j.ensm.2020.10.007 |
76 |
Zhang Y. ; Xie J. ; Zhu T. ; Cao G. ; Zhao X. ; Zhang S. J. Power Sources 2014, 247, 204.
doi: 10.1016/j.jpowsour.2013.08.096 |
77 |
Hu L. ; Zhu X. ; Du Y. ; Li Y. ; Zhou X. ; Bao J. Chem. Mat. 2015, 27, 8138.
doi: 10.1021/acs.chemmater.5b03920 |
78 |
Liu X. ; Gao M. ; Yang H. ; Zhong X. ; Yu Y. Nano Res. 2017, 10, 4360.
doi: 10.1007/s12274-017-1627-y |
79 |
Gu J. ; Du Z. ; Zhang C. ; Ma J. ; Li B. ; Yang S. Adv. Energy Mater. 2017, 7, 1700447.
doi: 10.1002/aenm.201700447 |
80 |
Li X. ; Qu J. ; Xie H. ; Song Q. ; Fu G. ; Yin H. Electrochim. Acta 2020, 332, 135501.
doi: 10.1016/j.electacta.2019.135501 |
81 |
Xia X. H. ; Chao D. L. ; Zhang Y. Q. ; Zhan J. Y. ; Zhong Y. ; Wang X. L. ; Wang Y. D. ; Shen Z. X. ; Tu J. P. ; Fan H. J. Small 2016, 12, 3048.
doi: 10.1002/smll.201600633 |
82 |
Wang J. M. ; Wang B. B. ; Liu X. J. ; Bai J. T. ; Wang H. ; Wang G. Chem. Eng. J. 2020, 382, 123050.
doi: 10.1016/j.cej.2019.123050 |
83 |
Yousaf M. ; Wang Y. S. ; Chen Y. J. ; Wang Z. P. ; Firdous A. ; Ali Z. ; Mahmood N. ; Zou R. Q. ; Guo S. J. ; Han R. P. S. Adv. Energy Mater. 2019, 9, 1900567.
doi: 10.1002/aenm.201900567 |
84 |
Zhou X. ; Dai Z. ; Bao J. ; Guo Y..-G. J. Mater. Chem. A 2013, 1, 13727.
doi: 10.1039/c3ta13438e |
85 |
Liu X. ; Du Y. ; Xu X. ; Zhou X. ; Dai Z. ; Bao J. J. Phys. Chem. C 2016, 120, 3214.
doi: 10.1021/acs.jpcc.5b11926 |
86 |
Schulze M. C. ; Belson R. M. ; Kraynak L. A. ; Prieto A. L. Energy Storage Mater. 2020, 25, 572.
doi: 10.1016/j.ensm.2019.09.025 |
87 |
Liu C. ; Zeng F. ; Xu L. ; Liu S. ; Liu J. ; Ai X. ; Yang H. ; Cao Y. J. Mater. Sci. Technol. 2020, 55, 81.
doi: 10.1016/j.jmst.2019.05.031 |
88 |
Li X. ; Qu J. ; Hu Z. ; Xie H. ; Yin H. Int. J. Hydrog. Energy 2021, 46, 17071.
doi: 10.1016/j.ijhydene.2021.02.157 |
89 |
Pan Q. G. ; Tong Z. P. ; Su Y. Q. ; Qin S. ; Tang Y. B. Adv. Funct. Mater. 2021, 31, 2103912.
doi: 10.1002/adfm.202103912 |
90 |
Xiao S. H. ; Li X. Y. ; Li T. S. ; Xiang Y. ; Chen J. S. J. Mater. Chem. A 2021, 9, 7317.
doi: 10.1039/d0ta12417f |
91 |
Feng X. Y. ; Fang H. ; Wu N. ; Liu P. C. ; Jena P. ; Nanda J. ; Mitlin D. Joule 2022, 6, 543.
doi: 10.1016/j.joule.2022.01.015 |
92 |
Wang H. ; Shao Y. ; Mei S. ; Lu Y. ; Zhang M. ; Sun J. K. ; Matyjaszewski K. ; Antonietti M. ; Yuan J. Chem. Rev. 2020, 120, 9363.
doi: 10.1021/acs.chemrev.0c00080 |
93 |
Zhu Y. ; Han X. ; Xu Y. ; Liu Y. ; Zheng S. ; Xu K. ; Hu L. ; Wang C. ACS Nano 2013, 7, 6378.
doi: 10.1021/nn4025674 |
94 |
Wu L. ; Hu X. ; Qian J. ; Pei F. ; Wu F. ; Mao R. ; Ai X. ; Yang H. ; Cao Y. Energy Environ. Sci. 2014, 7, 323.
doi: 10.1039/c3ee42944j |
95 |
Wu L. ; Lu H. ; Xiao L. ; Ai X. ; Yang H. ; Cao Y. J. Mater. Chem. A 2015, 3, 5708.
doi: 10.1039/c4ta06086e |
96 |
Liu H. ; Wang Z. ; Wu Z. ; Zhang S. ; Ge S. ; Guo P. ; Hua M. ; Lu X. ; Wang S. ; Zhang J. J. Alloy. Compd. 2020, 833, 155127.
doi: 10.1016/j.jallcom.2020.155127 |
97 |
Wang M. ; Yang Z. ; Wang J. ; Li W. ; Gu L. ; Yu Y. Small 2015, 11, 5381.
doi: 10.1002/smll.201501313 |
98 |
Luo W. ; Zhang P. ; Wang X. ; Li Q. ; Dong Y. ; Hua J. ; Zhou L. ; Mai L. J. Power Sources 2016, 304, 340.
doi: 10.1016/j.jpowsour.2015.11.047 |
99 |
Dong S. ; Li C. ; Li Z. ; Ge X. ; Miao X. ; Wang P. ; Zhang Z. ; Yin L. Energy Storage Mater. 2019, 20, 446.
doi: 10.1016/j.ensm.2018.10.024 |
100 |
Li P. ; Yu L. ; Ji S. ; Xu X. ; Liu Z. ; Liu J. ; Liu J. Chem. Eng. J. 2019, 374, 502.
doi: 10.1016/j.cej.2019.05.198 |
101 |
Liu Z. ; Yu X.-Y. ; Lou X. W. ; Paik U. Energy Environ. Sci. 2016, 9, 2314.
doi: 10.1039/c6ee01501h |
102 |
Song J. ; Yan P. ; Luo L. ; Qi X. ; Rong X. ; Zheng J. ; Xiao B. ; Feng S. ; Wang C. ; Hu Y. -S. ; et al Nano Energy 2017, 40, 504.
doi: 10.1016/j.nanoen.2017.08.051 |
103 |
Hou H. ; Jing M. ; Yang Y. ; Zhang Y. ; Song W. ; Yang X. ; Chen J. ; Chen Q. ; Ji X. J. Power Sources 2015, 284, 227.
doi: 10.1016/j.jpowsour.2015.03.043 |
104 |
Luo W. ; Li F. ; Gaumet J.-J. ; Magri P. ; Diliberto S. ; Zhou L. ; Mai L. Adv. Energy Mater. 2018, 8, 1703237.
doi: 10.1002/aenm.201703237 |
105 |
Duan J. ; Zhang W. ; Wu C. ; Fan Q. ; Zhang W. ; Hu X. ; Huang Y. Nano Energy 2015, 16, 479.
doi: 10.1016/j.nanoen.2015.07.021 |
106 |
Wang J. ; Yang J. ; Yin W. ; Hirano S. -I. J. Mater. Chem. A 2017, 5, 20623.
doi: 10.1039/c7ta06770d |
107 |
Ye Z. Q. ; Jiang Y. ; Li L. ; Wu F. ; Chen R. J. Nano-Micro Lett. 2021, 13, 203.
doi: 10.1007/s40820-021-00726-z |
108 |
Jing W. T. ; Zhang Y. ; Gu Y. ; Zhu Y. F. ; Yang C. C. ; Jiang Q. Matter 2019, 1, 720.
doi: 10.1016/j.matt.2019.03.010 |
109 |
Yu L. ; Zhang L. ; Fu J. ; Yun J. ; Kim K. H. Chem. Eng. J. 2021, 417, 129106.
doi: 10.1016/j.cej.2021.129106 |
110 |
Li Q. ; Zhang W. ; Peng J. ; Zhang W. ; Liang Z. ; Wu J. ; Feng J. ; Li H. ; Huang S. ACS Nano 2021, 15, 15104.
doi: 10.1021/acsnano.1c05458 |
111 |
Yang C. ; Li W. ; Yang Z. ; Gu L. ; Yu Y. Nano Energy 2015, 18, 12.
doi: 10.1016/j.nanoen.2015.09.008 |
112 |
Liu J. ; Yu L. ; Wu C. ; Wen Y. ; Yin K. ; Chiang F. K. ; Hu R. ; Liu J. ; Sun L. ; Gu L. ; et al Nano Lett. 2017, 17, 2034.
doi: 10.1021/acs.nanolett.7b00083 |
113 |
Wu C. ; Shen L. ; Chen S. ; Jiang Y. ; Kopold P. ; van Aken P. A. ; Maier J. ; Yu Y. Energy Storage Mater. 2018, 10, 122.
doi: 10.1016/j.ensm.2017.08.011 |
114 |
Cui C. ; Xu J. ; Zhang Y. ; Wei Z. ; Mao M. ; Lian X. ; Wang S. ; Yang C. ; Fan X. ; Ma J. ; et al Nano Lett. 2019, 19, 538.
doi: 10.1021/acs.nanolett.8b04468 |
115 |
Chen B. ; Qin H. ; Li K. ; Zhang B. ; Liu E. ; Zhao N. ; Shi C. ; He C. Nano Energy 2019, 66, 104133.
doi: 10.1016/j.nanoen.2019.104133 |
116 |
Yang J. ; Li J. ; Wang T. ; Notten P. H. L. ; Ma H. ; Liu Z. ; Wang C. ; Wang G. Chem. Eng. J. 2021, 407, 127169.
doi: 10.1016/j.cej.2020.127169 |
117 |
Yu D.-K. ; Park C..-M. Chem. Eng. J. 2021, 409, 127380.
doi: 10.1016/j.cej.2020.127380 |
118 |
Kim I. T. ; Kim S.-O. ; Manthiram A. J. Power Sources 2014, 269, 848.
doi: 10.1016/j.jpowsour.2014.07.081 |
119 |
Kalisvaart W. P. ; Olsen B. C. ; Luber E. J. ; Buriak J. M. ACS Appl. Energ. Mater. 2019, 2, 2205.
doi: 10.1021/acsaem.8b02231 |
120 |
Ji L. ; Gu M. ; Shao Y. ; Li X. ; Engelhard M. H. ; Arey B. W. ; Wang W. ; Nie Z. ; Xiao J. ; Wang C. ; et al Adv. Mater. 2014, 26, 2901.
doi: 10.1002/adma.201304962 |
121 |
Liu J. ; Yang Z. ; Wang J. ; Gu L. ; Maier J. ; Yu Y. Nano Energy 2015, 16, 389.
doi: 10.1016/j.nanoen.2015.07.020 |
122 |
Jia H. ; Dirican M. ; Zhu J. ; Chen C. ; Yan C. ; Zhu P. ; Li Y. ; Guo J. ; Caydamli Y. ; Zhang X. J. Alloy. Compd. 2018, 752, 296.
doi: 10.1016/j.jallcom.2018.04.141 |
123 |
Nam D.-H. ; Hong K.-S. ; Lim S.-J. ; Kwon H..-S. J. Power Sources 2014, 247, 423.
doi: 10.1016/j.jpowsour.2013.08.095 |
124 |
Wang L. ; Wang C. ; Zhang N. ; Li F. ; Cheng F. ; Chen J. ACS Energy Lett. 2016, 2, 256.
doi: 10.1021/acsenergylett.6b00649 |
125 |
Lee C. W. ; Kim J.-C. ; Park S. ; Song H. J. ; Kim D..-W. Nano Energy 2015, 15, 479.
doi: 10.1016/j.nanoen.2015.05.013 |
126 |
Wu P. ; Zhang A. ; Peng L. ; Zhao F. ; Tang Y. ; Zhou Y. ; Yu G. ACS Nano 2018, 12, 759.
doi: 10.1021/acsnano.7b07985 |
127 |
Wang Z. ; Dong K. ; Wang D. ; Luo S. ; Liu X. ; Liu Y. ; Wang Q. ; Zhang Y. ; Hao A. ; He C. ; et al Chem. Eng. J. 2020, 384, 123327.
doi: 10.1016/j.cej.2019.123327 |
128 |
Han J. ; Zhu K. ; Liu P. ; Si Y. ; Chai Y. ; Jiao L. J. Mater. Chem. A 2019, 7, 25268.
doi: 10.1039/c9ta09643d |
129 |
Li L. ; Seng K. H. ; Li D. ; Xia Y. ; Liu H. K. ; Guo Z. Nano Res. 2014, 7, 1466.
doi: 10.1007/s12274-014-0506-z |
130 |
He M. ; Walter M. ; Kravchyk K. V. ; Erni R. ; Widmer R. ; Kovalenko M. V. Nanoscale 2015, 7, 455.
doi: 10.1039/c4nr05604c |
131 |
Yi Z. ; Han Q. ; Geng D. ; Wu Y. ; Cheng Y. ; Wang L. J. Power Sources 2017, 342, 861.
doi: 10.1016/j.jpowsour.2017.01.016 |
132 |
Zhao Y. ; Manthiram A. Chem. Mat. 2015, 27, 3096.
doi: 10.1021/acs.chemmater.5b00616 |
133 |
Gao H. ; Niu J. ; Zhang C. ; Peng Z. ; Zhang Z. ACS Nano 2018, 12, 3568.
doi: 10.1021/acsnano.8b00643 |
134 |
Guo S. ; Li H. ; Lu Y. ; Liu Z. ; Hu X. Energy Storage Mater. 2020, 27, 270.
doi: 10.1016/j.ensm.2020.02.003 |
135 |
Liao S. ; Sun Y. ; Wang J. ; Cui H. ; Wang C. Electrochim. Acta 2016, 211, 11.
doi: 10.1016/j.electacta.2016.06.018 |
136 |
Nie A. ; Gan L. -y. ; Cheng Y. ; Tao X. ; Yuan Y. ; Sharifi-Asl S. ; He K. ; Asayesh-Ardakani H. ; Vasiraju V. ; Lu J. ; et al Adv. Funct. Mater. 2016, 26, 543.
doi: 10.1002/adfm.201504461 |
137 |
Darwiche A. ; Sougrati M. T. ; Fraisse B. ; Stievano L. ; Monconduit L. Electrochem. Commun. 2013, 32, 18.
doi: 10.1016/j.elecom.2013.03.029 |
138 |
Zhu J. ; Shang C. ; Wang Z. ; Zhang J. ; Liu Y. ; Gu S. ; Zhou L. ; Cheng H. ; Gu Y. ; Lu Z. ChemElectroChem 2018, 5, 1098.
doi: 10.1002/celc.201701270 |
139 |
Ma J. ; Prieto A. L. Chem. Commun. 2019, 55, 6938.
doi: 10.1039/c9cc00001a |
140 |
Bai M. ; Zhang K. ; Du D. ; Tang X. ; Liu Y. ; Wang H. ; Zhang M. ; Liu S. ; Ma Y. Energy Storage Mater. 2021, 42, 219.
doi: 10.1016/j.ensm.2021.07.032 |
141 |
Xiao L. ; Cao Y. ; Xiao J. ; Wang W. ; Kovarik L. ; Nie Z. ; Liu J. Chem. Commun. 2012, 48, 3321.
doi: 10.1039/c2cc17129e |
142 |
Ji L. ; Zhou W. ; Chabot V. ; Yu A. ; Xiao X. ACS Appl. Mater. Interfaces 2015, 7, 24895.
doi: 10.1021/acsami.5b08274 |
143 |
Jia H. ; Dirican M. ; Chen C. ; Zhu J. ; Zhu P. ; Yan C. ; Li Y. ; Dong X. ; Guo J. ; Zhang X. ACS Appl. Mater. Interfaces 2018, 10, 9696.
doi: 10.1021/acsami.7b18921 |
144 |
Qin J. ; Wang T. ; Liu D. ; Liu E. ; Zhao N. ; Shi C. ; He F. ; Ma L. ; He C. Adv. Mater. 2018, 30, 1704670.
doi: 10.1002/adma.201704670 |
145 |
Wang Z. ; Dong K. ; Wang D. ; Chen F. ; Luo S. ; Liu Y. ; He C. ; Shi C. ; Zhao N. Chem. Eng. J. 2019, 371, 356.
doi: 10.1016/j.cej.2019.04.045 |
146 |
Li C. ; Pei Y. R. ; Zhao M. ; Yang C. C. ; Jiang Q. Chem. Eng. J. 2021, 420, 129617.
doi: 10.1016/j.cej.2021.129617 |
147 |
Li J. ; Pu J. ; Liu Z. ; Wang J. ; Wu W. ; Zhang H. ; Ma H. ACS Appl. Mater. Interfaces 2017, 9, 25250.
doi: 10.1021/acsami.7b04635 |
148 |
Walter M. ; Doswald S. ; Kovalenko M. V. J. Mater. Chem. A 2016, 4, 7053.
doi: 10.1039/c5ta10568d |
149 |
Choi J.-H. ; Ha C.-W. ; Choi H.-Y. ; Seong J.-W. ; Park C.-M. ; Lee S. M. J. Power Sources 2018, 386, 34.
doi: 10.1016/j.jpowsour.2018.03.032 |
150 |
Ma W. ; Yin K. ; Gao H. ; Niu J. ; Peng Z. ; Zhang Z. Nano Energy 2018, 54, 349.
doi: 10.1016/j.nanoen.2018.10.027 |
151 |
Fehse M. ; Sougrati M. T. ; Darwiche A. ; Gabaudan V. ; La Fontaine C. ; Monconduit L. ; Stievano L. J. Mater. Chem. A 2018, 6, 8724.
doi: 10.1039/c8ta02248h |
152 |
Xie H. ; Kalisvaart W. P. ; Olsen B. C. ; Luber E. J. ; Mitlin D. ; Buriak J. M. J. Mater. Chem. A 2017, 5, 9661.
doi: 10.1039/c7ta01443k |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Fengyu Gao, Hengheng Liu, Xiaolong Yao, Zaharaddeen Sani, Xiaolong Tang, Ning Luo, Honghong Yi, Shunzheng Zhao, Qingjun Yu, Yuansong Zhou. Spherical MnxCo3−xO4−ƞ Spinel with Mn-Enriched Surface as High-Efficiency Catalysts for Low-Temperature Selective Catalytic Reduction of NOx by NH3 [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212003-0. |
[3] | Yongzhi Zhao, Chenyang Chen, Wenyi Liu, Weifei Hu, Jinping Liu. Research Progress of Interface Optimization Strategies for Solid-State Lithium Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2211017-0. |
[4] | Yanpeng Fu, Changbao Zhu. Design Strategies for Sodium Electrode Materials: Solid-State Ionics Perspective [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209002-0. |
[5] | Bihao Zhuang, Zicong Jin, Dehua Tian, Suiyi Zhu, Linqian Zeng, Jiandong Fan, Zaizhu Lou, Wenzhe Li. Halogen Regulation for Enhanced Luminescence in Emerging (4-HBA)SbX5∙H2O Perovskite-Like Single Crystals [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2209007-0. |
[6] | Tianjie Wang, Yaowei Wang, Yuhui Chen, Jianpeng Liu, Huibing Shi, Limin Guo, Zhiwei Zhao, Chuntai Liu, Zhangquan Peng. Toward Practical Lithium-Air Batteries by Avoiding Negative Effects of CO2 [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2009071-. |
[7] | Guoguang Xu, Qi Wang, Yi Su, Meinan Liu, Qingwen Li, Yuegang Zhang. Revealing Electrochemical Sodiation Mechanism of Orthogonal-Nb2O5 Nanosheets by In Situ Transmission Electron Microscopy [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2009073-. |
[8] | Xuewei Liu, Ying Niu, Ruixiong Cao, Xiaohong Chen, Hongyan Shang, Huaihe Song. Is there a Demand of Conducting Agent of Acetylene Black for Graphene-Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries? [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012062-. |
[9] | Xianhong Chen, Pengchao Ruan, Xianwen Wu, Shuquan Liang, Jiang Zhou. Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2111003-. |
[10] | Peng Chen, Ying Zhou, Fan Dong. Advances in Regulation Strategies for Electronic Structure and Performance of Two-Dimensional Photocatalytic Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010010-. |
[11] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
[12] | Hui Li, Shuangyu Liu, Tianci Yuan, Bo Wang, Peng Sheng, Li Xu, Guangyao Zhao, Huitao Bai, Xin Chen, Zhongxue Chen, Yuliang Cao. Influence of NaOH Concentration on Sodium Storage Performance of Na0.44MnO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 1907049-. |
[13] | Silan Wang, Guorui Yang, Nasir Muhammad Salman, Xiaojun Wang, Jianan Wang, Wei Yan. Research Progress on Phosphorus-based Anode Materials for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2001003-. |
[14] | Huifang An, Li Jiang, Feng Li, Ping Wu, Xiaoshu Zhu, Shaohua Wei, Yiming Zhou. Hydrogel-Derived Three-Dimensional Porous Si-CNT@G Nanocomposite with High-Performance Lithium Storage [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905034-. |
[15] | Xiaoxia Lu,Shengyang Dong,Zhijie Chen,Langyuan Wu,Xiaogang Zhang. Preparation of Carbon Coated Ti2Nb2O9 Nanosheets and Its Sodium Ion Storage Properties [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1906024-. |
|