Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (8): 2010010.doi: 10.3866/PKU.WHXB202010010
Special Issue: Two-Dimensional Photocatalytic Materials
• REVIEW • Previous Articles Next Articles
Peng Chen1,2, Ying Zhou1, Fan Dong1,2,*()
Received:
2020-10-08
Accepted:
2020-11-10
Published:
2020-11-17
Contact:
Fan Dong
E-mail:dfctbu@126.com; dongfan@uestc.edu.cn
About author:
Fan Dong, Email: dfctbu@126.com; dongfan@uestc.edu.cnSupported by:
Peng Chen, Ying Zhou, Fan Dong. Advances in Regulation Strategies for Electronic Structure and Performance of Two-Dimensional Photocatalytic Materials[J]. Acta Phys. -Chim. Sin. 2021, 37(8), 2010010. doi: 10.3866/PKU.WHXB202010010
Fig 2
Metal surface plasmon resonance effect on bismuth carbonate. (a) Au62; (b) Ag 63; (c) Pd 64; (d) Bi 65; Non-metal and metal co-effects: (e) Pt deposition on N-doped bismuth carbonate 66; (f) The non-metallic plasma resonance effect and charge transfer of MoS2@TiO267. (a) Adapted with permission from Ref. 62, copyright 2015 Royal Society of Chemistry publisher; (b) Adapted with permission from Ref. 63, copyright 2014 Royal Society of Chemistry publisher; (c) Adapted from Ref. 64; (d) Adapted with permission from Ref. 65, copyright 2014 American Chemical Society publisher; (e) Adapted with permission from Ref. 66, copyright 2017 Royal Society of Chemistry publisher; (f) Adapted with permission from Ref. 67, copyright 2018 Royal Society of Chemistry publisher."
Fig 3
Regulated charge separation and transmission by element doping. (a) Representation of the formation of Co-doped In2S3 three atomic layers 77; (b) Schematic diagram of the tentative photocatalysis process over the Fe(III)-doped BiOCl 78; (c) The model schematic diagram and FXSEM-EDX element energy spectrum of Rb-doped and Cs-doped g-C3N4 respectively 80; (d) Band structure of an oxygen-doped ZnIn2S4 ultrathin nanosheet 84; (e) CO32- self-doped bismuth carbonate 85; (f) Synthesis and charge transfer of O/La co-doped g-C3N4 76. (a) Adapted from Ref. 77; (b) Adapted from Ref. 78; (c) Adapted with permission from Ref. 80, copyright 2017 Royal Society of Chemistry publisher; (d) Adapted from Ref. 84; (e) Adapted with permission from Ref. 85, copyright 2015 American Chemical Society publisher; (f) Adapted with permission from Ref. 76, copyright 2019 Elsevier publisher."
Fig 4
Regulated charge separation and transmission by heterojunctions. (a)p-n heterojunction formed by two-dimensional BiOBr and La2Ti2O7 nanosheets 93; (b) CeO2/g-C3N4 heterojunction 94; (c) p-p heterojunction of Cu2O-BiOI 95; (d) Z-scheme heterojunction of g-C3N4/WO396. (a) Adapted from Ref. 93; (b) Adapted with permission from Ref. 94, copyright 2015 Royal Society of Chemistry publisher; (c) Adapted from Ref. 95; (d) Adapted from Ref. 96."
Fig 5
Constructing defects. (a) N defects in g-C3N4 104; (b) Charge separation and transmission of bismuth carbonate with oxygen defect 105; (c) Photocatalytic degradation mechanism of toluene on BiOCl with oxygen defect 106; (d) Charge transfer and deactivation mechanism of Bi modified bismuth carbonate with oxygen defect 107; (e) Charge separation and transmission on Bi modified BiOCl with oxygen defect 108; (f) Charge separation and transmission on Bi modified BiOBr with oxygen defect 109. (a) Adapted with permission from Ref. 104, copyright 2020 Elsevier publisher; (b) Adapted with permission from Ref. 105, copyright 2019 Elsevier publisher; (c) Adapted from Ref. 106; (d) Adapted with permission from Ref. 107, copyright 2020 Elsevier publisher; (e) Adapted from Ref. 108; (f) Adapted from Ref. 109."
Fig 6
(a) g-C3N4 nanosheets were synthesized by liquid-exfoliation and thermal oxidation; (b) Porous ultrathin In2O3 nanosheets synthesized 119; (c) β-Ni(OH)2 was synthesized by etching 121. (b) Adapted with permission from Ref. 119, copyright 2014 American Chemical Society publisher; (c) Adapted from Ref. 121."
Fig 8
(a) In situ DRIFTS spectra of NO, intermediate products and final products in adsorption stage (unilluminated) and reaction stage (illuminated) over time; (b) the adsorption energy and bond length of adsorbent on g-C3N4 were calculated theoretically; (c) the adsorption energy and bond length of adsorbent on Sr-doped g-C3N4 were calculated theoretically 40. Adapted with permission from Ref. 40, copyright 2018 Elsevier publisher."
1 |
Feng J. ; Zhang Y. ; Song W. ; Deng W. ; Zhu M. ; Fang Z. ; Ye Y. ; Fang H. ; Wu Z. ; Lowther S. ; et al Environ. Pollut. 2020, 267, 115623.
doi: 10.1016/j.envpol.2020.115623 |
2 |
An J. ; Zou J. ; Wang J. ; Lin X. ; Zhu B. Environ. Sci. Pollut. Res. 2015, 22, 19607.
doi: 10.1007/s11356-015-5177-0 |
3 |
Glasius M. ; Goldstein A. H. Environ. Sci. Technol. 2016, 50, 2754.
doi: 10.1021/acs.est.5b05105 |
4 |
Li J. ; Dong X. A. ; Sun Y. ; Jiang G. ; Chu Y. ; Lee S. C. ; Dong F. Appl. Catal. B-Environ. 2018, 239, 187.
doi: 10.1016/j.apcatb.2018.08.019 |
5 |
Deng Y. ; Li J. ; Li Y. ; Wu R. ; Xie S. J. Environ. Sci. 2019, 75, 334.
doi: 10.1016/j.jes.2018.05.004 |
6 |
Muñoz V. ; Casado C. ; Suárez S. ; Sánchez B. ; Marugán J. Catal. Today 2019, 326, 82.
doi: 10.1016/j.cattod.2018.09.001 |
7 |
Mo J. ; Zhang Y. ; Xu Q. ; Lamson J. J. ; Zhao R. Atmos. Environ. 2009, 43, 2229.
doi: 10.1016/j.atmosenv.2009.01.034 |
8 |
Wang S. ; Ang H. M. ; Tade M. O. Environ. Int. 2007, 33, 694.
doi: 10.1016/j.envint.2007.02.011 |
9 |
Gao X. ; An L. ; Qu D. ; Jiang W. ; Chai Y. ; Sun S. ; Liu X. ; Sun Z. Sci. Bull. 2019, 64, 918.
doi: 10.1016/j.scib.2019.05.009 |
10 |
Li S. ; Wang D. ; Wu X. ; Chen Y. Chin. J. Catal. 2020, 41, 550.
doi: 10.1016/S1872-2067(19)63446-7 |
11 |
Luo J. ; Zhang S. ; Sun M. ; Yang L. ; Luo S. ; Crittenden J. C. ACS Nano 2019, 13, 9811.
doi: 10.1021/acsnano.9b03649 |
12 |
Wang Q. ; Hisatomi T. ; Jia Q. ; Tokudome H. ; Zhong M. ; Wang C. ; Pan Z. ; Takata T. ; Nakabayashi M. ; Shibata N. ; et al Nat. Mater. 2016, 15, 611.
doi: 10.1038/nmat4589 |
13 |
Ong W. J. ; Tan L. L. ; Ng Y. H. ; Yong S. T. ; Chai S. P. Chem. Rev. 2016, 116, 7159.
doi: 10.1021/acs.chemrev.6b00075 |
14 |
Li Y. ; Zhang D. ; Fan J. ; Xiang Q. Chin. J. Catal. 2021, 42, 627.
doi: 10.1016/S1872-2067(20)63684-1 |
15 |
Cui W. ; Li J. ; Chen L. ; Dong X. A. ; Wang H. ; Sheng J. ; Sun Y. ; Zhou Y. ; Dong F. Sci. Bull. 2020, 65, 1626.
doi: 10.1016/j.scib.2020.05.024 |
16 |
Wang H. ; Zhang L. ; Chen Z. ; Hu J. ; Li S. ; Wang Z. ; Liu J. ; Wang X. Chem. Soc. Rev. 2014, 43, 5234.
doi: 10.1039/C4CS00126E |
17 |
Wu W. Q. ; Feng H. L. ; Rao H. S. ; Xu Y. F. ; Kuang D. B. ; Su C. Y. Nat. Commun. 2014, 5, 3968.
doi: 10.1038/ncomms4968 |
18 |
Luo B. ; Liu G. ; Wang L. Nanoscale 2016, 8, 6904.
doi: 10.1039/C6NR00546B |
19 |
Xiong J. ; Di J. ; Xia J. ; Zhu W. ; Li H. Adv. Funct. Mater. 2018, 28, 1801983.
doi: 10.1002/adfm.201801983 |
20 |
Wang L. ; Zhang Y. ; Chen L. ; Xu H. ; Xiong Y. Adv. Mater. 2018, 30, 1801955.
doi: 10.1002/adma.201801955 |
21 |
Liu G. ; Zhen C. ; Kang Y. ; Wang L. ; Cheng H.-M. Chem. Soc. Rev. 2018, 47, 6410.
doi: 10.1039/C8CS00396C |
22 |
Xiang Q. ; Yu J. ; Jaroniec M. Chem. Soc. Rev. 2012, 41, 782.
doi: 10.1039/C1CS15172J |
23 |
Gogotsi Y. J. Phys. Chem. Lett. 2011, 2, 2509.
doi: 10.1021/jz201145a |
24 |
Meng N. ; Ren J. ; Liu Y. ; Huang Y. ; Petit T. ; Zhang B. Energy Environ. Sci. 2018, 11, 566.
doi: 10.1039/C7EE03592F |
25 |
Safaei J. ; Mohamed N. A. ; Mohamad Noh M. F. ; Soh M. F. ; Ludin N. A. ; Ibrahim M. A. ; Roslam Wan Isahak W. N. ; Mat Teridi M. A. J. Mater. Chem. A 2018, 6, 22346.
doi: 10.1039/C8TA08001A |
26 |
Ding F. ; Yang D. ; Tong Z. ; Nan Y. ; Wang Y. ; Zou X. ; Jiang Z. Environ. Sci. Nano 2017, 4, 1455.
doi: 10.1039/C7EN00255F |
27 |
Low J. ; Cao S. ; Yu J. ; Wageh S. Chem. Commun. 2014, 50, 10768.
doi: 10.1039/C4CC02553A |
28 |
Li X. ; Dai Y. ; Ma Y. ; Han S. ; Huang B. Phys. Chem. Chem. Phys. 2014, 16, 4230.
doi: 10.1039/C3CP54592J |
29 |
Di J. ; Xiong J. ; Li H. ; Liu Z. Adv. Mater. 2018, 30, 1704548.
doi: 10.1002/adma.201704548 |
30 |
Sun Y. ; Gao S. ; Lei F. ; Xie Y. Chem. Soc. Rev. 2015, 44, 623.
doi: 10.1039/C4CS00236A |
31 |
Zhang J. ; Chen Y. ; Wang X. Energy Environ. Sci. 2015, 8, 3092.
doi: 10.1039/C5EE01895A |
32 |
Zhao Z. ; Sun Y. ; Dong F. Nanoscale 2015, 7, 15.
doi: 10.1039/C4NR03008G |
33 |
Chen P. ; Liu H. ; Cui W. ; Lee S. C. ; Wang L. A. ; Dong F. EcoMat 2020, 2, e12047.
doi: 10.1002/eom2.12047 |
34 |
Di J. ; Xiong J. ; Li H. ; Liu Z. Adv. Mater. 2018, 30, 1704548.
doi: 10.1002/adma.201704548 |
35 |
Ong W. J. ; Tan L. L. ; Ng Y. H. ; Yong S. T. ; Chai S. P. Chem. Rev. 2016, 116, 7159.
doi: 10.1021/acs.chemrev.6b00075 |
36 |
Xu M. ; Yang J. ; Sun C. ; Liu L. ; Cui Y. ; Liang B. Chem. Eng. J. 2020, 389, 124402.
doi: 10.1016/j.cej.2020.124402 |
37 |
Li S. ; Sun J. ; Guan J. Chin. J. Catal. 2021, 42, 511.
doi: 10.1016/S1872-2067(20)63693-2 |
38 |
Ran J. ; Zhang J. ; Yu J. ; Jaroniec M. ; Qiao S. Z. Chem. Soc. Rev. 2014, 43, 7787.
doi: 10.1039/C3CS60425J |
39 |
Li X. ; Yu J. ; Jaroniec M. Chem. Soc. Rev. 2016, 45, 2603.
doi: 10.1039/C5CS00838G |
40 |
Dong X. ; Li J. ; Xing Q. ; Zhou Y. ; Huang H. ; Dong F. Appl. Catal. B-Environ. 2018, 232, 69.
doi: 10.1016/j.apcatb.2018.03.054 |
41 |
Cui W. ; Li J. ; Cen W. ; Sun Y. ; Lee S. C. ; Dong F. J. Catal. 2017, 352, 351.
doi: 10.1016/j.jcat.2017.05.017 |
42 |
Chen P. ; Sun Y. ; Liu H. ; Zhou Y. ; Jiang G. ; Lee S. C. ; Zhang Y. ; Dong F. Nanoscale 2019, 11, 2366.
doi: 10.1039/c8nr09147a |
43 |
Li J. ; Dong X. ; Zhang G. ; Cui W. ; Cen W. ; Wu Z. ; Lee S. C. ; Dong F. J. Mater. Chem. 2019, 7, 3366.
doi: 10.1039/C8TA11627J |
44 |
Kabir E. ; Kumar P. ; Kumar S. ; Adelodun A. A. ; Kim K. -H. Renew. Sust. Energ. Rev. 2018, 82, 894.
doi: 10.1016/j.rser.2017.09.094 |
45 |
Xu Z. ; Quintanilla M. ; Vetrone F. ; Govorov A. O. ; Chaker M. ; Ma D. Adv. Funct. Mater. 2015, 25, 2950.
doi: 10.1002/adfm.201500810 |
46 |
Meng X. ; Liu L. ; Ouyang S. ; Xu H. ; Wang D. ; Zhao N. ; Ye J. Adv. Mater. 2016, 28, 6781.
doi: 10.1002/adma.201600305 |
47 |
Wang X. ; Wang F. ; Sang Y. ; Liu H. Adv. Energy Mater. 2017, 7, 1700473.
doi: 10.1002/aenm.201700473 |
48 |
Osterloh F. E. Chem. Soc. Rev. 2013, 42, 2294.
doi: 10.1039/C2CS35266D |
49 |
Dong F. ; Ho W.-K. ; Lee S. C. ; Wu Z. ; Fu M. ; Zou S. ; Huang Y. J. Mater. Chem. 2011, 21, 12428.
doi: 10.1039/C1JM11840D |
50 |
Liu Y. ; Wang Z. ; Huang B. ; Yang K. ; Zhang X. ; Qin X. ; Dai Y. Appl. Surf. Sci. 2010, 257, 172.
doi: 10.1016/j.apsusc.2010.06.058 |
51 |
Yu L. ; Zhang X. ; Li G. ; Cao Y. ; Shao Y. ; Li D. Appl. Catal. B: Environ. 2016, 187, 301.
doi: 10.1016/j.apcatb.2016.01.045 |
52 |
Chen L. ; Yin S. -F. ; Luo S. -L. ; Huang R. ; Zhang Q. ; Hong T. ; Au P. C. T. Ind. Eng. Chem. Res. 2012, 51, 6760.
doi: 10.1021/ie300567y |
53 |
Wang J. -J. ; Zhai X. -Y. ; Zhang G. -Y. ; Zhang J. -B. ; Zhao Y.-F. Solid State Sci. 2020, 105, 106288.
doi: 10.1016/j.solidstatesciences.2020.106288 |
54 | Tian N. ; Huang H. ; Guo Y. ; He Y. ; Zhang Y. Appl. Surf. Sci. 2014, 322, 249. |
55 |
Hu J. ; Chen D. ; Li N. ; Xu Q. ; Li H. ; He J. ; Lu J. Appl. Catal. B: Environ. 2017, 217, 224.
doi: 10.1016/j.apcatb.2017.05.088 |
56 |
Dong F. ; Xiong T. ; Wang R. ; Sun Y. ; Jiang Y. Dalton Trans. 2014, 43, 6631.
doi: 10.1039/C3DT53383B |
57 |
Hou W. ; Cronin S. B. Adv. Funct. Mater. 2013, 23, 1612.
doi: 10.1002/adfm.201202148 |
58 |
Atay T. ; Song J.-H. ; Nurmikko A. V. Nano Letters 2004, 4, 1627.
doi: 10.1021/nl049215n |
59 |
Kolwas K. ; Derkachova A. ; Shopa M. J. Quant. Spectrosc. Radiat. Trans. 2009, 110, 1490.
doi: 10.1016/j.jqsrt.2009.03.020 |
60 |
Mock J. J. ; Barbic M. ; Smith D. R. ; Schultz D. A. ; Schultz S. J. Chem. Phys. 2002, 116, 6755.
doi: 10.1063/1.1462610 |
61 |
Kelly K. L. ; Coronado E. ; Zhao L. L. ; Schatz G. C. J. Phys. Chem. B 2003, 107, 668.
doi: 10.1021/jp026731y |
62 |
Li Q. ; Hao X. ; Guo X. ; Dong F. ; Zhang Y. Dalton Trans. 2015, 44, 8805.
doi: 10.1039/c5dt00844a |
63 |
Dong F. ; Li Q. ; Zhou Y. ; Sun Y. ; Zhang H. ; Wu Z. Dalton Trans. 2014, 43, 9468.
doi: 10.1039/c4dt00427b |
64 |
Dong F. ; Li P. ; Zhong J. ; Liu X. ; Zhang Y. ; Cen W. ; Huang H. Appl. Catal. A-Gen. 2016, 510, 161.
doi: 10.1016/j.apcata.2015.11.022 |
65 |
Dong F. ; Li Q. ; Sun Y. ; Ho W. ACS Catal. 2014, 4, 4341.
doi: 10.1021/cs501038q |
66 |
Dong X. ; Zhang W. ; Cui W. ; Sun Y. ; Huang H. ; Wu Z. ; Dong F. Catal. Sci. Technol. 2017, 7, 1324.
doi: 10.1039/C6CY02444K |
67 |
Guo L. ; Yang Z. ; Marcus K. ; Li Z. ; Luo B. ; Zhou L. ; Wang X. ; Du Y. ; Yang Y. Energy Environ. Sci. 2018, 11, 106.
doi: 10.1039/C7EE02464A |
68 |
Chen Y. ; Ji S. ; Chen C. ; Peng Q. ; Wang D. ; Li Y. Joule 2018, 2, 1242.
doi: 10.1016/j.joule.2018.06.019 |
69 |
Zhang J. Z. J. Phys. Chem. B 2000, 104, 7239.
doi: 10.1021/jp000594s |
70 |
Kubacka A. ; Fernández-García M. ; Colón G. Chem. Rev. 2012, 112, 1555.
doi: 10.1021/cr100454n |
71 |
Shao W. ; Wang H. ; Zhang X. Dalton Trans. 2018, 47, 12642.
doi: 10.1039/C8DT02613K |
72 | Wang Y. Q. ; Shen S. H. Acta Phys. -Chim. Sin. 2020, 36, 1905080. |
王亦清; 沈少华. 物理化学学报, 2020, 36, 1905080.
doi: 10.3866/pku.whxb201905080 |
|
73 |
Park H. S. ; Kweon K. E. ; Ye H. ; Paek E. ; Hwang G. S. ; Bard A. J. J. Phys. Chem. C 2011, 115, 17870.
doi: 10.1021/jp204492r |
74 |
Zhao Z. ; Sun Y. ; Dong F. ; Zhang Y. ; Zhao H. Rsc Adv. 2015, 5, 39549.
doi: 10.1039/C5RA03433G |
75 |
Chen P. ; Wang H. ; Liu H. ; Ni Z. ; Li J. ; Zhou Y. ; Dong F. Appl. Catal. B-Environ. 2019, 242, 19.
doi: 10.1016/j.apcatb.2018.09.078 |
76 |
Yuan C. ; Cui W. ; Sun Y. ; Wang J. ; Chen R. ; Zhang J. ; Zhang Y. ; Dong F. Chin. Chem. Lett. 2020, 31, 751.
doi: 10.1016/j.cclet.2019.09.033 |
77 |
Lei F. ; Zhang L. ; Sun Y. ; Liang L. ; Liu K. ; Xu J. ; Zhang Q. ; Pan B. ; Luo Y. ; Xie Y. Angew. Chem. Int. Edit. 2015, 54, 9266.
doi: 10.1002/anie.201503410 |
78 |
Mi Y. ; Wen L. ; Wang Z. ; Cao D. ; Xu R. ; Fang Y. ; Zhou Y. ; Lei Y. Nano Energy 2016, 30, 109.
doi: 10.1016/j.nanoen.2016.10.001 |
79 |
Xiong T. ; Cen W. ; Zhang Y. ; Dong F. ACS Catal. 2016, 6, 2462.
doi: 10.1021/acscatal.5b02922 |
80 |
Li J. ; Cui W. ; Sun Y. ; Chu Y. ; Cen W. ; Dong F. J. Mater. Chem. A 2017, 5, 9358.
doi: 10.1039/C7TA02183F |
81 |
Liu G. ; Niu P. ; Sun C. ; Smith S. C. ; Chen Z. ; Lu G. Q. ; Cheng H. -M. J. Am. Chem. Soc. 2010, 132, 11642.
doi: 10.1021/ja103798k |
82 |
Zai J. ; Cao F. ; Liang N. ; Yu K. ; Tian Y. ; Sun H. ; Qian X. J. Hazard. Mater. 2017, 321, 464.
doi: 10.1016/j.jhazmat.2016.09.034 |
83 |
Wu D. ; Yue S. ; Wang W. ; An T. ; Li G. ; Yip H. Y. ; Zhao H. ; Wong P. K. Appl. Catal. B-Environ. 2016, 192, 35.
doi: 10.1016/j.apcatb.2016.03.046 |
84 |
Yang W. ; Zhang L. ; Xie J. ; Zhang X. ; Liu Q. ; Yao T. ; Wei S. ; Zhang Q. ; Xie Y. Angew. Chem. Int. Edit. 2016, 55, 6716.
doi: 10.1002/anie.201602543 |
85 |
Huang H. ; Li X. ; Wang J. ; Dong F. ; Chu P. K. ; Zhang T. ; Zhang Y. ACS Catal. 2015, 5, 4094.
doi: 10.1021/acscatal.5b00444 |
86 |
Cui W. ; Li J. ; Sun Y. ; Wang H. ; Jiang G. ; Lee S. C. ; Dong F. Appl. Catal. B-Environ. 2018, 237, 938.
doi: 10.1016/j.apcatb.2018.06.071 |
87 |
Li J. ; Zhang Z. ; Cui W. ; Wang H. ; Cen W. ; Johnson G. ; Jiang G. ; Zhang S. ; Dong F. ACS Catal. 2018, 8, 8376.
doi: 10.1021/acscatal.8b02459 |
88 |
Marschall R. Adv. Funct. Mater. 2014, 24, 2421.
doi: 10.1002/adfm.201303214 |
89 |
An X. ; Wang Y. ; Lin J. ; Shen J. ; Zhang Z. ; Wang X. Sci. Bull. 2017, 62, 599.
doi: 10.1016/j.scib.2017.03.025 |
90 |
Zhou H. ; Qu Y. ; Zeid T. ; Duan X. Energy Environ. Sci. 2012, 5, 6732.
doi: 10.1039/C2EE03447F |
91 |
Wang Y. ; Wang Q. ; Zhan X. ; Wang F. ; Safdar M. ; He J. Nanoscale 2013, 5, 8326.
doi: 10.1039/C3NR01577G |
92 |
He W. ; Wu X. ; Li Y. ; Xiong J. ; Tang Z. ; Wei Y. ; Zhao Z. ; Zhang X. ; Liu J. Chin. Chem. Lett. 2020, 31, 2774.
doi: 10.1016/j.cclet.2020.07.019 |
93 |
Ao Y. ; Wang K. ; Wang P. ; Wang C. ; Hou J. Appl. Catal. B: Environ. 2016, 194, 157.
doi: 10.1016/j.apcatb.2016.04.050 |
94 |
Tian N. ; Huang H. ; Liu C. ; Dong F. ; Zhang T. ; Du X. ; Yu S. ; Zhang Y. J. Mater. Chem. A 2015, 3, 17120.
doi: 10.1039/C5TA03669K |
95 |
Zhang Y. ; Wang Q. ; Liu D. ; Wang Q. ; Li T. ; Wang Z. Appl. Surf. Sci. 2020, 521, 146434.
doi: 10.1016/j.apsusc.2020.146434 |
96 |
Yu W. ; Chen J. ; Shang T. ; Chen L. ; Gu L. ; Peng T. Appl. Catal. B: Environ. 2017, 219, 693.
doi: 10.1016/j.apcatb.2017.08.018 |
97 |
Di J. ; Chen C. ; Yang S. -Z. ; Ji M. ; Yan C. ; Gu K. ; Xia J. ; Li H. ; Li S. ; Liu Z. J. Mater. Chem. A 2017, 5, 14144.
doi: 10.1039/C7TA03624H |
98 |
Zhang N. ; Li X. ; Ye H. ; Chen S. ; Ju H. ; Liu D. ; Lin Y. ; Ye W. ; Wang C. ; Xu Q. ; et al J. Am. Chem. Soc. 2016, 138, 8928.
doi: 10.1021/jacs.6b04629 |
99 |
Liu Y. ; Xiao C. ; Li Z. ; Xie Y. Adv. Energy Mater. 2016, 6, 1600436.
doi: 10.1002/aenm.201600436 |
100 |
Wang H. ; He W. ; Dong X. a. ; Wang H. ; Dong F. Sci. Bull. 2018, 63, 117.
doi: 10.1016/j.scib.2017.12.013 |
101 | Huang J. J. ; D J. M. ; Du H. W. ; Xu G. S. ; Yuan Y. P. Acta Phys. -Chim. Sin. 2020, 36, 1905056. |
黄娟娟; 杜建梅; 杜海威; 徐更生; 袁玉鹏. 物理化学学报, 2020, 36, 1905056.
doi: 10.3866/PKU.WHXB201905056 |
|
102 |
Niu P. ; Liu G. ; Cheng H.-M. J. Phys. Chem. C 2012, 116, 11013.
doi: 10.1021/jp301026y |
103 |
Yuan J. ; Liu X. ; Tang Y. ; Zeng Y. ; Wang L. ; Zhang S. ; Cai T. ; Liu Y. ; Luo S. ; Pei Y. ; Liu C. Appl. Catal. B-Environ. 2018, 237, 24.
doi: 10.1016/j.apcatb.2018.05.064 |
104 |
Liao J. ; Cui W. ; Li J. ; Sheng J. ; Wang H. ; Dong X. a. ; Chen P. ; Jiang G. ; Wang Z. ; Dong F. Chem. Eng. J. 2020, 379, 122282.
doi: 10.1016/j.cej.2019.122282 |
105 |
Liu H. ; Chen P. ; Yuan X. ; Zhang Y. ; Huang H. ; Wang L. A. ; Dong F. Chin. J. Catal. 2019, 40, 620.
doi: 10.1016/S1872-2067(19)63279-1 |
106 |
Dong X. A. ; Cui W. ; Wang H. ; Li J. ; Sun Y. ; Wang H. ; Zhang Y. ; Huang H. ; Dong F. Sci. Bull. 2019, 64, 669.
doi: 10.1016/j.scib.2019.04.020 |
107 |
Chen P. ; Liu H. ; Sun Y. ; Li J. ; Cui W. ; Wang L. A. ; Zhang W. ; Yuan X. ; Wang Z. ; Zhang Y. ; Dong F. Appl. Catal. B-Environ. 2020, 264, 118545.
doi: 10.1016/j.apcatb.2019.118545 |
108 |
Wang H. ; Zhang W. ; Li X. ; Li J. ; Cen W. ; Li Q. ; Dong F. Appl. Catal. B-Environ. 2018, 225, 218.
doi: 10.1016/j.apcatb.2017.11.079 |
109 |
Dong X. A. ; Zhang W. ; Sun Y. ; Li J. ; Cen W. ; Cui Z. ; Huang H. ; Dong F. J. Catal. 2018, 357, 41.
doi: 10.1016/j.jcat.2017.10.004 |
110 |
Liao J. ; Li K. ; Ma H. ; Dong F. ; Zeng X. ; Sun Y. Chin. Chem. Lett. 2020,
doi: 10.1016/j.cclet.2020.03.081 |
111 |
Gao S. ; Gu B. ; Jiao X. ; Sun Y. ; Zu X. ; Yang F. ; Zhu W. ; Wang C. ; Feng Z. ; Ye B. ; Xie Y. J. Am. Chem. Soc. 2017, 139, 3438.
doi: 10.1021/jacs.6b11263 |
112 |
Zhu C. ; Liu T. ; Qian F. ; Han T. Y. -J. ; Duoss E. B. ; Kuntz J. D. ; Spadaccini C. M. ; Worsley M. A. ; Li Y. Nano Lett. 2016, 16, 3448.
doi: 10.1021/acs.nanolett.5b04965 |
113 |
Li S. ; Shi M. ; Yu J. ; Li S. ; Lei S. ; Lin L. ; Wang J. Chin. Chem. Lett. 2020,
doi: 10.1016/j.cclet.2020.09.056 |
114 |
Liu J. ACS Catal. 2017, 7, 34.
doi: 10.1021/acscatal.6b01534 |
115 |
Yang S. ; Gong Y. ; Zhang J. ; Zhan L. ; Ma L. ; Fang Z. ; Vajtai R. ; Wang X. ; Ajayan P. M. Adv. Mater. 2013, 25, 2452.
doi: 10.1002/adma.201204453 |
116 |
Niu P. ; Zhang L. ; Liu G. ; Cheng H.-M. Adv. Funct. Mater. 2012, 22, 4763.
doi: 10.1002/adfm.201200922 |
117 |
Ovchinnikov D. ; Allain A. ; Huang Y. -S. ; Dumcenco D. ; Kis A. ACS Nano 2014, 8, 8174.
doi: 10.1021/nn502362b |
118 |
Parzinger E. ; Miller B. ; Blaschke B. ; Garrido J. A. ; Ager J. W. ; Holleitner A. ; Wurstbauer U. ACS Nano 2015, 9, 11302.
doi: 10.1021/acsnano.5b04979 |
119 |
Lei F. ; Sun Y. ; Liu K. ; Gao S. ; Liang L. ; Pan B. ; Xie Y. J. Am. Chem. Soc. 2014, 136, 6826.
doi: 10.1021/ja501866r |
120 |
Liu J. ; Wang D. ; Wang M. ; Kong D. ; Zhang Y. ; Chen J.-F. ; Dai L. Chem. Eng. Technol. 2016, 39, 891.
doi: 10.1002/ceat.201500542 |
121 |
Xie J. ; Zhang X. ; Zhang H. ; Zhang J. ; Li S. ; Wang R. ; Pan B. ; Xie Y. Adv. Mater. 2017, 29, 1604765.
doi: 10.1002/adma.201604765 |
122 |
Li X. ; Bi W. ; Zhang L. ; Tao S. ; Chu W. ; Zhang Q. ; Luo Y. ; Wu C. ; Xie Y. Adv. Mater. 2016, 28, 2427.
doi: 10.1002/adma.201505281 |
123 |
Chen Z. ; Mitchell S. ; Vorobyeva E. ; Leary R. K. ; Hauert R. ; Furnival T. ; Ramasse Q. M. ; Thomas J. M. ; Midgley P.A. ; Dontsova D. ; et al Adv. Funct. Mater. 2017, 27, 1605785.
doi: 10.1002/adfm.201605785 |
124 |
Liu G. ; Robertson A. W. ; Li M. M.-J. ; Kuo W. C. H. ; Darby M. T. ; Muhieddine M. H. ; Lin Y. -C. ; Suenaga K. ; Stamatakis M. ; Warner J. H. ; Tsang S. C. E. Nat. Chem. 2017, 9, 810.
doi: 10.1038/nchem.2740 |
[1] | Yuehan Cao, Rui Guo, Minzhi Ma, Zeai Huang, Ying Zhou. Effects of Electron Density Variation of Active Sites in CO2 Activation and Photoreduction: A Review [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303029-. |
[2] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[3] | Muhammad Faizan, Guoqi Zhao, Tianxu Zhang, Xiaoyu Wang, Xin He, Lijun Zhang. Elastic and Thermoelectric Properties of Vacancy Ordered Double Perovskites A2BX6: A DFT Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303004-. |
[4] | Yaowu Luo, Dingsheng Wang. Enhancing Heterogeneous Catalysis by Electronic Property Regulation of Single Atom Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212020-0. |
[5] | Fengyu Gao, Hengheng Liu, Xiaolong Yao, Zaharaddeen Sani, Xiaolong Tang, Ning Luo, Honghong Yi, Shunzheng Zhao, Qingjun Yu, Yuansong Zhou. Spherical MnxCo3−xO4−ƞ Spinel with Mn-Enriched Surface as High-Efficiency Catalysts for Low-Temperature Selective Catalytic Reduction of NOx by NH3 [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212003-0. |
[6] | Tianmi Tang, Zhenlu Wang, Jingqi Guan. Electronic Structure Regulation of Single-Site M-N-C Electrocatalysts for Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2208033-0. |
[7] | Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301032-. |
[8] | Tianjie Wang, Yaowei Wang, Yuhui Chen, Jianpeng Liu, Huibing Shi, Limin Guo, Zhiwei Zhao, Chuntai Liu, Zhangquan Peng. Toward Practical Lithium-Air Batteries by Avoiding Negative Effects of CO2 [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2009071-. |
[9] | Xianhong Chen, Pengchao Ruan, Xianwen Wu, Shuquan Liang, Jiang Zhou. Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2111003-. |
[10] | Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204049-. |
[11] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
[12] | Yawen Li, Guangren Na, Shulin Luo, Xin He, Lijun Zhang. Structural, Thermodynamical and Electronic Properties of All-Inorganic Lead Halide Perovskites [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007015-. |
[13] | Tangfei Zheng, Jinxia Jiang, Jian Wang, Sufang Hu, Wei Ding, Zidong Wei. Regulation of Electrocatalysts Based on Confinement-Induced Properties [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011027-. |
[14] | Junjie Shi, Ziqi Hu, Yihao Yang, Yuxiang Bu, Zujin Shi. Stability and Formation Mechanism of Endohedral Metal Carbonitride Clusterfullerenes [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1907077-. |
[15] | Yiqing Wang,Shaohua Shen. Progress and Prospects of Non-Metal Doped Graphitic Carbon Nitride for Improved Photocatalytic Performances [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905080-. |
|