Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (9): 2212003.doi: 10.3866/PKU.WHXB202212003
• ARTICLE • Previous Articles Next Articles
Fengyu Gao1, Hengheng Liu1, Xiaolong Yao2, Zaharaddeen Sani3, Xiaolong Tang1,*(), Ning Luo1, Honghong Yi1, Shunzheng Zhao1, Qingjun Yu1, Yuansong Zhou1
Received:
2022-12-02
Accepted:
2023-02-21
Published:
2023-03-02
Contact:
Xiaolong Tang
E-mail:txiaolong@126.com
Fengyu Gao, Hengheng Liu, Xiaolong Yao, Zaharaddeen Sani, Xiaolong Tang, Ning Luo, Honghong Yi, Shunzheng Zhao, Qingjun Yu, Yuansong Zhou. Spherical MnxCo3−xO4−ƞ Spinel with Mn-Enriched Surface as High-Efficiency Catalysts for Low-Temperature Selective Catalytic Reduction of NOx by NH3[J]. Acta Phys. -Chim. Sin. 2023, 39(9), 2212003. doi: 10.3866/PKU.WHXB202212003
"
Samples (designed ratio) | Mn content (mg∙g−1) | Co content (mg∙g−1) | Mn : Co (molar ratio) | BET surface area (m2∙g−1) | Pore volume (cm3∙g−1) | Pore diameter (nm) |
MnOx | – | – | – | 26.5 | 0.08 | 11.9 |
Mn2.5Co0.5O4 | 572.22 | 129.47 | 4.74 | 64.1 | 0.21 | 13.1 |
Mn2.0Co1.0O4 | 483.40 | 269.54 | 1.92 | 83.9 | 0.32 | 15.4 |
Mn1.5Co1.5O4 | 331.38 | 366.06 | 0.97 | 112.3 | 0.35 | 12.5 |
Mn1.0Co2.0O4 | 228.29 | 490.99 | 0.50 | 155.7 | 0.25 | 6.4 |
Mn0.5Co2.5O4 | 132.56 | 691.06 | 0.21 | 120.6 | 0.32 | 10.6 |
CoOx | – | – | – | 13.2 | 0.04 | 12.2 |
"
Samples (designed ratio) | Surface content (atomic ratio) | Mn/Co ratio | Surface OL (atomic ratio) | Surface OS (atomic ratio) | Mn3+/(Mn3+ + Mn4+) | Co3+/(Co3+ + Co2+) | ||
Mn | Co | O | ||||||
Mn2.0Co1.0O4 | 18.87 | 7.85 | 50.08 | 2.40 | 26.69 (53.3%) | 23.39 (46.7%) | 64.1% | 51.5% |
Mn1.5Co1.5O4 | 18.46 | 12.94 | 48.95 | 1.43 | 31.87 (65.1%) | 17.08 (34.9%) | 60.1% | 44.6% |
Mn1.0Co2.0O4 | 11.17 | 15.50 | 45.77 | 0.72 | 26.68 (58.3%) | 19.09 (41.7%) | 62.5% | 45.5% |
"
Samples (designed ratio) | Normalized surface (atomic ratio) | Mn/OL ratio | Co/OL ratio | Oxygen vacancies (%) | Mn-enrichment (%) | Normalized surface formulas | ||
Mn | Co | OL | ||||||
Mn2.0Co1.0O4 | 35.33 | 14.70 | 49.97 | 0.71 | 0.29 | 16.73 | 10.34 | Mn2.12Co0.88O3.33 |
Mn1.5Co1.5O4 | 29.18 | 20.45 | 50.37 | 0.58 | 0.41 | 15.80 | 10.29 | Mn1.77Co1.23O3.37 |
Mn1.0Co2.0O4 | 20.94 | 29.05 | 50.01 | 0.42 | 0.58 | 16.64 | 8.50 | Mn1.26Co1.74O3.33 |
1 |
Gao F. ; Tang X. ; Yi H. ; Zhao S. ; Li C. ; Li J. ; Shi Y. ; Meng X. Catalysts 2017, 7 (199), 1.
doi: 10.3390/catal7070199 |
2 | Yu Y. ; Geng M. ; Wei D. ; He C. Acta Phys. -Chim. Sin. 2022, 39, 2206034. |
于艳科; 耿梦荞; 魏德胜; 何炽; 物理化学学报, 2022, 39, 2206034.
doi: 10.3866/PKU.WHXB202206034 |
|
3 |
Xu H. ; Yan N. ; Qu Z. ; Liu W. ; Mei J. ; Huang W. ; Zhao S. Environ. Sci. Technol. 2017, 51 (16), 8879.
doi: 10.1021/acs.est.6b06079 |
4 |
Hao Z. ; Shen Z. ; Li Y. ; Wang H. ; Zheng L. ; Wang R. ; Liu G. ; Zhan S. Angew. Chem. Int. Ed. 2019, 58 (19), 6351.
doi: 10.1002/anie.201901771 |
5 |
Wang H. ; Huang B. ; Yu C. ; Lu M. ; Huang H. ; Zhou Y. Appl. Catal. A 2019, 588, 117207.
doi: 10.1016/j.apcata.2019.117207 |
6 |
Han L. ; Cai S. ; Gao M. ; Hasegawa J.-Y. ; Wang P. ; Zhang J. ; Shi L. ; Zhang D. Chem. Rev. 2019, 119 (19), 10916.
doi: 10.1021/acs.chemrev.9b00202 |
7 |
Gao F. ; Tang X. ; Yi H. ; Zhao S. ; Wang J. ; Shi Y. ; Meng X. Appl. Surf. Sci. 2018, 443, 103.
doi: 10.1016/j.apsusc.2018.02.151 |
8 |
Gao F. ; Tang X. ; Yi H. ; Li J. ; Zhao S. ; Wang J. ; Chu C. ; Li C. Chem. Eng. J. 2017, 317, 20.
doi: 10.1016/j.cej.2017.02.042 |
9 |
Gao F. ; Tang X. ; Yi H. ; Zhao S. ; Zhu W. ; Shi Y. J. Environ. Sci. 2020, 89, 145.
doi: 10.1016/j.jes.2019.10.010 |
10 |
Gao F. ; Tang X. ; Sani Z. ; Yi H. ; Zhao S. ; Yu Q. ; Zhou Y. ; Shi Y. ; Ni S. Catal. Sci. Technol. 2020, 10 (22), 7486.
doi: 10.1039/D0CY01337D |
11 |
Gao F. ; Chu C. ; Zhu W. ; Tang X. ; Yi H. ; Zhang R. Appl. Surf. Sci. 2019, 479, 548.
doi: 10.1016/j.apsusc.2019.02.116 |
12 |
Gao F. ; Tang X. ; Yi H. ; Zhao S. ; Wang J. ; Gu T. Appl. Surf. Sci. 2019, 466, 411.
doi: 10.1016/j.apsusc.2018.09.227 |
13 |
Li K. ; Zhang R. ; Gao R. ; Shen G.-Q. ; Pan L. ; Yao Y. ; Yu K. ; Zhang X. ; Zou J.-J. Appl. Catal. B 2019, 244, 536.
doi: 10.1016/j.apcatb.2018.11.072 |
14 |
Li C. ; Han X. ; Cheng F. ; Hu Y. ; Chen C. ; Chen J. Nat. Commun. 2015, 6, 7345.
doi: 10.1038/ncomms8345 |
15 |
Meng D. ; Xu Q. ; Jiao Y. ; Guo Y. ; Guo Y. ; Wang L. ; Lu G. ; Zhan W. Appl. Catal. B 2018, 221, 652.
doi: 10.1016/j.apcatb.2017.09.034 |
16 |
Lü Y. ; Zhan W. ; He Y. ; Wang Y. ; Kong X. ; Kuang Q. ; Xie Z. ; Zheng L. ACS Appl. Mater. Interfaces 2014, 6 (6), 4186.
doi: 10.1021/am405858v |
17 |
Chen L. ; Yao X. ; Cao J. ; Yang F. ; Tang C. ; Dong L. Appl. Surf. Sci. 2019, 476, 283.
doi: 10.1016/j.apsusc.2019.01.095 |
18 |
Han J. ; Meeprasert J. ; Maitarad P. ; Nammuangruk S. ; Shi L. ; Zhang D. J. Phys. Chem. C 2016, 120 (3), 1523.
doi: 10.1021/acs.jpcc.5b09834 |
19 |
Zhang R. ; Zhang Y.-C. ; Pan L. ; Shen G.-Q. ; Mahmood N. ; Ma Y.-H. ; Shi Y. ; Jia W. ; Wang L. ; Zhang X. ; et al ACS Catal. 2018, 8 (5), 3803.
doi: 10.1021/acscatal.8b01046 |
20 |
Zhou Y. ; Sun S. ; Xi S. ; Duan Y. ; Sritharan T. ; Du Y. ; Xu Z. J. Adv. Mater. 2018, 30 (11), 1705407.
doi: 10.1002/adma.201705407 |
21 |
Wei C. ; Feng Z. ; Scherer G. G. ; Barber J. ; Shao-Horn Y. ; Xu Z. J. Adv. Mater. 2017, 29 (23), 1606800.
doi: 10.1002/adma.201606800 |
22 |
Liu Z. ; Zhou Z. ; Qi G. ; Zhu T. Appl. Surf. Sci. 2019, 466, 459.
doi: 10.1016/j.apsusc.2018.10.081 |
23 |
Gao F. ; Tang X. ; Yi H. ; Chu C. ; Li N. ; Li J. ; Zhao S. Chem. Eng. J. 2017, 322, 525.
doi: 10.1016/j.cej.2017.04.006 |
24 |
Jin Y. ; Wang L. ; Jiang Q. ; Du X. ; Ji C. ; He X. Mater. Lett. 2016, 168, 166.
doi: 10.1016/j.matlet.2016.01.077 |
25 |
Pan K. ; Yu F. ; Yao Y. ; Wang H. ; Liu Z. ; Li W. ; Gao F. ; Zhou M. ; Guo X. ; Dai B. Ind. Eng. Chem. Res. 2022, 61 (35), 12966.
doi: 10.1021/acs.iecr.2c01840 |
26 |
Tian J. ; Zhang K. ; Wang W. ; Wang F. ; Dan J. ; Yang S. ; Zhang J. ; Dai B. ; Yu F. Green Energy Environ. 2019, 4 (3), 311.
doi: 10.1016/j.gee.2019.05.001 |
27 |
Zheng S. ; Song L. ; Tang S. ; Liu C. ; Yue H. ; Liang B. RSC Adv. 2018, 8 (4), 1979.
doi: 10.1039/c7ra11868f |
28 |
Liu J. ; Li X. ; Li R. ; Zhao Q. ; Ke J. ; Xiao H. ; Wang L. ; Liu S. ; Tadé M. ; Wang S. Appl. Catal. A 2018, 549, 289.
doi: 10.1016/j.apcata.2017.10.010 |
29 |
Xiao W. ; Xia H. ; Fuh J. Y. H. ; Li L. Phys. Scrip. 2010, T139, 014008.
doi: 10.1088/0031-8949/2010/t139/014008 |
30 |
Yang G. ; Zhao H. ; Luo X. ; Shi K. ; Zhao H. ; Wang W. ; Chen Q. ; Fan H. ; Tao W. Appl. Catal. B 2019, 245, 743.
doi: 10.1016/j.apcatb.2018.12.080 |
31 |
Hu H. ; Cai S. ; Li H. ; Huang L. ; Shi L. ; Zhang D. ACS Catal. 2015, 5 (10), 6069.
doi: 10.1021/acscatal.5b01039 |
32 |
Li Y. ; Li Y. ; Shi Q. ; Qiu M. ; Zhan S. J. Sol-Gel Sci. Technol. 2017, 81 (2), 576.
doi: 10.1007/s10971-016-4208-8 |
33 |
Wang X. ; Lan Z. ; Zhang K. ; Chen J. ; Jiang L. ; Wang R. J. Phys. Chem. C 2017, 121 (6), 3339.
doi: 10.1021/acs.jpcc.6b10446 |
34 |
Liu C. ; Shi J. W. ; Gao C. ; Niu C. Appl. Catal. A 2016, 522, 54.
doi: 10.1016/j.apcata.2016.04.023 |
35 | Zhou J. ; Wang B. ; Ma J. ; Li G. ; Sun Q. ; Xu W. ; Li Y. Environ. Chem. 2018, 37 (4), 782. |
周佳丽; 王宝冬; 马静; 李歌; 孙琦; 徐文强; 李永龙; 环境化学, 2018, 37 (4), 782.
doi: 10.7524/j.issn.0254-6108.2017091904 |
|
36 |
Zhu W. ; Tang X. ; Gao F. ; Yi H. ; Zhang R. ; Wang J. ; Yang C. ; Ni S. Chem. Eng. J. 2020, 385, 123797.
doi: 10.1016/j.cej.2019.123797 |
37 |
Zhang L. ; Shi L. ; Huang L. ; Zhang J. ; Gao R. ; Zhang D. ACS Catal. 2014, 4 (6), 1753.
doi: 10.1021/cs401185c |
38 |
Liu Y. ; Gao F. ; Ko S. ; Wang C. ; Liu H. ; Tang X. ; Yi H. ; Zhou Y. Chem. Eng. J. 2022, 434, 134770.
doi: 10.1016/j.cej.2022.134770 |
39 |
Yang S. ; Xiong S. ; Liao Y. ; Xiao X. ; Qi F. ; Peng Y. ; Fu Y. ; Shan W. ; Li J. Environ. Sci. Technol. 2014, 48 (17), 10354.
doi: 10.1021/es502585s |
40 |
Ma S. ; Zhao X. ; Li Y. ; Zhang T. ; Yuan F. ; Niu X. ; Zhu Y. Appl. Catal. B 2019, 248, 226.
doi: 10.1016/j.apcatb.2019.02.015 |
41 |
Zhang B. ; Zhang S. ; Liu B. React. Kinet. Mech. Catal. 2019, 127 (2), 637.
doi: 10.1007/s11144-019-01586-w |
42 |
Chen T. ; Guan B. ; Lin H. ; Zhu L. Chin. J. Catal. 2014, 35 (3), 294.
doi: 10.1016/s1872-2067(12)60730-x |
43 |
Liu F. ; He H. Catal. Today 2010, 153 (3–4), 70.
doi: 10.1016/j.cattod.2010.02.043 |
44 |
Liu Y. ; Gu T. ; Weng X. ; Wang Y. ; Wu Z. ; Wang H. J. Phys. Chem. C 2012, 116 (31), 16582.
doi: 10.1021/jp304390e |
45 |
Jiang B. ; Li Z. ; Lee S.-C. Chem. Eng. J. 2013, 225, 52.
doi: 10.1016/j.cej.2013.03.022 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Zhongliao Wang, Jing Wang, Jinfeng Zhang, Kai Dai. Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209037-. |
[3] | Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210014-0. |
[4] | Junwen Lu, Shunan Zhang, Haozhi Zhou, Chaojie Huang, Lin Xia, Xiaofang Liu, Hu Luo, Hui Wang. Ir Single Atoms and Clusters Supported on α-MoC as Catalysts for Efficient Hydrogenation of CO2 to CO [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2302021-. |
[5] | Tianjie Wang, Yaowei Wang, Yuhui Chen, Jianpeng Liu, Huibing Shi, Limin Guo, Zhiwei Zhao, Chuntai Liu, Zhangquan Peng. Toward Practical Lithium-Air Batteries by Avoiding Negative Effects of CO2 [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2009071-. |
[6] | Xianhong Chen, Pengchao Ruan, Xianwen Wu, Shuquan Liang, Jiang Zhou. Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2111003-. |
[7] | Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204049-. |
[8] | Meifang Cao, Bo Chen, Tao Ruan, Xinping Ouyang, Xueqing Qiu. Preparation of a Pt/NbPWO Bifunctional Catalyst for the Hydrogenolysis of Alkali Lignin to Aromatic Monomers [J]. Acta Phys. -Chim. Sin., 2022, 38(10): 2204037-. |
[9] | Peng Chen, Ying Zhou, Fan Dong. Advances in Regulation Strategies for Electronic Structure and Performance of Two-Dimensional Photocatalytic Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010010-. |
[10] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
[11] | Hanlin Lyu, Bing Hu, Guoliang Liu, Xinlin Hong, Lin Zhuang. Inverse Decoration of ZnO on Small-Sized Cu/Sio2 with Controllable Cu-ZnO Interaction for CO2 Hydrogenation to Produce Methanol [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1911008-. |
[12] | Yuanyuan HU,Congyang WANG. Bimetallic C―H Activation in Homogeneous Catalysis [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 913-922. |
[13] | Qianqian WANG, Dajun LIU, Xingquan HE. Metal-Organic Framework-Derived Fe-N-C Nanohybrids as Highly-Efficient Oxygen Reduction Catalysts [J]. Acta Physico-Chimica Sinica, 2019, 35(7): 740-748. |
[14] | Yue ZHAO,Jiatong CUI,Jichuang HU,Jiabi MA. Reactivities of VO1–4+ Toward n-CmH2m+2 (m = 3, 5, 7) as Functions of Oxygen Content and Carbon Chain Length [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 531-538. |
[15] | Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones [J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958. |
|