Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (4): 2208033.doi: 10.3866/PKU.WHXB202208033
Special Issue: Festschrift Honoring Professor Youchang Xie on his 90th Birthday
• REVIEW • Previous Articles Next Articles
Tianmi Tang, Zhenlu Wang, Jingqi Guan()
Received:
2022-08-24
Accepted:
2022-09-08
Published:
2022-09-14
Contact:
Jingqi Guan
E-mail:guanjq@jlu.edu.cn
Supported by:
Tianmi Tang, Zhenlu Wang, Jingqi Guan. Electronic Structure Regulation of Single-Site M-N-C Electrocatalysts for Carbon Dioxide Reduction[J]. Acta Phys. -Chim. Sin. 2023, 39(4), 2208033. doi: 10.3866/PKU.WHXB202208033
Fig 1
(a) Schematic of the synthesis process of the Fe/NG catalyst, (b) Schematic illustration of synthesis ofC-AFC@ZIF-8, (c) Schematic of the synthesis process of ZnO@ZIF-NiZn core-shell nanorods. (a) Reproduced with permission 37. Copyright 2018, Wiley-VCH. (b) Reproduced with permission 38. Copyright 2017, Elsevier Ltd.(c) Reproduced with permission 40. Copyright 2020, Elsevier B.V."
Fig 2
(a, b) Magnified HAADF-STEM images of Co—N2, (c) Low temperature STM image of FeN4/GN-2.7, (d) Simulated STM image for (c), (e) FE of CO for electrochemical CO2RR, (f) Fourier transform magnitudes of the experimental Fe K-edge EXAFS spectra, (g) The normalized Fe K-edge XANES spectra of Fe/NG control samples, (h) Normalized Fe K-edge XANES spectra, (i) Fe K-edge XANES and (j) Fourier transformed EXAFS spectra of FeSAs/CNF-900, The 57Fe Mössbauer transmission spectra measured for (k) FeSAs/CNF-900 and (l) Zn20Fe1—C-1000. (a–d) Reproduced with permission 52. Copyright 2018, Wiley-VCHVerlagGmbH&Co. KGaA, Weinheim. (e–h) Reproduced with permission 37.Copyright 2018, Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim. (i–l) Reproduced with permission 50. Copyright 2020, Elsevier B.V."
Fig 4
(a) Top (upper) and side (lower) views of atomistic structures of NiN2, NiN2-S, and NiN2-VS catalysts, (b) The calculated free energy diagrams for ECO2RR to CO on different catalysts, (c) The projected density ofstates (PDOS) of d orbitals of Ni atoms on NiN2-S and NiN2 catalysts, (d) The calculated free energy diagrams for HER on different catalysts, (e) Difference in limiting potentials for CO2 reduction and H2 evolution on different catalysts, (f) Different model structures of the catalysts, (g) Calculated Gibbs free energy diagrams for CO2-to-CO conversion on different catalysts, (h) The difference between the calculated limiting potentials for CO2 reduction and H2 evolution, (i) The proposed reaction pathways of CO2RR over Ni-SAs@FNC. (a–e) Reproduced with permission 82. Copyright 2021, Wiley-VCH. (f–i) Reproduced with permission 87. Copyright 2020, Elsevier B.V."
Fig 5
(a) Schematic of the synthesis process, (b) TEM images, (c) Low-resolution HAADF-STEM elemental mappings, (d) High-resolution HAADF-STEM images, (e) Fourier transformation of EXAFS spectra for the Ni K-edge, (f) FT-IR spectrum, (g) Free-energy diagram of CO2 electroreduction to CO, (h) Differential charge diagrams, (i) Adsorption energies of reaction intermediates, (j) Projected DOS of Ni 3d. Reproduced with permission 89. Copyright 2021, The Royal Society of Chemistry"
Fig 6
(a) LSV curves for different samples in Ar- and CO2-saturated 0.1 mol∙L−1 KHCO3, (b) Faradaic efficiencies and(c) partial current densities of CO, (d) TOFCO values for Co(qpy)/CNTs with different Co loadings, (e) The free energy diagrams for the CO2-to-CO conversion over different catalysts, (f) Optimized structures for the intermediates on Co(qpy), (g) PDOS of M 3d orbitals and C 2p orbitals, (h) LSV curves, (i) FECO and (j) jCO. Reproduced with permission 102. Copyright 2020, Elsevier Ltd."
Fig 7
(a) Schematic illustration of the synthesis of Ni-SA/NC, (b) HRTEM images, (c) HAADF-STEM image, (d) The free energy diagrams, (e) The partial density of states, (f) Contour maps of the electronic densities, (g) Charge density difference configurations, (h, i) Crystal orbital Hamilton population (COHP) between C coming from COOH* species and sites. Reproduced with permission 110. Copyright 2021, Elsevier B.V."
Fig 8
(a) Synthesis procedure of CuSAs/THCF, (b) Optimized atomic structures of CuSAs/TCNFs and proposedreaction paths for CO2 electroreduction, (c, d) Free energy diagram of CO2 to CO on pyridine N, Ni-N4, andCu-N4 structure, (e) Illustration of CO2 diffusion on two samples. Reproduced with permission 114. Copyright 2019, American Chemical Society."
Table 1
Comparison of CO2RR performance of M-N-C catalysts."
Catalyst | Active site | Electrolyte | Product | FE (%) | TOF | Ref. |
Fe/NG | Fe—N4 | 0.1 mol∙L−1 KHCO3 | CO | 80 | – | |
Fe-N-C | Fe—N4 | 0.1 mol∙L−1 KHCO3 | CO | 91 | – | |
Fe-N-C | Fe—N | 0.1 mol∙L−1 KHCO3 | CO | 65 | – | |
FeSAs/CNF-900 | Fe—N4 | 0.5 mol∙L−1 KHCO3 | CO | 86.9 | 639 h−1 | |
Fe3+-N-C | Fe—Nx | 0.5 mol∙L−1 KHCO3 | CO | 95 | – | |
Fe-N-C | Fe—N4 | 0.5 mol∙L−1 KHCO3 | CO | 94 | 0.13 s−1 | |
Fe-N4/CF | Fe—N4 | 0.5 mol∙L−1 KHCO3 | CO | 94.9 | – | |
Fe-N-C | Fe—N2+2−C8 | 0.5 mol∙L−1 KHCO3 | CO | 93 | – | |
Co1-N4 | Co—N4 | 0.5 mol∙L−1 KHCO3 | CO | 82 | 1455 h−1 | |
Co-N2 sample | Co—N2 | 0.5 mol∙L−1 NaOH | CO | 94 | 33000 h−1 | |
CoPc-1 | Co—N4 | 0.5 mol∙L−1 KHCO3 | CO | 94 | 0.29 s−1 | |
CoCoPCP/CNTs | Co—N4 | 0.5 mol∙L−1 KHCO3 | CO | 94 | 2.4 s−1 | |
CoTPP-CNT | Co—N4 | 0.5 mol∙L−1 KHCO3 | CO | > 90 | 2.75 s−1 | |
CoPc-CN | Co—N4 | 0.1 mol∙L−1 NaHCO3 | CO | 96 | 4.1 s−1 | |
CoFPc | Co—N4 | 0.5 mol∙L−1 NaHCO3 | CO | 93 | 2.1 s−1 | |
CoPPc/CNT | Co—N4 | 0.5 mol∙L−1 NaHCO3 | CO | 90 | 4900 h-1 | |
CoPc-MWCNT | Co—N4 | 0.5 mol∙L−1 KHCO3 | CH3OH | 19.5 | – | |
CoPc2 | Co—N4 | 0.5 mol∙L−1 NaHCO3 | CO | 95 | 2.7 s−1 | |
Co-N5/HNPCSs | Co—N5 | 0.2 mol∙L−1 NaHCO3 | CO | 99 | 480.2 h−1 | |
CoPc | Co—N4 | 0.5 mol∙L−1 KHCO3 | CO | 99 | – | |
Ni-N-C | Ni—N | 0.1 mol∙L−1 KHCO3 | CO | 85 | – | |
Ni-NG | Ni—N | 0.5 mol∙L−1 KHCO3 | CO | 95 | 2.1 × 10 | |
A-Ni-NG | Ni—N4 | 0.5 mol∙L−1 KHCO3 | CO | 97 | 14800h−1 | |
NC-CNTs(Ni) | Ni—N3 | 0.1 mol∙L−1 KHCO3 | CO | 90 | 12000 h−1 | |
Ni SAs/N-C | Ni—N3 | 0.5 mol∙L−1 KHCO3 | CO | 71.9 | 5273 h−1 | |
Cu-N-C-900 | Cu—N | 0.1 mol∙L−1 KHCO3 | CH4 | 38.6 | – | |
Cu-N-C-800 | Cu—N2 | 0.1 mol∙L−1 KHCO3 | C2H4 | 24.8 | – | |
CuPc | Cu—N4 | 0.5 mol∙L−1 KHCO3 | CH4 | 66 | – | |
CuZnDTA | Cu—N2 | 0.5 mol∙L−1 KHCO3 | CH3OH | 54.8 | – | |
CuSAs/TCNFs | Cu—N4 | 0.1 mol∙L−1 KHCO3 | CH3OH | 44 | – | |
CuZnDTA | Cu—N2 | 0.2 mol∙L−1 KHCO3 | C2H5OH | 31.4 | – | |
Cu-N-C | Cu—N4 | 0.1mol∙L−1 CsHCO3 | C2H5OH | 55 | – | |
ZIF-8 | Zn—N | 0.25 mol∙L−1 K2SO4 | CO | 81.0 | – | |
SA-Zn/MNC | Zn—N4 | 1 mol∙L−1 KHCO3 | CH4 | 85 | – | |
Zn-N-G-800 | Zn—N4 | 0.5 mol∙L−1 KHCO3 | CO | 91 | – | |
ZnNx/C | Zn—N4 | 0.5 mol∙L−1 KHCO3 | CO | 95 | 9969 h−1 | |
Snδ+/NG | Sn—N | 0.25 mol∙L−1 KHCO3 | HCOOH | 74.3 | 11930 h−1 | |
Sn-CF | Sn—N | 0.1 mol∙L−1 KHCO3 | CO | 91 | – | |
Sb SA/NC | Sb—N4 | 0.5 mol∙L−1 KHCO3 | HCOOM | 94 | – |
Fig 9
(a) XPS spectrum of N 1s for NiSA—N2—C, (b) Normalized Ni K-edge XANES spectra and (c) FT-EXAFS spectra of NiSA-Nx-C and Ni foil, (d) EXAFS fitting and optimized model for NiSA-N2-C, (e) Proposed reaction paths forCO2RR with NiSA-N2-C as a model, (f) Free-energy diagram of CO2 reduction to CO over NiSA-Nx-C catalysts, (g) DFT-based free energy profile for the optimized Cu—N2 and Cu—N4 models during the CO2ER, (h) DFT-based free energy profile for the optimized Cu—N2 and Cu—N4 models during the CO2ER under different applied voltages. (a–f) Reproduced with permission 158. Copyright 2019, Wiley-VCH. (g, h) Reproduced with permission 159. Copyright 2019, Wiley-VCH."
Fig 10
(a) Illustration of the synthesis process, (b, c) TEM image and HRTEM image, (d, e) Atomic-resolutionAC-STEM image and corresponding enlarged AC-STEM image, (f) The comparison of CO FEs of Ni-N4-PRO/C andNi-N4-O/C, (g) CO FEs of Ni-N4-O/C with and without 0.1 mol∙L−1 SCN− ions. Reproduced with permission 165. Copyright 2020, Wiley-VCH GmbH."
Fig 11
(a, b) XANES and EXAFS spectra at the Mn K-edge, (c) EXAFS fitting curves of Mn—NO/CNs in R-space, (d) WT-EXAFS plots of Mn-NO/CNs, MnO, and Mn foil, respectively, (e) Top views of Mn—NO3、Mn—N2O2、Mn—N3O and N2O2 configurations, (f) Calculation of the free energy evolution. Reproduced with permission 169. Copyright 2022, Wiley-VCH GmbH."
Fig 12
(a) Average FEs of HER, total CO2RR and (b) Average FEs of various reduction products over Cu—I atdifferent potentials, (c) Average FEs of CH4 at different potentials over Cu—Cl, Cu—Br, and Cu—I catalysts, (d) The partial current densities of HER, total CO2RR and CH4 for Cu—I, (e) In situ Raman spectra and(f) in situ ATR-SEIRAS spectra of Cu—I at different applied potentials. Reproduced with permission 176. Copyright 2022, The Royal Society of Chemistry."
1 |
Qiao, J.; Liu, Y.; Hong, F.; Zhang, JChem. Soc. Rev2014,43,631.
doi: 10.1039/C3CS60323G |
2 |
Spinner, N. S.; Vega, J. A.; Mustain, W. ECatal. Sci. Technol2012,2,19.
doi: 10.1039/C1CY00314C |
3 | 叶成玉, 郁晓菲, 李文翠, 贺雷, 郝广平, 陆安慧物理化学学报,2022,38,2004054. |
Ye, C.; Yu, X.; Li, W.; He, L.; Hao, G.; Lu, AActa Phys. -Chim. Sin2022,38,2004054. | |
4 | 黄小雄, 马英杰, 智林杰物理化学学报,2022,38,2011050. |
Huang, X.; Ma, Y.; Zhi, LActa Phys. -Chim. Sin2022,38,2011050. | |
5 |
Xiao, L.; Wang, Z.; Guan, JCoord. Chem. Rev2022,472,214777.
doi: 10.1016/j.ccr.2022.214777 |
6 |
Shakun, J. D.; Clark, P. U.; He, F.; Marcott, S. A.; Mix, A. C.; Liu, Z.; Otto-Bliesner, B.; Schmittner, A.; Bard, ENature2012,484,49.
doi: 10.1038/nature10915 |
7 |
Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. KNature2019,575,87.
doi: 10.1038/s41586-019-1681-6 |
8 |
Vasileff, A.; Xu, C.; Jiao, Y.; Zheng, Y.; Qiao, S.-ZChem2018,4,1809.
doi: 10.1016/j.chempr.2018.05.001 |
9 |
Jiao, Y.; Zheng, Y.; Chen, P.; Jaroniec, M.; Qiao, S.-ZJ. Am. Chem. Soc2017,139,18093.
doi: 10.1021/jacs.7b10817 |
10 |
Liu, J.; Guo, C.; Vasileff, A.; Qiao, SCurr. Opin. Green Sustain. Chem2017,1,1600006.
doi: 10.1002/smtd.201600006 |
11 |
Zhu, D. D.; Liu, J. L.; Qiao, S. ZAdv. Mater2016,28,3423.
doi: 10.1002/adma.201504766 |
12 |
Li, C. W.; Ciston, J.; Kanan, M. WNature2014,508,504.
doi: 10.1038/nature13249 |
13 |
Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, PNat. Commun2014,5,4948.
doi: 10.1038/ncomms5948 |
14 |
Li, K.; Peng, B.; Peng, TACS Catal2016,6,7485.
doi: 10.1021/acscatal.6b02089 |
15 |
Guan, J.; Berlinger, S. A.; Li, X.; Chao, Z.; Sousae Silva, V.; Banta, S.; West, A. CJ. Biotechnol2017,245,21.
doi: 10.1016/j.jbiotec.2017.02.004 |
16 |
Sandrini, G.; Matthijs, H. C. P.; Verspagen, J. M. H.; Muyzer, G.; Huisman, JISME J2014,8,589.
doi: 10.1038/ismej.2013.179 |
17 |
Atsonios, K.; Panopoulos, K. D.; Kakaras, EInt. J. Hydrog. Energy2016,41,792.
doi: 10.1016/j.ijhydene.2015.12.001 |
18 |
Lin, L.; Wang, K.; Yang, K.; Chen, X.; Fu, X.; Dai, WAppl. Catal., B2017,204,440.
doi: 10.1016/j.apcatb.2016.11.054 |
19 |
Wu, J.; Liu, M.; Sharma, P. P.; Yadav, R. M.; Ma, L.; Yang, Y.; Zou, X.; Zhou, X.-D.; Vajtai, R.; Yakobson, B. I.; et alNano Lett2016,16,466.
doi: 10.1021/acs.nanolett.5b04123 |
20 |
Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Cao, C.; et alNature2016,537,382.
doi: 10.1038/nature19060 |
21 |
Back, S.; Lim, J.; Kim, N.-Y.; Kim, Y.-H.; Jung, YChem. Sci2017,8,1090.
doi: 10.1039/c6sc03911a |
22 |
Xiang, Q.; Cheng, B.; Yu, JAppl. Surf. Sci2015,54,11350.
doi: 10.1002/anie.201411096 |
23 |
Long, R.; Li, Y.; Liu, Y.; Chen, S.; Zheng, X.; Gao, C.; He, C.; Chen, N.; Qi, Z.; Song, L.; et alJ. Am. Chem. Soc.2017,139,4486.
doi: 10.1021/jacs.7b00452 |
24 |
Xie, H.; Wang, J.; Ithisuphalap, K.; Wu, G.; Li, QJ. Energy Chem2017,26,1039.
doi: 10.1016/j.jechem.2017.10.025 |
25 |
Zhao, Z.; Lu, GJ. Phys. Chem. C2019,123,4380.
doi: 10.1021/acs.jpcc.8b12449 |
26 |
Wang, Y.; Chen, Z.; Han, P.; Du, Y.; Gu, Z.; Xu, X.; Zheng, GACS Catal2018,8,7113.
doi: 10.1021/acscatal.8b01014 |
27 |
Guan, A.; Chen, Z.; Quan, Y.; Peng, C.; Wang, Z.; Sham, T. -K.; Yang, C.; Ji, Y.; Qian, L.; Xu, X.; et alACS Energy Lett2020,5,1044.
doi: 10.1021/acsenergylett.0c00018 |
28 |
Yang, X.-F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, TAcc. Chem. Res2013,46,1740.
doi: 10.1021/ar300361m |
29 |
Zhu, C.; Fu, S.; Shi, Q.; Du, D.; Lin, YAngew. Chem. Int. Ed2017,56,13944.
doi: 10.1002/anie.201703864 |
30 |
Li, X.; Bi, W.; Chen, M.; Sun, Y.; Ju, H.; Yan, W.; Zhu, J.; Wu, X.; Chu, W.; Wu, C.; et alJ. Am. Chem. Soc.2017,139,14889.
doi: 10.1021/jacs.7b09074 |
31 | 程熠, 王坤, 亓月, 刘忠范物理化学学报,2022,38,2006046. |
Cheng, Y.; Wang, K.; Qi, Y.; Liu, ZActa Phys. -Chim. Sin2022,38,2006046. | |
32 |
Tang, T.; Wang, Z.; Guan, JAdv. Funct. Mater2022,32,2111504.
doi: 10.1002/adfm.202111504 |
33 |
Zhang, Q.; Guan, JAdv. Funct. Mater2020,30,2000768.
doi: 10.1002/adfm.202000768 |
34 |
Bai, X.; Wang, L.; Nan, B.; Tang, T.; Niu, X.; Guan, JNano Res2022,15,6019.
doi: 10.1007/s12274-022-4293-7 |
35 |
Wang, T.; Xu, L.; Chen, Z.; Guo, L.; Zhang, Y.; Li, R.; Peng, TAppl. Catal., B2021,291,120128.
doi: 10.1016/j.apcatb.2021.120128 |
36 |
Zhu, M.; Ye, R.; Jin, K.; Lazouski, N.; Manthiram, KACS Energy Lett2018,3,1381.
doi: 10.1021/acsenergylett.8b00519 |
37 |
Zhang, C.; Yang, S.; Wu, J.; Liu, M.; Yazdi, S.; Ren, M.; Sha, J.; Zhong, J.; Nie, K.; Jalilov, A. S.; et alAdv. Energy Mater2018,8,1703487.
doi: 10.1002/aenm.201703487 |
38 |
Ye, Y.; Cai, F.; Li, H.; Wu, H.; Wang, G.; Li, Y.; Miao, S.; Xie, S.; Si, R.; Wang, J.; et alNano Energy2017,38,281.
doi: 10.1016/j.nanoen.2017.05.042 |
39 |
Shi, P.-C.; Yi, J.-D.; Liu, T.-T.; Li, L.; Zhang, L.-J.; Sun, C.-F.; Wang, Y.-B.; Huang, Y.-B.; Cao, RJ. Mater. Chem. A2017,5,12322.
doi: 10.1039/C7TA02999C |
40 |
Hou, Y.; Liang, Y.-L.; Shi, P.-C.; Huang, Y.-B.; Cao, RAppl. Catal., B2020,271,118929.
doi: 10.1016/j.apcatb.2020.118929 |
41 |
Song, X.; Chen, S.; Guo, L.; Sun, Y.; Li, X.; Cao, X.; Wang, Z.; Sun, J.; Lin, C.; Wang, YAdv. Energy Mater2018,8,1801101.
doi: 10.1002/aenm.201801101 |
42 |
Ye, L.; Chai, G.; Wen, ZAdv. Funct. Mater2017,27,1606190.
doi: 10.1002/adfm.201606190 |
43 |
Guan, JJ. Power Sources2021,506,230143.
doi: 10.1016/j.jpowsour.2021.230143 |
44 |
Wang, X.; Chen, Z.; Zhao, X.; Yao, T.; Chen, W.; You, R.; Zhao, C.; Wu, G.; Wang, J.; Huang, W.; et alAngew. Chem. Int. Ed2018,57,1944.
doi: 10.1002/anie.201712451 |
45 |
Wang, Y.; Mao, J.; Meng, X.; Yu, L.; Deng, D.; Bao, XChem. Rev2019,119,1806.
doi: 10.1021/acs.chemrev.8b00501 |
46 |
Han, J.; Zhang, M.; Bai, X.; Duan, Z.; Tang, T.; Guan, JInorg. Chem. Front2022,9,3559.
doi: 10.1039/D2QI00722C |
47 |
Bai, X.; Duan, Z.; Nan, B.; Wang, L.; Tang, T.; Guan, JChin. J. Catal2022,43,2240.
doi: 10.1016/S1872-2067(21)64033-0 |
48 |
Tang, T.; Wang, Z.; Guan, JChin. J. Catal2022,43,636.
doi: 10.1016/S1872-2067(21)63945-1 |
49 |
Ao, X.; Zhang, W.; Li, Z.; Li, J. -G.; Soule, L.; Huang, X.; Chiang, W. -H.; Chen, H. M.; Wang, C.; Liu, M.; et alACS Nano2019,13,11853.
doi: 10.1021/acsnano.9b05913 |
50 |
Chen, X.; Ma, D.-D.; Chen, B.; Zhang, K.; Zou, R.; Wu, X.-T.; Zhu, Q.-LAppl. Catal., B2020,267,118720.
doi: 10.1016/j.apcatb.2020.118720 |
51 |
Li, X.; Yang, X.; Zhang, J.; Huang, Y.; Liu, BACS Catal2019,9,2521.
doi: 10.1021/acscatal.8b04937 |
52 |
Deng, D.; Chen, X.; Yu, L.; Wu, X.; Liu, Q.; Liu, Y.; Yang, H.; Tian, H.; Hu, Y.; Du, P.; et alSci. Adv2015,1,e1500462.
doi: 10.1126/sciadv.1500462 |
53 |
Wang, Y.; Cao, L.; Libretto, N. J.; Li, X.; Li, C.; Wan, Y.; He, C.; Lee, J.; Gregg, J.; Zong, H.; et alJ. Am. Chem. Soc.2019,141,16635.
doi: 10.1021/jacs.9b05766 |
54 | González-Cervantes, E.; Crisóstomo, A. A.; Gutiérrez-Alejandre, A.; Varela, A. S. 2019, 11, 4854. doi: 10.1002/cctc.201901196 |
55 |
Huan, T. N.; Ranjbar, N.; Rousse, G.; Sougrati, M.; Zitolo, A.; Mougel, V.; Jaouen, F.; Fontecave, MACS Catal2017,7,1520.
doi: 10.1021/acscatal.6b03353 |
56 |
Leonard, N.; Ju, W.; Sinev, I.; Steinberg, J.; Luo, F.; Varela, A. S.; Roldan Cuenya, B.; Strasser, PChem. Sci2018,9,5064.
doi: 10.1039/C8SC00491A |
57 |
Varela, A. S.; Kroschel, M.; Reier, T.; Strasser, PCatal. Today2016,260,8.
doi: 10.1016/j.cattod.2015.06.009 |
58 |
Liu, Z.; Yan, T.; Shi, H.; Pan, H.; Cheng, Y.; Kang, PACS Appl. Mater. Interfaces2022,14,7900.
doi: 10.1021/acsami.1c21242 |
59 |
Varela, A. S.; Kroschel, M.; Leonard, N. D.; Ju, W.; Steinberg, J.; Bagger, A.; Rossmeisl, J.; Strasser, PACS Energy Lett2018,3,812.
doi: 10.1021/acsenergylett.8b00273 |
60 |
Yu, Z.-L.; Wu, S.-Q.; Chen, L.-W.; Hao, Y.-C.; Su, X.; Zhu, Z.; Gao, W.-Y.; Wang, B.; Yin, A.-XACS Appl. Mater. Interfaces2022,14,10648.
doi: 10.1021/acsami.1c16689 |
61 |
König, M.; Vaes, J.; Klemm, E.; Pant, DiScience2019,19,135.
doi: 10.1016/j.isci.2019.07.014 |
62 |
Shen, J.; Kortlever, R.; Kas, R.; Birdja, Y. Y.; Diaz-Morales, O.; Kwon, Y.; Ledezma-Yanez, I.; Schouten, K. J. P.; Mul, G.; Koper, M. T. MNat. Commun2015,6,8177.
doi: 10.1038/ncomms9177 |
63 |
Wang, H.; Maiyalagan, T.; Wang, XACS Catal2012,2,781.
doi: 10.1021/cs200652y |
64 |
Chai, G.-L.; Guo, Z.-XChem. Sci2016,7,1268.
doi: 10.1039/C5SC03695J |
65 |
Liu, Y.; Zhao, J.; Cai, QPhys. Chem. Chem. Phys2016,18,5491.
doi: 10.1039/C5CP07458D |
66 |
Yoo, J. S.; Christensen, R.; Vegge, T.; Nørskov, J. K.; Studt, FChemSusChem2016,9,358.
doi: 10.1002/cssc.201501197 |
67 |
Hansen, H. A.; Varley, J. B.; Peterson, A. A.; Nørskov, J. KJ. Phys. Chem. Lett2013,4,388.
doi: 10.1021/jz3021155 |
68 |
Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. FACS Catal2017,7,4822.
doi: 10.1021/acscatal.7b00687 |
69 |
Nie, X.; Esopi, M. R.; Janik, M. J.; Asthagiri, AAngew. Chem. Int. Ed2013,52,2459.
doi: 10.1002/anie.201208320 |
70 |
Zheng, Y.; Vasileff, A.; Zhou, X.; Jiao, Y.; Jaroniec, M.; Qiao, S.-ZJ. Am. Chem. Soc2019,141,7646.
doi: 10.1021/jacs.9b02124 |
71 |
Zhu, M.; Chen, J.; Guo, R.; Xu, J.; Fang, X.; Han, Y.-FAppl. Catal. B2019,251,112.
doi: 10.1016/j.apcatb.2019.03.047 |
72 |
Zhao, Y.; Liang, J.; Wang, C.; Ma, J.; Wallace, G. GAdv. Energy Mater2018,8,1702524.
doi: 10.1002/aenm.201702524 |
73 |
Huang, Y.; Handoko, A. D.; Hirunsit, P.; Yeo, B. SACS Catal2017,7,1749.
doi: 10.1021/acscatal.6b03147 |
74 |
Fan, L.; Xia, C.; Yang, F.; Wang, J.; Wang, H.; Lu, YSci. Adv2020,6,1.
doi: 10.1126/sciadv.aay3111 |
75 |
Yang, K. D.; Lee, C. W.; Jin, K.; Im, S. W.; Nam, K. TJ. Phys. Chem. Lett2017,8,538.
doi: 10.1021/acs.jpclett.6b02748 |
76 |
Schouten, K. J. P.; Qin, Z.; Pérez Gallent, E.; Koper, M. T. MJ. Am. Chem. Soc2012,134,9864.
doi: 10.1021/ja302668n |
77 |
Montoya, J. H.; Shi, C.; Chan, K.; Nørskov, J. KJ. Phys. Chem. Lett2015,6,2032.
doi: 10.1021/acs.jpclett.5b00722 |
78 |
Nam, D.-H.; De Luna, P.; Rosas-Hernández, A.; Thevenon, A.; Li, F.; Agapie, T.; Peters, J. C.; Shekhah, O.; Eddaoudi, M.; Sargent, E. HNat. Mater2020,19,266.
doi: 10.1038/s41563-020-0610-2 |
79 |
Karapinar, D.; Huan, N. T.; Ranjbar Sahraie, N.; Li, J.; Wakerley, D.; Touati, N.; Zanna, S.; Taverna, D.; Galvão Tizei, L. H.; Zitolo, A.; et alAngew. Chem. Int. Ed.2019,58,15098.
doi: 10.1002/anie.201907994 |
80 |
Zhao, K.; Nie, X.; Wang, H.; Chen, S.; Quan, X.; Yu, H.; Choi, W.; Zhang, G.; Kim, B.; Chen, J. GNat. Commun2020,11,2455.
doi: 10.1038/s41467-020-16381-8 |
81 |
Pan, F.; Li, B.; Xiang, X.; Wang, G.; Li, YACS Catal2019,9,2124.
doi: 10.1021/acscatal.9b00016 |
82 |
Jia, C.; Tan, X.; Zhao, Y.; Ren, W.; Li, Y.; Su, Z.; Smith, S. C.; Zhao, CAngew. Chem. Int. Ed2021,60,23342.
doi: 10.1002/anie.202109373 |
83 |
Boppella, R.; Austeria P, M.; Kim, Y.; Kim, E.; Song, I.; Eom, Y.; Kumar, D. P.; Balamurugan, M.; Sim, E.; Kim, D. H.; et alAdv. Funct. Mater2022,2202351.
doi: 10.1002/adfm.202202351 |
84 |
Ni, W.; Liu, Z.; Zhang, Y.; Ma, C.; Deng, H.; Zhang, S.; Wang, SAdv. Mater2021,33,2003238.
doi: 10.1002/adma.202003238 |
85 |
Ito, Y.; Cong, W.; Fujita, T.; Tang, Z.; Chen, MAngew. Chem. Int. Ed2015,54,2131.
doi: 10.1002/anie.201410050 |
86 |
Pan, F.; Li, B.; Sarnello, E.; Hwang, S.; Gang, Y.; Feng, X.; Xiang, X.; Adli, N. M.; Li, T.; Su, D.; et alNano Energy2020,68,104384.
doi: 10.1016/j.nanoen.2019.104384 |
87 |
Han, S.-G.; Ma, D.-D.; Zhou, S.-H.; Zhang, K.; Wei, W.-B.; Du, Y.; Wu, X.-T.; Xu, Q.; Zou, R.; Zhu, Q.-LAppl. Catal. B2021,283,119591.
doi: 10.1016/j.apcatb.2020.119591 |
88 |
Chen, Z.; Zhang, X.; Jiao, M.; Mou, K.; Zhang, X.; Liu, LAdv. Energy Mater2020,10,1903664.
doi: 10.1002/aenm.201903664 |
89 |
Chen, Z.; Zhang, X.; Liu, W.; Jiao, M.; Mou, K.; Zhang, X.; Liu, LEnergy Environ. Sci2021,14,2349.
doi: 10.1039/D0EE04052E |
90 |
Yang, X.; Cheng, J.; Fang, B.; Xuan, X.; Liu, N.; Yang, X.; Zhou, JNanoscale2020,12,18437.
doi: 10.1039/D0NR04391E |
91 |
>Wu, D.; Li, J.; Xu, S.; Xie, Q.; Pan, Y.; Liu, X.; Ma, R.; Zheng, H.; Gao, M.; Wang, W.; et alJ. Am. Chem. Soc.2020,142,19602.
doi: 10.1021/jacs.0c08360 |
92 |
Sui, C.; Tan, R.; Chen, Y.; Yin, G.; Wang, Z.; Xu, W.; Li, XBioconjug. Chem2021,32,318.
doi: 10.1021/acs.bioconjchem.0c00694 |
93 |
Zhang, Q.; Jiang, H.; Niu, D.; Zhang, X.; Sun, S.; Hu, SChemistrySelect2019,4,4398.
doi: 10.1002/slct.201900690 |
94 |
Lin, L.; Li, H.; Yan, C.; Li, H.; Si, R.; Li, M.; Xiao, J.; Wang, G.; Bao, XAdv. Mater2019,31,1903470.
doi: 10.1002/adma.201903470 |
95 |
Pan, F.; Zhao, H.; Deng, W.; Feng, X.; Li, YElectrochim. Acta2018,273,154.
doi: 10.1016/j.electacta.2018.04.047 |
96 |
Ao, C.; Zhao, W.; Ruan, S.; Qian, S.; Liu, Y.; Wang, L.; Zhang, LSustain. Energ. Fuels2020,4,6156.
doi: 10.1039/D0SE01127D |
97 |
Varela, A. S.; Ranjbar Sahraie, N.; Steinberg, J.; Ju, W.; Oh, H.-S.; Strasser, PAngew. Chem. Int. Ed2015,54,10758.
doi: 10.1002/anie.201502099 |
98 |
Abe, T.; Yoshida, T.; Tokita, S.; Taguchi, F.; Imaya, H.; Kaneko, MJ. Electroanal. Chem1996,412,125.
doi: 10.1016/0022-0728(96)04631-1 |
99 |
Lin, S.; Diercks, C. S.; Zhang, Y.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; et alScience2015,349,6253.
doi: 10.1126/science.aac83 |
100 |
Zhu, H.-L.; Zheng, Y.-Q.; Shui, MACS Appl. Energy Mater2020,3,3893.
doi: 10.1021/acsaem.0c00306 |
101 |
Gonglach, S.; Paul, S.; Haas, M.; Pillwein, F.; Sreejith, S. S.; Barman, S.; De, R.; Müllegger, S.; Gerschel, P.; Apfel, U. -P.; et alNat. Commun2019,10,3864.
doi: 10.1038/s41467-019-11868-5 |
102 |
Chen, Z.; Zhang, J.; Zhang, C.; Cui, R.; Tan, M.; Guo, S.; Wang, H.; Jiao, J.; Lu, TJ. Power Sources2022,519,230788.
doi: 10.1016/j.jpowsour.2021.230788 |
103 |
Yuan, C.-Z.; Li, H.-B.; Jiang, Y.-F.; Liang, K.; Zhao, S.-J.; Fang, X.-X.; Ma, L.-B.; Zhao, T.; Lin, C.; Xu, A.-WJ. Mater. Chem. A2019,7,6894.
doi: 10.1039/C8TA11500A |
104 |
Pan, F.; Deng, W.; Justiniano, C.; Li, YAppl. Catal. B2018,226,463.
doi: 10.1016/j.apcatb.2018.01.001 |
105 |
Ju, W.; Bagger, A.; Hao, G.-P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, PNat. Commun2017,8,944.
doi: 10.1038/s41467-017-01035-z |
106 |
Bi, W.; Li, X.; You, R.; Chen, M.; Yuan, R.; Huang, W.; Wu, X.; Chu, W.; Wu, C.; Xie, YAdv. Mater2018,30,1706617.
doi: 10.1002/adma.201706617 |
107 |
Tan, X.; Yu, C.; Cui, S.; Ni, L.; Guo, W.; Wang, Z.; Chang, J.; Ren, Y.; Yu, J.; Huang, H.; et alChem. Eng. J.2021,131965.
doi: 10.1016/j.cej.2021.131965 |
108 |
Wang, W.-J.; Cao, C.; Wang, K.; Zhou, TInorg. Chem. Front2021,8,2542.
doi: 10.1039/D1QI00126D |
109 |
Yuan, C.-Z.; Liang, K.; Xia, X.-M.; Yang, Z. K.; Jiang, Y.-F.; Zhao, T.; Lin, C.; Cheang, T.-Y.; Zhong, S.-L.; Xu, A.-WCatal. Sci. Technol2019,9,3669.
doi: 10.1039/C9CY00363K |
110 |
Wang, X.; Ding, S.; Yue, T.; Zhu, Y.; Fang, M.; Li, X.; Xiao, G.; Zhu, Y.; Dai, LNano Energy2021,82,105689.
doi: 10.1016/j.nanoen.2020.105689 |
111 |
Cheng, H.; Wu, X.; Li, X.; Nie, X.; Fan, S.; Feng, M.; Fan, Z.; Tan, M.; Chen, Y.; He, GChem. Eng. J2021,407,126842.
doi: 10.1016/j.cej.2020.126842 |
112 |
Chen, S.; Li, Y.; Bu, Z.; Yang, F.; Luo, J.; An, Q.; Zeng, Z.; Wang, J.; Deng, SJ. Mater. Chem. A2021,9,1705.
doi: 10.1039/D0TA08496D |
113 |
Xuan, X.; Cheng, J.; Yang, X.; Zhou, JACS Sustain. Chem. Eng2020,8,1679.
doi: 10.1021/acssuschemeng.9b07258 |
114 |
Yang, H.; Wu, Y.; Li, G.; Lin, Q.; Hu, Q.; Zhang, Q.; Liu, J.; He, CJ. Am. Chem. Soc2019,141,12717.
doi: 10.1021/jacs.9b04907 |
115 |
Zang, D.; Gao, X. J.; Li, L.; Wei, Y.; Wang, HNano Res2022,
doi: 10.1007/s12274-022-4698-3 |
116 |
Chen, J.; Li, Z.; Wang, X.; Sang, X.; Zheng, S.; Liu, S.; Yang, B.; Zhang, Q.; Lei, L.; Dai, L.; et alAngew. Chem. Int. Ed.2021,61,e202111683.
doi: 10.1002/anie.202111683 |
117 |
Wang, N.; Liu, Z.; Ma, J.; Liu, J.; Zhou, P.; Chao, Y.; Ma, C.; Bo, X.; Liu, J.; Hei, Y.; et alACS Sustain. Chem. Eng.2020,8,13813.
doi: 10.1021/acssuschemeng.0c05158 |
118 |
Zhang, S.; Kang, P.; Meyer, T. JJ. Am. Chem. Soc2014,136,1734.
doi: 10.1021/ja4113885 |
119 |
Lei, F.; Liu, W.; Sun, Y.; Xu, J.; Liu, K.; Liang, L.; Yao, T.; Pan, B.; Wei, S.; Xie, YNat. Commun2016,7,12697.
doi: 10.1038/ncomms12697 |
120 |
Zu, X.; Li, X.; Liu, W.; Sun, Y.; Xu, J.; Yao, T.; Yan, W.; Gao, S.; Wang, C.; Wei, S.; et alAdv. Mater2019,31,1808135.
doi: 10.1002/adma.201808135 |
121 |
Jia, M.; Hong, S.; Wu, T.-S.; Li, X.; Soo, Y.-L.; Sun, ZChem. Commun2019,55,12024.
doi: 10.1039/C9CC06178A |
122 |
Jiang, Z.; Wang, T.; Pei, J.; Shang, H.; Zhou, D.; Li, H.; Dong, J.; Wang, Y.; Cao, R.; Zhuang, Z.; et alEnergy Environ. Sci.2020,13,2856.
doi: 10.1039/d0ee01486a |
123 |
Gu, J.; Hsu, C.-S.; Bai, L.; Chen Hao, M.; Hu, XScience2019,364,1091.
doi: 10.1126/science.aaw7515 |
124 |
Wang, Y.; Wang, M.; Zhang, Z.; Wang, Q.; Jiang, Z.; Lucero, M.; Zhang, X.; Li, X.; Gu, M.; Feng, Z.; et alACS Catal.2019,9,6252.
doi: 10.1021/acscatal.9b01617 |
125 |
Zhang, Z.; Ma, C.; Tu, Y.; Si, R.; Wei, J.; Zhang, S.; Wang, Z.; Li, J.-F.; Wang, Y.; Deng, DNano Res2019,12,2313.
doi: 10.1007/s12274-019-2316-9 |
126 |
Pan, F.; Zhang, H.; Liu, K.; Cullen, D.; More, K.; Wang, M.; Feng, Z.; Wang, G.; Wu, G.; Li, YACS Catal2018,8,3116.
doi: 10.1021/acscatal.8b00398 |
127 |
Geng, Z.; Cao, Y.; Chen, W.; Kong, X.; Liu, Y.; Yao, T.; Lin, YAppl. Catal. B2019,240,234.
doi: 10.1016/j.apcatb.2018.08.075 |
128 |
Luangchaiyaporn, J.; Wielend, D.; Solonenko, D.; Seelajaroen, H.; Gasiorowski, J.; Monecke, M.; Salvan, G.; Zahn, D. R. T.; Sariciftci, N. S.; Thamyongkit, PElectrochim. Acta2021,367,137506.
doi: 10.1016/j.electacta.2020.137506 |
129 |
Hu, X.-M.; Rønne, M. H.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, KAngew. Chem. Int. Ed2017,56,6468.
doi: 10.1002/anie.201701104 |
130 |
Morlanés, N.; Takanabe, K.; Rodionov, VACS Catal2016,6,3092.
doi: 10.1021/acscatal.6b00543 |
131 |
Han, N.; Wang, Y.; Ma, L.; Wen, J.; Li, J.; Zheng, H.; Nie, K.; Wang, X.; Zhao, F.; Li, Y.; et alChem2017,3,652.
doi: 10.1016/j.chempr.2017.08.002 |
132 |
Boutin, E.; Wang, M.; Lin, J. C.; Mesnage, M.; Mendoza, D.; Lassalle-Kaiser, B.; Hahn, C.; Jaramillo, T. F.; Robert, MAngew. Chem. Int. Ed2019,58,16172.
doi: 10.1002/anie.201909257 |
133 |
Wang, M.; Torbensen, K.; Salvatore, D.; Ren, S.; Joulié, D.; Dumoulin, F.; Mendoza, D.; Lassalle-Kaiser, B.; Işci, U.; Berlinguette, C. P.; et alNat. Commun.2019,10,3602.
doi: 10.1038/s41467-019-11542-w |
134 |
Pan, Y.; Lin, R.; Chen, Y.; Liu, S.; Zhu, W.; Cao, X.; Chen, W.; Wu, K.; Cheong, W. -C.; Wang, Y.; et alJ. Am. Chem. Soc.2018,140,4218.
doi: 10.1021/jacs.8b00814 |
135 |
Zhang, Z.; Xiao, J.; Chen, X. -J.; Yu, S.; Yu, L.; Si, R.; Wang, Y.; Wang, S.; Meng, X.; Wang, Y.; et alAngew. Chem. Int. Ed.2018,57,16339.
doi: 10.1002/anie.201808593 |
136 |
Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; et alEnergy Environ. Sci.2018,11,893.
doi: 10.1039/c7ee03245e |
137 |
Yang, H. B.; Hung, S. -F.; Liu, S.; Yuan, K.; Miao, S.; Zhang, L.; Huang, X.; Wang, H. -Y.; Cai, W.; Chen, R.; et alNat. Energy2018,3,140.
doi: 10.1038/s41560-017-0078-8 |
138 |
Fan, Q.; Hou, P.; Choi, C.; Wu, T. S.; Hong, S.; Li, F.; Soo, Y. L.; Kang, P.; Jung, Y.; Sun, ZAdv. Energy Mater2019,10,1903068.
doi: 10.1002/aenm.201903068 |
139 |
Zhao, C.; Dai, X.; Yao, T.; Chen, W.; Wang, X.; Wang, J.; Yang, J.; Wei, S.; Wu, Y.; Li, YJ. Am. Chem. Soc2017,139,8078.
doi: 10.1021/jacs.7b02736 |
140 |
Weng, Z.; Wu, Y.; Wang, M.; Jiang, J.; Yang, K.; Huo, S.; Wang, X. -F.; Ma, Q.; Brudvig, G. W.; Batista, V. S.; et alNat. Commun.2018,9,415.
doi: 10.1038/s41467-018-02819-7 |
141 |
Albo, J.; Vallejo, D.; Beobide, G.; Castillo, O.; Castaño, P.; Irabien, AChemSusChem2017,10,1100.
doi: 10.1002/cssc.v10.6 |
142 |
Jiang, X.; Li, H.; Xiao, J.; Gao, D.; Si, R.; Yang, F.; Li, Y.; Wang, G.; Bao, XNanoEnergy2018,52,345.
doi: 10.1016/j.nanoen.2018.07.047 |
143 |
Han, L.; Song, S.; Liu, M.; Yao, S.; Liang, Z.; Cheng, H.; Ren, Z.; Liu, W.; Lin, R.; Qi, G.; et alJ. Am. Chem. Soc2020,142,12563.
doi: 10.1021/jacs.9b12111 |
144 |
Chen, Z.; Mou, K.; Yao, S.; Liu, LChemSusChem2018,11,2944.
doi: 10.1002/cssc.201800925 |
145 |
Yang, F.; Song, P.; Liu, X.; Mei, B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, WAngew. Chem. Int. Ed2018,57,12303.
doi: 10.1002/anie.201805871 |
146 |
Wen, X.; Bai, L.; Li, M.; Guan, JACS Sustain. Chem. Eng2019,7,9249.
doi: 10.1021/acssuschemeng.9b00105 |
147 |
Wen, X.; Qi, H.; Cheng, Y.; Zhang, Q.; Hou, C.; Guan, JChin. J. Chem2020,38,941.
doi: 10.1002/cjoc.202000073 |
148 |
Guan, J.; Duan, Z.; Zhang, F.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q.; Chen, J. Q.; Tang, C.; Li, CNat. Catal2018,1,870.
doi: 10.1038/s41929-018-0158-6 |
149 |
Bai, L.; Duan, Z.; Wen, X.; Si, R.; Guan, JAppl. Catal. B2019,257,117930.
doi: 10.1016/j.apcatb.2019.117930 |
150 |
Feng, J.; Gao, H.; Zheng, L.; Chen, Z.; Zeng, S.; Jiang, C.; Dong, H.; Liu, L.; Zhang, S.; Zhang, XNat. Commun2020,11,4341.
doi: 10.1038/s41467-020-18143-y |
151 |
Zhang, H.; Li, J.; Xi, S.; Du, Y.; Hai, X.; Wang, J.; Xu, H.; Wu, G.; Zhang, J.; Lu, J.; et alAngew. Chem. Int. Ed.2019,58,14871.
doi: 10.1002/anie.201906079 |
152 |
Zhong, H.; Meng, F.; Zhang, Q.; Liu, K.; Zhang, XNano Res2019,12,2318.
doi: 10.1007/s12274-019-2339-2 |
153 |
An, B.; Zhou, J.; Zhu, Z.; Li, Y.; Wang, L.; Zhang, JFuel2022,310,122472.
doi: 10.1016/j.fuel.2021.122472 |
154 |
Wang, C.; Zhang, D.-H.; Zheng, W.-H.; Zhu, C.-Y.; Zhang, M.; Geng, Y.; Su, Z.-MAppl. Surf. Sci2022,573,151544.
doi: 10.1016/j.apsusc.2021.151544 |
155 |
Li, Q. -X.; Si, D. -H.; Lin, W.; Wang, Y. -B.; Zhu, H. -J.; Huang, Y. -B.; Cao, R.Sci. China: Chem.2022,
doi: 10.1007/s11426-022-1263-5 |
156 |
Chen, C.; Sun, X.; Yan, X.; Wu, Y.; Liu, H.; Zhu, Q.; Bediako, B. B. A.; Han, BAngew. Chem. Int. Ed2020,59,11123.
doi: 10.1002/anie.202004226 |
157 |
Liu, F.-W.; Bi, J.; Sun, Y.; Luo, S.; Kang, PChemSusChem2018,11,1656.
doi: 10.1002/cssc.201800136 |
158 |
Gong, Y.-N.; Jiao, L.; Qian, Y.; Pan, C.-Y.; Zheng, L.; Cai, X.; Liu, B.; Yu, S.-H.; Jiang, H.-LAngew. Chem. Int. Ed2020,59,2705.
doi: 10.1002/anie.201914977 |
159 |
Zheng, W.; Yang, J.; Chen, H.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z.; et alAdv. Funct. Mater.2019,30,1907658.
doi: 10.1002/adfm.201907658 |
160 |
Ye, L.; Ying, Y.; Sun, D.; Zhang, Z.; Fei, L.; Wen, Z.; Qiao, J.; Huang, HAngew. Chem. Int. Ed2020,59,3244.
doi: 10.1002/anie.201912751 |
161 |
Koshy, D. M.; Chen, S.; Lee, D. U.; Stevens, M. B.; Abdellah, A. M.; Dull, S. M.; Chen, G.; Nordlund, D.; Gallo, A.; Hahn, C.; et alAngew. Chem. Int. Ed.2020,59,4043.
doi: 10.1002/anie.201912857 |
162 |
Zhang, Y.; Wang, X.; Zheng, S.; Yang, B.; Li, Z.; Lu, J.; Zhang, Q.; Adli, N. M.; Lei, L.; Wu, G.; et alAdv. Funct. Mater.2021,31,2104377.
doi: 10.1002/adfm.202104377 |
163 |
Wang, X.; Pan, Y.; Ning, H.; Wang, H.; Guo, D.; Wang, W.; Yang, Z.; Zhao, Q.; Zhang, B.; Zheng, L.; et alAppl. Catal. B2020,266,118630.
doi: 10.1016/j.apcatb.2020.118630 |
164 |
Li, Z.; Wu, R.; Xiao, S.; Yang, Y.; Lai, L.; Chen, J. S.; Chen, YChem. Eng. J2022,430,132882.
doi: 10.1016/j.cej.2021.132882 |
165 |
Wang, X.; Wang, Y.; Sang, X.; Zheng, W.; Zhang, S.; Shuai, L.; Yang, B.; Li, Z.; Chen, J.; Lei, L.; et alAngew. Chem. Int. Ed.2021,60,4192.
doi: 10.1002/anie.202013427 |
166 |
Kim, H.; Shin, D.; Yang, W.; Won, D. H.; Oh, H. -S.; Chung, M. W.; Jeong, D.; Kim, S. H.; Chae, K. H.; Ryu, J. Y.; et alJ. Am. Chem. Soc.2021,143,925.
doi: 10.1021/jacs.0c11008 |
167 |
Zhao, D.; Yu, K.; Song, P.; Feng, W.; Hu, B.; Cheong, W. -C.; Zhuang, Z.; Liu, S.; Sun, K.; Zhang, J.; et alEnergy Environ. Sci.2022,
doi: 10.1039/D2EE00878E |
168 |
Miao, Q.; Lu, C.; Xu, Q.; Yang, S.; Liu, M.; Liu, S.; Yu, C.; Zhuang, X.; Jiang, Z.; Zeng, GChem. Eng. J2022,450,138427.
doi: 10.1016/j.cej.2022.138427 |
169 |
Dong, W.; Zhang, N.; Li, S.; Min, S.; Peng, J.; Liu, W.; Zhan, D.; Bai, HJ. Mater. Chem. A2022,10,10892.
doi: 10.1039/D2TA01285E |
170 |
Lu, B.; Liu, Q.; Chen, SACS Catal2020,10,7584.
doi: 10.1021/acscatal.0c01950 |
171 |
Cao, S.; Wei, S.; Wei, X.; Zhou, S.; Chen, H.; Hu, Y.; Wang, Z.; Liu, S.; Guo, W.; Lu, XSmall2021,17,2100949.
doi: 10.1002/smll.202100949 |
172 |
Chen, Y.; Ma, L.; Chen, C.; Hu, W.; Zou, L.; Zou, Z.; Yang, HJ. CO2 Util2020,42,101316.
doi: 10.1016/j.jcou.2020.101316 |
173 |
He, M.; An, W.; Wang, Y.; Men, Y.; Liu, SSmall2021,17,2104445.
doi: 10.1002/smll.202104445 |
174 |
Chen, Y.; Li, G.; Zeng, Y.; Yan, L.; Wang, X.; Yang, L.; Wu, Q.; Hu, ZNano Res2022,15,7896.
doi: 10.1007/s12274-022-4441-0 |
175 |
Li, H.; Liu, T.; Wei, P.; Lin, L.; Gao, D.; Wang, G.; Bao, XAngew. Chem. Int. Ed2021,60,14329.
doi: 10.1002/anie.202102657 |
176 |
Zhang, Y.; Zhou, Q.; Qiu, Z.-F.; Zhang, X.-Y.; Chen, J.-Q.; Zhao, Y.; Gong, F.; Sun, W.-YAdv. Funct. Mater2022,2203677.
doi: 10.1002/adfm.202203677 |
[1] | Ruijie Zhu, Leilei Kang, Lin Li, Xiaoli Pan, Hua Wang, Yang Su, Guangyi Li, Hongkui Cheng, Rengui Li, Xiao Yan Liu, Aiqin Wang. Photo-Thermo Catalytic Oxidation of C3H8 and C3H6 over the WO3-TiO2 Supported Pt Single-Atom Catalyst [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303003-. |
[2] | Muhammad Faizan, Guoqi Zhao, Tianxu Zhang, Xiaoyu Wang, Xin He, Lijun Zhang. Elastic and Thermoelectric Properties of Vacancy Ordered Double Perovskites A2BX6: A DFT Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303004-. |
[3] | Yaowu Luo, Dingsheng Wang. Enhancing Heterogeneous Catalysis by Electronic Property Regulation of Single Atom Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212020-0. |
[4] | Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301032-. |
[5] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[6] | Peng Chen, Ying Zhou, Fan Dong. Advances in Regulation Strategies for Electronic Structure and Performance of Two-Dimensional Photocatalytic Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010010-. |
[7] | Yawen Li, Guangren Na, Shulin Luo, Xin He, Lijun Zhang. Structural, Thermodynamical and Electronic Properties of All-Inorganic Lead Halide Perovskites [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007015-. |
[8] | Haodong Shi, Yaguang Li, Pengfei Lu, Zhong-Shuai Wu. Single-Atom Cobalt Coordinated to Oxygen Sites on Graphene for Stable Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2008033-. |
[9] | Tangfei Zheng, Jinxia Jiang, Jian Wang, Sufang Hu, Wei Ding, Zidong Wei. Regulation of Electrocatalysts Based on Confinement-Induced Properties [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011027-. |
[10] | Junjie Shi, Ziqi Hu, Yihao Yang, Yuxiang Bu, Zujin Shi. Stability and Formation Mechanism of Endohedral Metal Carbonitride Clusterfullerenes [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1907077-. |
[11] | Ru Zhang,Linlin Yuan,Kaiyue Sun,Shan Wang,Lina Geng,Jianjun Zhang. Preparation and Partition Coefficient Determination of Nano-Resveratrol Liposomes [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1905090-. |
[12] | Yiqing Wang,Shaohua Shen. Progress and Prospects of Non-Metal Doped Graphitic Carbon Nitride for Improved Photocatalytic Performances [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905080-. |
[13] | Yanyan GONG,Haichun LIU,Duo ZHANG,Jing TONG. Thermodynamic Properties of the Ether-Based Functionalized Ionic Liquids [MOEMIm]Cl and [EOEMIm]Cl [J]. Acta Physico-Chimica Sinica, 2019, 35(11): 1224-1231. |
[14] | Fuzhen BI,Xiao ZHENG,Chiyung YAM. First-Principles Study of Mixed Cation Methylammonium-Formamidinium Hybrid Perovskite [J]. Acta Phys. -Chim. Sin., 2019, 35(1): 69-75. |
[15] | Jinyang XI,Yuma NAKAMURA,Tianqi ZHAO,Dong WANG,Zhigang SHUAI. Theoretical Studies on the Deformation Potential, Electron-Phonon Coupling, and Carrier Transports of Layered Systems [J]. Acta Phys. -Chim. Sin., 2018, 34(9): 961-976. |
|