Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (11): 2111003.doi: 10.3866/PKU.WHXB202111003
Special Issue: Special Issue of Emerging Scientists
• REVIEW • Previous Articles Next Articles
Xianhong Chen1, Pengchao Ruan1, Xianwen Wu3, Shuquan Liang1,2, Jiang Zhou1,2,*()
Received:
2021-11-01
Accepted:
2021-12-07
Published:
2021-12-21
Contact:
Jiang Zhou
E-mail:zhou_jiang@csu.edu.cn
About author:
Jiang Zhou, Email: zhou_jiang@csu.edu.cnSupported by:
Xianhong Chen, Pengchao Ruan, Xianwen Wu, Shuquan Liang, Jiang Zhou. Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries[J]. Acta Phys. -Chim. Sin. 2022, 38(11), 2111003. doi: 10.3866/PKU.WHXB202111003
Table 1
The crystal structure, energy storage mechanism and performance of different crystalline MnO2."
Cathode materials | Crystal structures | Electrolytes | Storage Mechanisms | Specific capacity (Current density) | Ref. |
α-MnO2 | [2 × 2] Tunnel structure Tetragonal system | 0.1 mol?L?1 Zn(NO3)2 | Zn2+ insertion | 210 mAh?g?1 (200 mA?g?1) | |
β-MnO2 | [1 × 1] Tunnel structure Tetragonal system | 1 mol?L?1 ZnSO4 | Zn2+ insertion Conversion reaction | 270 mAh?g?1 (100 mA?g?1) | |
γ-MnO2 | [1 × 1] and [1 × 2] Tunnel structure Hexagonal system | 1 mol?L?1 ZnSO4 1 mol?L?1 Zn(CH3COO)2 0.4 mol?L?1 Mn(CH3COO)2 | Zn2+ insertion Dissolution-Deposition | 285 mAh?g?1 (0.05 mA?cm?2) 556 mAh?g?1 (5 mA?cm?2) | |
λ-MnO2 | [1 × 3] Tunnel structure Cubic system | 1 mol?L?1 ZnSO4 | Zn2+ insertion | 545.6 mA h?g?1 (13.6 mA?g?1) | |
δ-MnO2 | [1 × ∞] Layered structure ~0.7 nm Monoclinic system | 1 mol?L?1 Zn(TFSI)2 0.1 mol?L?1 Mn(TFSI)2 0.2 mol?L?1 MnSO4 1 mol?L?1 ZnSO4 | Zn2+ insertion Conversion reaction H+/Zn2+ Co-insertion Conversion reaction | 136.9 mAh?g?1 (≈ 6160 mA?g?1) 212 mAh?g?1 (115 mA?g?1) | |
R-MnO2 | [1 × 2] Tunnel structure Orthorhombic system | 2 mol?L?1 ZnSO4 (Mixture of R-MnO2 and γ- MnO2) | Zn2+ insertion | 50 mAh?g?1 (≈ 616 mA?g?1) |
Fig 2
(a) Schematic diagram of the rechargeable Zn//MnO2 battery using CF3SO3?-based electrolyte 45; (b) Schematic diagram of the reaction pathway of Zn-insertion in γ-MnO2 cathode 37; (c) Schematic diagram of co-insertion H+/Zn2+ in layered MnO2 54; (d) Schematic diagram of showing the reactions during the discharge process for Zn//α-MnO2 battery using aqueous ZnSO4 electrolyte 57. (e) Schematic diagram of the redox reactions and crystal structures of related compounds in the Zn|0.2 mol∙L?1 MnSO4 (aq), 1 mol∙L?1 ZnSO4 (aq)| carbon black battery 44."
Fig 3
(a) Schematic diagram of zinc battery based on dissolution-deposition mechanism and (b) its Galvanostatic discharge curves 62. (c) Schematic diagram of zinc battery based on dissolution-deposition mechanism and intercalation mechanism and (d) the role of ZHS in the discharge process 50. (e) Mn fluorescence maps at fully discharged (D) and charged (C) states 63."
Fig 4
(a) Schematic diagram of the synthetic procedure of MOC. (b) The rate performance of zinc ion battery with MOC-5, MOC-15 and MO as positive electrodes and 2 mol∙L?1 ZnSO4 and 0.1 mol∙L?1 MnSO4 as electrolyte at different current densities and (c) the cycle performance at current density of 0.2 A∙g?1 65. (d) HRTEM images of MnO2@PEDOT sample and (e) Cycling performance and Coulombic efficiency collected at 1.86 A∙g?1 for 300 cycles of flexible quasi-solid-state Zn//MnO2@PEDOT battery. (f) Photographs of a neon sign composed of 45 light-emitting diodes powered by three flexible quasi solid Zn//MnO2@PEDOT battery devices and (g) a watch with LED lights powered by three devices 72."
Fig 5
(a) Schematic diagram of crystal structure of β-MnO2 nanorod sample and (b) (101) lattice planes in the β-MnO2 structure. (c) EXAFS spectra of the β-MnO2 nanorod cathode collected after discharging/charging 30. (d) Schematic diagram of the formation of δ-MnO2 nanosheets. (e) Nyquist diagram of δ-MnO2 nano sheet and microsphere electrode (black line is fitting line) 79. (f) Preparation diagrams of α-MnO2 NFs and α-MnO2/CNT HMs at different synthesis stages and SEM images of corresponding products and (g) rate capability comparison at voltage cutoffs of 1.2–1.85 V of ZIBs with α-MnO2 NFs and α-MnO2/CNT HMs 81."
Fig 6
(a) Schematic diagram of PANI-MnO2 nanolayers structure. (b) HR-TEM image of PANI-MnO2 nanolayers structure after removing PANI by heat treatment at 400 ℃ 54. (c) XRD pattern and crystal structure of cw-MnO2. (d) Left: Zn-intercalation structure and corresponding energy; Right: the inner-sphere complexation of zinc leads to the protrusion of the facing Mn, constituting a Zn-Mn dumbbell structure as zoomed (numbers represents the distance between atoms) 83. (e) Schematic diagram of pre-intercalated Na+ and water molecules δ-MnO2 during charging and discharging. (f) ex situ XRD pattern of δ-NMOH electrode 87."
Fig 7
(a) GITT curves and corresponding H+ diffusion coefficients of KMO and α-MnO2 electrodes under different discharge/charge states. (b) Schematic diagram of H+ diffusion in the complete structure and oxygen defect structure of KMO. (c) Long cycle performance of KMO and α-MnO2 electrode and the last ten charge/discharge curves of KMO electrode at 1000 mA∙g?1 92. (d) Crystal structure of β-MnO2 and Ce doping β-MnO2; (e) EIS Nyquist diagram and equivalent circuit of the β-MnO2 and 0.1 mmol Ce doping cathode 85."
Fig 8
(a) Schematic diagram of Zn//MnO2 battery in acetate electrolyte. (b) Atomic structures for the dissolution reaction on MnO2 with a bare surface and with an acetate-rich surface 98. (c) Schematic illustration of Zn//MnO2 in the hybrid electrolytes during charge/discharge and electron density difference between (d) electrooxidized MnO2 (101) and (e) Ni-MnO2 (101) 106. (f) Electrochemical mechanism of Mn(AC)2 (top left corner) and MnSO4 electrolyte (top right corner). (g) The charge/discharge curve of the flow battery with electrolyte of 0.5 mol∙L?1 Mn(AC)2 + 0.5 mol∙L?1 Zn(AC)2 + 2 mol∙L-1 KCl and (h) the cycle performance at current density of 40 mA∙cm?2 109."
1 |
Guduru R. K. ; Icaza J. C. Nanomater. (Basel) 2016, 6, 41.
doi: 10.3390/nano6030041 |
2 |
Cao R. ; Mishra K. ; Li X. ; Qian J. ; Engelhard M. H. ; Bowden M. E. ; Han K. S. ; Mueller K. T. ; Henderson W. A. ; Zhang J. -G. Nano Energy 2016, 30, 825.
doi: 10.1016/j.nanoen.2016.09.013 |
3 |
Gummow R. J. ; Vamvounis G. ; Kannan M. B. ; He Y. Adv. Mater. 2018, 30, 1801702.
doi: 10.1002/adma.201801702 |
4 | Pan H. Y. ; Li Q. ; Yu X. Q. ; Li H. Acta Phys. -Chim. Sin. 2021, 37, 2008091. |
潘弘毅; 李泉; 禹习谦; 李泓. 物理化学学报, 2021, 37, 2008091.
doi: 10.3866/PKU.WHXB202008091 |
|
5 | Zhao Y. ; Ren L. ; Wang A. ; Luo J. Acta Phys. -Chim. Sin. 2021, 37, 2008090. |
赵雨萌; 任凌霄; 王澳轩; 罗加严. 物理化学学报, 2021, 37, 2008090.
doi: 10.3866/PKU.WHXB202008090 |
|
6 |
Liu H. ; Wang J.-G. ; You Z. ; Wei C. ; Kang F. ; Wei B. Mater. Today 2021, 42, 73.
doi: 10.1016/j.mattod.2020.08.021 |
7 |
Li C. ; Xie X. ; Liu H. ; Wang P. ; Deng C. ; Lu B. ; Zhou J. ; Liang S. Natl. Sci. Rev. 2021, nwab177
doi: 10.1093/nsr/nwab177/6370612 |
8 |
Zhu K. ; Wu T. ; Sun S. ; Wen Y. ; Huang K. ChemElectroChem 2020, 7, 2714.
doi: 10.1002/celc.202000472 |
9 |
Tang F. ; He T. ; Zhang H. ; Wu X. ; Li Y. ; Long F. ; Xiang Y. ; Zhu L. ; Wu J. ; Wu X. J. Electroanal. Chem. 2020, 873, 114368.
doi: 10.1016/j.jelechem.2020.114368 |
10 |
Fang G. ; Zhou J. ; Pan A. ; Liang S. ACS Energy Lett. 2018, 3, 2480.
doi: 10.1021/acsenergylett.8b01426 |
11 |
Yang S. ; Zhang M. ; Wu X. ; Wu X. ; Zeng F. ; Li Y. ; Duan S. ; Fan D. ; Yang Y. ; Wu X. J. Electroanal. Chem. 2019, 832, 69.
doi: 10.1016/j.jelechem.2018.10.051 |
12 |
Cui J. ; Wu X. ; Yang S. ; Li C. ; Tang F. ; Chen J. ; Chen Y. ; Xiang Y. ; Wu X. ; He Z. Front Chem. 2018, 6, 352.
doi: 10.3389/fchem.2018.00352 |
13 | Heng Y. ; Gu Z. ; Guo J. ; Wu X. Acta Phys. -Chim. Sin. 2021, 37, 2005013. |
衡永丽; 谷振一; 郭晋芝; 吴兴隆. 物理化学学报, 2021, 37, 2005013.
doi: 10.3866/PKU.WHXB202005013 |
|
14 |
Venkatkarthick R. ; Rodthongkum N. ; Zhang X. ; Wang S. ; Pattananuwat P. ; Zhao Y. ; Liu R. ; Qin J. ACS Appl. Energy Mater. 2020, 3, 4677.
doi: 10.1021/acsaem.0c00309 |
15 |
Zampardi G. ; La Mantia F. Curr. Opin. Electrochem. 2020, 21, 84.
doi: 10.1016/j.coelec.2020.01.014 |
16 |
Zhang S. ; Long S. ; Li H. ; Xu Q. Chem. Eng. J. 2020, 400, 125898.
doi: 10.1016/j.cej.2020.125898 |
17 |
He P. ; Yan M. ; Zhang G. ; Sun R. ; Chen L. ; An Q. ; Mai L. Adv. Energy Mater. 2017, 7, 1601920.
doi: 10.1002/aenm.201601920 |
18 |
Yan J. ; Ang E. H. ; Yang Y. ; Zhang Y. ; Ye M. ; Du W. ; Li C. C. Adv. Funct. Mater. 2021, 31, 2010213.
doi: 10.1002/adfm.202010213 |
19 |
Mei L. ; Xu J. ; Wei Z. ; Liu H. ; Li Y. ; Ma J. ; Dou S. Small 2017, 13, 1701441.
doi: 10.1002/smll.201701441 |
20 |
Zhang N. ; Chen X. ; Yu M. ; Niu Z. ; Cheng F. ; Chen J. Chem. Soc. Rev. 2020, 49, 4203.
doi: 10.1039/c9cs00349e |
21 |
Liu X. ; Yi J. ; Wu K. ; Jiang Y. ; Liu Y. ; Zhao B. ; Li W. ; Zhang J. Nanotechnology 2020, 31, 122001.
doi: 10.1088/1361-6528/ab5b38 |
22 |
Zhao Y. ; Zhu Y. ; Zhang X. InfoMat 2019, 2, 237.
doi: 10.1002/inf2.12042 |
23 |
Tang B. ; Shan L. ; Liang S. ; Zhou J. Energy Environ. Sci. 2019, 12, 3288.
doi: 10.1039/c9ee02526j |
24 |
Huang S. ; Zhu J. ; Tian J. ; Niu Z. Chemistry 2019, 25, 14480.
doi: 10.1002/chem.201902660 |
25 |
Gao J. ; Xie X. ; Liang S. ; Lu B. ; Zhou J. Nanomicro. Lett. 2021, 13, 69.
doi: 10.1007/s40820-021-00595-6 |
26 |
Feng Q. ; Kanoh H. ; Miyai Y. ; Ooi K. Chem. Mater. 1995, 7, 1722.
doi: 10.1021/cm00057a023 |
27 |
Chen Y. ; Liu C. ; Li F. ; Cheng H. J. Alloys Compd. 2005, 397, 282.
doi: 10.1016/j.jallcom.2004.12.049 |
28 |
Xu C. ; Du H. ; Li B. ; Kang F. ; Zeng Y. Electrochem. Solid-State Lett. 2009, 12, 4.
doi: 10.1149/1.3065967 |
29 |
Xu C. ; Li B. ; Du H. ; Kang F. Angew. Chem. Int. Ed. Engl. 2012, 51, 933.
doi: 10.1002/anie.201106307 |
30 |
Islam S. ; Alfaruqi M. H. ; Mathew V. ; Song J. ; Kim S. ; Kim S. ; Jo J. ; Baboo J. P. ; Pham D. T. ; Putro D. Y. ; Sun Y.-K. ; Kim J. J. Mater. Chem. A 2017, 5, 23299.
doi: 10.1039/c7ta07170a |
31 |
Kim S. ; Koo B.-R. ; Jo Y.-R. ; An H.-R. ; Lee Y.-G. ; Huang C. ; An G. -H. J. Mater. Chem. A 2021, 5, 1900740.
doi: 10.1039/D1TA04051K |
32 |
Ding S. ; Zhang M. ; Qin R. ; Fang J. ; Ren H. ; Yi H. ; Liu L. ; Zhao W. ; Li Y. ; Yao L. ; Li S. ; Zhao Q. ; Pan F. Nanomicro. Lett. 2021, 13, 173.
doi: 10.1007/s40820-021-00691-7 |
33 |
Devaraj S. ; Munichandraiah N. J. Phys. Chem. C 2008, 112, 4406.
doi: 10.1021/jp7108785 |
34 |
Chabre Y. ; Pannetier Prog J. Solid. State Chem. 1995, 23, 1.
doi: 10.1016/0079-6786(94)00005-2 |
35 |
Takakazu Y. ; Takayuki S. Inorganica Chim. Acta 1986, 117, L27.
doi: 10.1016/S0020-1693(00)82175-1 |
36 |
Kumar G. ; Sampath S. Solid State Ionics 2003, 160, 289.
doi: 10.1016/s0167-2738(03)00209-1 |
37 |
Alfaruqi M. H. ; Mathew V. ; Gim J. ; Kim S. ; Song J. ; Baboo J. P. ; Choi S. H. ; Kim J. Chem. Mater. 2015, 27, 3609.
doi: 10.1021/cm504717p |
38 |
Dose W. M. ; Sharma N. ; Webster N. A. S. ; Peterson V. K. ; Donne S. W. J. Phys. Chem. C 2014, 118, 24257.
doi: 10.1021/jp506914j |
39 |
Yang R. ; Fan Y. ; Ye R. ; Tang Y. ; Cao X. ; Yin Z. ; Zeng Z. Adv Mater 2021, 33, 2004862.
doi: 10.1002/adma.202004862 |
40 |
Hunter J. C. J. Solid State Chem. 1981, 39, 142.
doi: 10.1016/0022-4596(81)90323-6 |
41 |
Yuan C. ; Zhang Y. ; Pan Y. ; Liu X. ; Wang G. ; Cao D. Electrochim. Acta 2014, 116, 404.
doi: 10.1016/j.electacta.2013.11.090 |
42 |
Alfaruqi M. H. ; Gim J. ; Kim S. ; Song J. ; Pham D. T. ; Jo J. ; Xiu Z. ; Mathew V. ; Kim J. Electrochem Commun. 2015, 60, 121.
doi: 10.1016/j.elecom.2015.08.019 |
43 |
Jin Y. ; Zou L. ; Liu L. ; Engelhard M. H. ; Patel R. L. ; Nie Z. ; Han K. S. ; Shao Y. ; Wang C. ; Zhu J. ; et al Adv. Mater. 2019, 31, 1900567.
doi: 10.1002/adma.201900567 |
44 |
Li Y. ; Wang S. ; Salvador J. R. ; Wu J. ; Liu B. ; Yang W. ; Yang J. ; Zhang W. ; Liu J. ; Yang J. Chem. Mater. 2019, 31, 2036.
doi: 10.1021/acs.chemmater.8b05093 |
45 |
Zhang N. ; Cheng F. ; Liu J. ; Wang L. ; Long X. ; Liu X. ; Li F. ; Chen J. Nat. Commun. 2017, 8, 405.
doi: 10.1038/s41467-017-00467-x |
46 |
Jiang Y. ; Ba D. ; Li Y. ; Liu J. Adv. Sci. (Weinh) 2020, 7, 1902795.
doi: 10.1002/advs.201902795 |
47 |
Song M. ; Tan H. ; Chao D. ; Fan H. J. Adv. Funct. Mater. 2018, 28, 1802564.
doi: 10.1002/adfm.201802564 |
48 |
Zeng L. ; Zhang G. ; Huang X. ; Wang H. ; Zhou T. ; Xie H. Vacuum 2021, 192, 110398.
doi: 10.1016/j.vacuum.2021.110398 |
49 |
Xue T. ; Fan H. J. J. Energy Chem. 2021, 54, 194.
doi: 10.1016/j.jechem.2020.05.056 |
50 |
Guo X. ; Zhou J. ; Bai C. ; Li X. ; Fang G. ; Liang S. Mater. Today Energy 2020, 16, 100396.
doi: 10.1016/j.mtener.2020.100396 |
51 |
Lee B. ; Lee H. R. ; Kim H. ; Chung K. Y. ; Cho B. W. ; Oh S. H. Chem. Commun. (Camb) 2015, 51, 9265.
doi: 10.1039/c5cc02585k |
52 |
Sun W. ; Wang F. ; Hou S. ; Yang C. ; Fan X. ; Ma Z. ; Gao T. ; Han F. ; Hu R. ; Zhu M. ; Wang C. J. Am. Chem. Soc. 2017, 139, 9775.
doi: 10.1021/jacs.7b04471 |
53 |
Zhou J. ; Shan L. ; Tang B. ; Liang S. Chinese Sci. Bull. 2020, 65, 3562.
doi: 10.1360/tb-2020-0352 |
54 |
Huang J. ; Wang Z. ; Hou M. ; Dong X. ; Liu Y. ; Wang Y. ; Xia Y. Nat. Commun. 2018, 9, 2906.
doi: 10.1038/s41467-018-04949-4 |
55 |
Wang S. ; Yuan Z. ; Zhang X. ; Bi S. ; Zhou Z. ; Tian J. ; Zhang Q. ; Niu Z. Angew. Chem. Int. Ed. 2021, 60, 7056.
doi: 10.1002/anie.202017098 |
56 |
Pan H. ; Shao Y. ; Yan P. ; Cheng Y. ; Han K. S. ; Nie Z. ; Wang C. ; Yang J. ; Li X. ; Bhattacharya P. ; Mueller K. T. ; Liu J. Nat. Energy 2016, 1, 16039.
doi: 10.1038/nenergy.2016.39 |
57 |
Lee B. ; Seo H. R. ; Lee H. R. ; Yoon C. S. ; Kim J. H. ; Chung K. Y. ; Cho B. W. ; Oh S. H. ChemSusChem 2016, 9, 2948.
doi: 10.1002/cssc.201600702 |
58 |
Yang J. ; Cao J. ; Peng Y. ; Yang W. ; Barg S. ; Liu Z. ; Kinloch I. A. ; Bissett M. A. ; Dryfe R. A. W. ChemSusChem 2020, 13, 4103.
doi: 10.1002/cssc.202001216 |
59 |
Wang M. ; Zheng X. ; Zhang X. ; Chao D. ; Qiao S. Z. ; Alshareef H. N. ; Cui Y. ; Chen W. Adv. Energy Mater. 2020, 11, 2002904.
doi: 10.1002/aenm.202002904 |
60 |
Liu Z. ; Yang Y. ; Liang S. ; Lu B. ; Zhou J. Small Struct. 2021, 2, 2100119.
doi: 10.1002/sstr.202100119 |
61 |
Liang G. ; Mo F. ; Li H. ; Tang Z. ; Liu Z. ; Wang D. ; Yang Q. ; Ma L. ; Zhi C. Adv. Energy Mater. 2019, 9, 1901838.
doi: 10.1002/aenm.201901838 |
62 |
Chao D. ; Zhou W. ; Ye C. ; Zhang Q. ; Chen Y. ; Gu L. ; Davey K. ; Qiao S. Z. Angew. Chem. Int. Ed. 2019, 58, 7823.
doi: 10.1002/anie.201904174 |
63 |
Wu D. ; Housel L. M. ; Kim S. J. ; Sadique N. ; Quilty C. D. ; Wu L. ; Tappero R. ; Nicholas S. L. ; Ehrlich S. ; Zhu Y. ; et al Energy Environ. Sci. 2020, 13, 4322.
doi: 10.1039/d0ee02168g |
64 |
Han M. ; Qin L. ; Liu Z. ; Zhang L. ; Li X. ; Lu B. ; Huang J. ; Liang S. ; Zhou J. Mater. Today Energy 2021, 20, 100626.
doi: 10.1016/j.mtener.2020.100626 |
65 |
Chen X. ; Li W. ; Zeng Z. ; Reed D. ; Li X. ; Liu X. Chem. Eng. J. 2021, 405, 126969.
doi: 10.1016/j.cej.2020.126969 |
66 |
Corpuz R. D. ; Juan-Corpuz L. M. ; Nguyen M. T. ; Yonezawa T. ; Wu H. L. ; Somwangthanaroj A. ; Kheawhom S. Int. J. Mol. Sci. 2020, 21, 3113.
doi: 10.3390/ijms21093113 |
67 |
Zhang Y. ; Deng S. ; Li Y. ; Liu B. ; Pan G. ; Liu Q. ; Wang X. ; Xia X. ; Tu J. Energy Stor. Mater. 2020, 29, 52.
doi: 10.1016/j.ensm.2020.04.003 |
68 |
Fu Y. ; Wei Q. ; Zhang G. ; Wang X. ; Zhang J. ; Hu Y. ; Wang D. ; Zuin L. ; Zhou T. ; Wu Y. ; Sun S. Adv. Energy Mater. 2018, 8, 1801445.
doi: 10.1002/aenm.201801445 |
69 |
Bi S. ; Wu Y. ; Cao A. ; Tian J. ; Zhang S. ; Niu Z. Mater. Today Energy 2020, 18, 100548.
doi: 10.1016/j.mtener.2020.100548 |
70 |
Wu B. ; Zhang G. ; Yan M. ; Xiong T. ; He P. ; He L. ; Xu X. ; Mai L. Small 2018, 14, 1703850.
doi: 10.1002/smll.201703850 |
71 |
Guo S. ; Liang S. ; Zhang B. ; Fang G. ; Ma D. ; Zhou J. ACS Nano 2019, 13, 13456.
doi: 10.1021/acsnano.9b07042 |
72 |
Zeng Y. ; Zhang X. ; Meng Y. ; Yu M. ; Yi J. ; Wu Y. ; Lu X. ; Tong Y. Adv. Mater. 2017, 29, 1700274.
doi: 10.1002/adma.201700274 |
73 |
Li Z. ; Huang Y. ; Zhang J. ; Jin S. ; Zhang S. ; Zhou H. Nanoscale 2020, 12, 4150.
doi: 10.1039/c9nr09870d |
74 |
Mao J. ; Wu F.-F. ; Shi W.-H. ; Liu W.-X. ; Xu X.-L. ; Cai G.-F. ; Li Y.-W. ; Cao X. -H. Chinese J. Polym. Sci. 2019, 38, 514.
doi: 10.1007/s10118-020-2353-6 |
75 |
Guo G. Y. ; JinSong H. ; LiJun W. Adv. Mater. 2008, 20, 2878.
doi: 10.1002/adma.200800627 |
76 |
Kim J. M. ; Huh Y. S. ; Han Y.-K. ; Cho M. S. ; Kim H. J. Electrochem. Commun. 2012, 14, 32.
doi: 10.1016/j.elecom.2011.10.023 |
77 |
Liu D.-S. ; Mai Y. ; Chen S. ; Liu S. ; Ang E. H. ; Ye M. ; Yang Y. ; Zhang Y. ; Geng H. ; Li C. C. Electrochimica Acta 2021, 370, 137740.
doi: 10.1016/j.electacta.2021.137740 |
78 |
Alfaruqi M. H. ; Gim J. ; Kim S. ; Song J. ; Jo J. ; Kim S. ; Mathew V. ; Kim J. J. Power Sources 2015, 288, 320.
doi: 10.1016/j.jpowsour.2015.04.140 |
79 |
Guo C. ; Liu H. ; Li J. ; Hou Z. ; Liang J. ; Zhou J. ; Zhu Y. ; Qian Y. Electrochim. Acta 2019, 304, 370.
doi: 10.1016/j.electacta.2019.03.008 |
80 |
Wang Y. ; Wu Z. ; Jiang L. ; Tian W. ; Zhang C. ; Cai C. ; Hu L. Nanoscale Adv. 2019, 1, 4365.
doi: 10.1039/c9na00519f |
81 |
Liu Y. ; Chi X. ; Han Q. ; Du Y. ; Huang J. ; Liu Y. ; Yang J. J. Power Sources 2019, 443, 227244.
doi: 10.1016/j.jpowsour.2019.227244 |
82 | Huang J. ; Zhou J. ; Liang S. Acta Phys.-Chim. Sin. 2021, 37, 2005020. |
黄江涛; 周江; 梁叔全. 物理化学学报, 2021, 37, 2005020.
doi: 10.3866/PKU.WHXB202005020 |
|
83 |
Nam K. W. ; Kim H. ; Choi J. H. ; Choi J. W. Energy Environ. Sci. 2019, 12, 1999.
doi: 10.1039/c9ee00718k |
84 |
Zhao Q. ; Song A. ; Ding S. ; Qin R. ; Cui Y. ; Li S. ; Pan F. Adv. Mater. 2020, 32, 2002450.
doi: 10.1002/adma.202002450 |
85 |
Wang J. ; Sun X. ; Zhao H. ; Xu L. ; Xia J. ; Luo M. ; Yang Y. ; Du Y. J. Phys. Chem. C 2019, 123, 22735.
doi: 10.1021/acs.jpcc.9b05535 |
86 |
Yan M. ; He P. ; Chen Y. ; Wang S. ; Wei Q. ; Zhao K. ; Xu X. ; An Q. ; Shuang Y. ; Shao Y. ; et al Adv. Mater. 2018, 30, 1703725.
doi: 10.1002/adma.201703725 |
87 |
Wang D. ; Wang L. ; Liang G. ; Li H. ; Liu Z. ; Tang Z. ; Liang J. ; Zhi C. ACS Nano 2019, 13, 10643.
doi: 10.1021/acsnano.9b04916 |
88 |
Zhang H. ; Liu Q. ; Wang J. ; Chen K. ; Xue D. ; Liu J. ; Lu X. J. Mater. Chem. A 2019, 7, 22079.
doi: 10.1039/c9ta08418e |
89 |
Zhai D. ; Li B. ; Xu C. ; Du H. ; He Y. ; Wei C. ; Kang F. J. Power Sources 2011, 196, 7860.
doi: 10.1016/j.jpowsour.2011.05.015 |
90 |
Du M. ; Miao Z. ; Li H. ; Sang Y. ; Liu H. ; Wang S. J. Mater. Chem. A 2021, 9, 19245.
doi: 10.1039/d1ta03620c |
91 |
Lian S. ; Sun C. ; Xu W. ; Huo W. ; Luo Y. ; Zhao K. ; Yao G. ; Xu W. ; Zhang Y. ; Li Z. ; et al Nano Energy 2019, 62, 79.
doi: 10.1016/j.nanoen.2019.04.038 |
92 |
Fang G. ; Zhu C. ; Chen M. ; Zhou J. ; Tang B. ; Cao X. ; Zheng X. ; Pan A. ; Liang S. Adv. Funct. Mater. 2019, 29, 1808375.
doi: 10.1002/adfm.201808375 |
93 |
Liu Z. ; Qin L. ; Chen X. ; Xie X. ; Zhu B. ; Gao Y. ; Zhou M. ; Fang G. ; Liang S. Mater. Today Energy 2021, 22, 100851.
doi: 10.1016/j.mtener.2021.100851 |
94 |
Alfaruqi M. H. ; Islam S. ; Mathew V. ; Song J. ; Kim S. ; Tung D. P. ; Jo J. ; Kim S. ; Baboo J. P. ; Xiu Z. ; Kim J. Appl. Surf. Sci. 2017, 404, 435.
doi: 10.1016/j.apsusc.2017.02.009 |
95 |
Zhang Z. ; Li S. ; Zhao B. ; Zhang X. ; Wang X. ; Wen Z. ; Ji S. ; Sun J. J. Phys. Chem. C 2021, 125, 20195.
doi: 10.1021/acs.jpcc.1c05417 |
96 |
Zhang M. ; Wu W. ; Luo J. ; Zhang H. ; Liu J. ; Liu X. ; Yang Y. ; Lu X. J. Mater. Chem. A 2020, 8, 11642.
doi: 10.1039/d0ta03706k |
97 |
Liu K. ; Tan S. ; Moon J. ; Jafta C. J. ; Li C. ; Kobayashi T. ; Lyu H. ; Bridges C. A. ; Men S. ; Guo W. ; et al Adv. Energy Mater. 2020, 10, 2000135.
doi: 10.1002/aenm.202000135 |
98 |
Zeng X. ; Liu J. ; Mao J. ; Hao J. ; Wang Z. ; Zhou S. ; Ling C. D. ; Guo Z. Adv. Energy Mater. 2020, 10, 1904163.
doi: 10.1002/aenm.201904163 |
99 |
Lei J. ; Yao Y. ; Wang Z. ; Lu Y. -C. Energy Environ. Sci. 2021, 14, 4418.
doi: 10.1039/d1ee01120k |
100 |
Zheng X. ; Wang Y. ; Xu Y. ; Ahmad T. ; Yuan Y. ; Sun J. ; Luo R. ; Wang M. ; Chuai M. ; Chen N. ; et al Nano Lett. 2021, 21, 8863.
doi: 10.1021/acs.nanolett.1c03319 |
101 |
Zhong Y. ; Xu X. ; Veder J. P. ; Shao Z. iScience 2020, 23, 100943.
doi: 10.1016/j.isci.2020.100943 |
102 |
Zhou M. ; Weng Q. ; Popov Z. I. ; Yang Y. ; Antipina L. Y. ; Sorokin P. B. ; Wang X. ; Bando Y. ; Golberg D. ACS Nano 2018, 12, 4148.
doi: 10.1021/acsnano.7b08724 |
103 |
Suen N. T. ; Hung S. F. ; Quan Q. ; Zhang N. ; Xu Y. J. ; Chen H. M. Chem. Soc. Rev. 2017, 46, 337.
doi: 10.1039/c6cs00328a |
104 |
Dai L. ; Wang Y. ; Sun L. ; Ding Y. ; Yao Y. ; Yao L. ; Drewett N. E. ; Zhang W. ; Tang J. ; Zheng W. Adv. Sci. (Weinh) 2021, 8, 2004995.
doi: 10.1002/advs.202004995 |
105 |
Zhong C. ; Liu B. ; Ding J. ; Liu X. ; Zhong Y. ; Li Y. ; Sun C. ; Han X. ; Deng Y. ; Zhao N. ; Hu W. Nat. Energy 2020, 5, 440.
doi: 10.1038/s41560-020-0584-y |
106 |
Chao D. ; Ye C. ; Xie F. ; Zhou W. ; Zhang Q. ; Gu Q. ; Davey K. ; Gu L. ; Qiao S. Z. Adv. Mater. 2020, 32, 2001894.
doi: 10.1002/adma.202001894 |
107 |
Huang J. ; Xie Y. ; Yan L. ; Wang B. ; Kong T. ; Dong X. ; Wang Y. ; Xia Y. Energy Environ. Sci. 2021, 14, 883.
doi: 10.1039/d0ee03639k |
108 |
Gong K. ; Fang Q. ; Gu S. ; Li S. F. Y. ; Yan Y. Energy Environ. Sci. 2015, 8, 3515.
doi: 10.1039/c5ee02341f |
109 |
Xie C. ; Li T. ; Deng C. ; Song Y. ; Zhang H. ; Li X. Energy Environ. Sci. 2020, 13, 135.
doi: 10.1039/c9ee03702k |
110 |
Li G. ; Chen W. ; Zhang H. ; Gong Y. ; Shi F. ; Wang J. ; Zhang R. ; Chen G. ; Jin Y. ; Wu T. ; et al Adv. Energy Mater. 2020, 10, 1902085.
doi: 10.1002/aenm.201902085 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Fengyu Gao, Hengheng Liu, Xiaolong Yao, Zaharaddeen Sani, Xiaolong Tang, Ning Luo, Honghong Yi, Shunzheng Zhao, Qingjun Yu, Yuansong Zhou. Spherical MnxCo3−xO4−ƞ Spinel with Mn-Enriched Surface as High-Efficiency Catalysts for Low-Temperature Selective Catalytic Reduction of NOx by NH3 [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212003-0. |
[3] | Yongzhi Zhao, Chenyang Chen, Wenyi Liu, Weifei Hu, Jinping Liu. Research Progress of Interface Optimization Strategies for Solid-State Lithium Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2211017-0. |
[4] | Tianjie Wang, Yaowei Wang, Yuhui Chen, Jianpeng Liu, Huibing Shi, Limin Guo, Zhiwei Zhao, Chuntai Liu, Zhangquan Peng. Toward Practical Lithium-Air Batteries by Avoiding Negative Effects of CO2 [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2009071-. |
[5] | Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204049-. |
[6] | Peng Chen, Ying Zhou, Fan Dong. Advances in Regulation Strategies for Electronic Structure and Performance of Two-Dimensional Photocatalytic Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010010-. |
[7] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
[8] | Zijun Jing, Chen Tan Khai, Teng He, Yang Yu, Qijun Pei, Jintao Wang, Hui Wu, Ping Chen. Synthesis, Characterization, and Crystal Structure of Lithium Pyrrolide [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2009039-. |
[9] | Mengxue Zhou, Ning Ren, Jianjun Zhang. Crystal Structure, Thermal Decomposition Mechanism and Properties of Lanthanide Supramolecular Complexes Based on 2, 4, 6-Trimethylbenzoic Acid and 5, 5'-Dimethyl-2, 2'-bipyridine [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2004071-. |
[10] | Jian Li,Cong Lin,Jianhua Lin,Junliang Sun. Application of Combining X-ray Diffraction and Electron Crystallography for Determination of Complex Inorganic Crystal Structure [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907052-. |
[11] | Yuanyuan HU,Congyang WANG. Bimetallic C―H Activation in Homogeneous Catalysis [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 913-922. |
[12] | Yue ZHAO,Jiatong CUI,Jichuang HU,Jiabi MA. Reactivities of VO1–4+ Toward n-CmH2m+2 (m = 3, 5, 7) as Functions of Oxygen Content and Carbon Chain Length [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 531-538. |
[13] | Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones [J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958. |
[14] | An XIE,Zhi WANG,Qiaoyu WU,Liping CHENG,Genggeng LUO,Di SUN. [Ag25(SC6H4Pri)18(dppp)6](CF3SO3)7·CH3CN (HSC6H4Pri = 4-t-isopropylthiophenol, and dppp = 1, 3-bis(diphenyphosphino)propane) Cluster Containing a Sandwich-like Skeleton: Structural Characterization and Optical Properties [J]. Acta Phys. -Chim. Sin., 2018, 34(7): 776-780. |
[15] | Youkun ZHENG,Hui JIANG,Xuemei WANG. Multiple Strategies for Controlled Synthesis of Atomically Precise Alloy Nanoclusters [J]. Acta Phys. -Chim. Sin., 2018, 34(7): 740-754. |
|