Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (11): 2011027.doi: 10.3866/PKU.WHXB202011027
Special Issue: Energy and Materials Chemistry
• REVIEW • Previous Articles Next Articles
Tangfei Zheng, Jinxia Jiang, Jian Wang, Sufang Hu, Wei Ding(), Zidong Wei(
)
Received:
2020-11-06
Accepted:
2020-11-30
Published:
2020-12-07
Contact:
Wei Ding,Zidong Wei
E-mail:dingwei128@cqu.edu.cn;zdwei@cqu.edu.cn
About author:
Email: zdwei@cqu.edu.cn (Z.W.)Supported by:
Tangfei Zheng, Jinxia Jiang, Jian Wang, Sufang Hu, Wei Ding, Zidong Wei. Regulation of Electrocatalysts Based on Confinement-Induced Properties[J]. Acta Phys. -Chim. Sin. 2021, 37(11), 2011027. doi: 10.3866/PKU.WHXB202011027
Fig 5
Schematic representation of the synthesis of NG catalyst with different quaternary N content by using the nanoreactor MMT with different interspace widths (δ) (a); electrocatalysis performance curve (b–g) 49. Adapted with permission from Ref. 49, Copyright © 2018, American Chemical Society. "
Table 1
Summary of confinement-induced properties."
Confinement mothod | Confinement reactor | Confinement size | Regulatory category | Apply | ||
Space confinement | 2D Space | Flat nanoreactor | MMT (Na-MMT, H-MMT) | 0.53 nm, 0.46 nm | Planar N and Quaternary and oxidized N | Acid-ORR |
Flat nanoreactor | MMT (Na-MMT, Co-MMT) | 0.53 nm, 0.60 nm | Co electronic structure | Alkali-ORR | ||
Flat nanoreactor | MMT (Na-MMT, H-MMT, Co-MMT, Ni-MMT) | 0.53 nm, 0.46 nm, 0.60 nm, 0.59 nm | Molecular structure and metal coordination | HER | ||
Few-layered graphene nanoreactor | Graphene | 1.15 nm | Alternately intercalated monolayered metal-oxide frameworks and graphene | – | ||
Coordination confinement effect | Graphene oxide (GO) | 9 nm | Thin 2D D-RuO2/G | OER | ||
Interlayer subnanospace confinement | g-C3N4 | 0.3 nm | Pt atomic arrangement | PhotocatalyHER | ||
Flat angstrom reactor | MMT (Na-MMT) | 0.53 nm | Pd and PdCo atomic arrangement and valence electron structures | Acid-ORR,Formic acid oxidation | ||
3D Space | Salt recrystallization confinement method | NaCl | – | Controlled synthesis of NG | Acid-ORR | |
Phase-transition-assisted Method | Citrate/NH4Cl | – | Pore structure and connectivity | Alkali-ORR | ||
Eutectic salt assisted method | ZnCl2/KCl | – | Pore structure, specific surface area and graphitization | Acid-ORR | ||
Template method | ZnCl2/Mg5(OH)2(CO3)4 | – | Pore size | Alkali-ORR | ||
Energy field confinement | – | Pyrolytic co-doping | N-P energy confinement filed | – | Charge density around the atom | Acid-ORR |
Co-Fe spinel structure conversion | Energy confinement filed | – | Charge transfer | Alkali-ORR | ||
TiO2 lattice confinement | TiO2 | – | Atomic arrangement and electron transfer | Alkali-HOR | ||
Interphase-oxidized confinement | TiO2 | electron transfer | Alkali-HOR |
1 | Yang X. D. ; Chen C. ; Zhou Z. Y. ; Sun S. G. Acta Phys. -Chim. Sin. 2019, 35, 472. |
杨晓东; 陈驰; 周志有; 孙世刚. 物理化学学报, 2019, 35, 472.
doi: 10.3866/PKU.WHXB201806131 |
|
2 | Li M. G. ; Xia Z. H. ; Huang Y. R. ; Tao L. ; Chao Y. G. ; Yin K. ; Yang W. X. ; Yang W. W. ; Yu Y. S. ; Guo S. J. Acta Phys. -Chim. Sin. 2020, 36, 1912049. |
李蒙刚; 夏仲弘; 黄雅荣; 陶璐; 晁玉广; 尹坤; 杨文秀; 杨微微; 于永生; 郭少军. 物理化学学报, 2020, 36, 1912049.
doi: 10.3866/PKU.WHXB201912049 |
|
3 |
Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
doi: 10.1126/science.1212741 |
4 |
Xue S. ; Deng W. ; Yang F. ; Yang J. ; Amiinu I. S. ; He D. ; Tang H. ; Mu S. ACS Catal. 2018, 8, 75.
doi: 10.1021/acscatal.8b00366 |
5 |
Devrim Y. ; Pehlivanoğlu K. Phys. Status Solidi A 2015, 12, 1256.
doi: 10.1002/pssc.201510091 |
6 |
Nelson D. B. ; Nehrir M. H. ; Wang C. Renew Energy 2006, 31, 1641.
doi: 10.1016/j.renene.2005.08.031 |
7 |
Zhang H. ; Chang X. ; Chen J. G. ; Goddard W. A. ; Xu B. ; Cheng M. J. ; Lu Q. Nat. Commun. 2019, 10, 3340.
doi: 10.1038/s41467-019-11292-9 |
8 |
Chu W. ; Zheng Q. ; Prezhdo O. V. ; Zhao J. J. Am. Chem. Soc. 2020, 142, 3214.
doi: 10.1021/jacs.9b13280 |
9 |
Yao Y. ; Wang H. ; Yuan X. Z. ; Li H. ; Shao M. ACS Energy Lett. 2019, 4, 1336.
doi: 10.1021/acsenergylett.9b00699 |
10 |
Liu Y. ; Li Q. ; Guo X. ; Kong X. ; Ke J. ; Chi M. ; Li Q. ; Geng Z. ; Zeng J. Adv. Mater. 2020, 32, e1907690.
doi: 10.1002/adma.201907690 |
11 |
Li X. ; Xie J. ; Rao H. ; Wang C. ; Tang J. Angew. Chem. Int. Ed. 2020, 59, 19702.
doi: 10.1002/anie.202007557 |
12 |
Zhong R. L. ; Sakaki S. J. Am. Chem. Soc. 2020, 142, 16732.
doi: 10.1021/jacs.0c07239 |
13 |
Zhao T. ; Hu Y. ; Gong M. ; Lin R. ; Deng S. ; Lu Y. ; Liu X. ; Chen Y. ; Shen T. ; Hu Y. ; et al Nano Energy 2020, 74, 104877.
doi: 10.1016/j.nanoen.2020.104877 |
14 |
Li J. ; Ghoshal S. ; Bates M. K. ; Miller T. E. ; Davies V. ; Stavitski E. ; Attenkofer K. ; Mukerjee S. ; Ma Z. F. ; Jia Q. ; et al Angew. Chem. Int. Ed. 2017, 56, 15594.
doi: 10.1002/anie.201708484 |
15 |
Zhong L. ; Li S. ACS Catal. 2020, 10, 4313.
doi: 10.1021/acscatal.0c00815 |
16 |
Liu Z. ; Zhao Z. ; Peng B. ; Duan X. ; Huang Y. J. Am. Chem. Soc. 2020, 142, 17812.
doi: 10.1021/jacs.0c07696 |
17 |
McLoughlin E. A. ; Armstrong K. C. ; Waymouth R. M. ACS Catal. 2020, 10, 11654.
doi: 10.1021/acscatal.0c03240 |
18 |
Zhang. J. ; Liu X. ; Xing A. ; Liu J. ACS Appl. Energy Mater. 2018, 1, 2758.
doi: 10.1021/acsaem.8b00420 |
19 |
Xiao Y. Q. ; Feng C. ; Fu J. ; Wang F. Z. ; Li C. L. ; Kunzelmann V. F. ; Jiang C. M. ; Nakabayashi M. ; Shibata N. ; Sharp I. D. ; et al Nat. Catal. 2020, 3, 932.
doi: 10.1038/s41929-020-00522-9 |
20 |
Yang J. ; Wang Z. ; Jiang J. ; Chen W. ; Liao F. ; Ge X. ; Zhou X. ; Chen M. ; Li R. ; Xue Z. ; et al Nano Energy 2020, 76, 105059.
doi: 10.1016/j.nanoen.2020.105059 |
21 |
Zhou S. ; Yang X. ; Xu X. ; Dou S. X. ; Du Y. ; Zhao J. J. Am. Chem. Soc. 2020, 142, 308.
doi: 10.1021/jacs.9b10588 |
22 |
Wu Y. ; Cai J. ; Xie Y. Adv. Mater. 2020, 32, e1904346.
doi: 10.1002/adma.201904346 |
23 |
Lien H. T. ; Chang S. ; Chen P. ; Wong D. ; Chang Y. ; Lu Y. ; Dong C. ; Wang C. ; Chen K. ; Chen L. Nat. Commun. 2020, 11, 4233.
doi: 10.1038/s41467-020-17975-y |
24 |
Garner M. ; Li H. ; Chen Y. ; Su T. ; Shangguan Z. ; Paley D. W. ; Liu T. ; Ng F. ; Li H. ; Xiao S. ; et al Nature 2018, 558, 415.
doi: 10.1038/s41586-018-0197-9 |
25 |
Eric G; D. ; Jean-Marie A. ; Amand A. L. J. Catal. 1988, 110, 58.
doi: 10.1016/0021-9517(88)90297-7 |
26 |
Jeong H. M. ; Kwon Y. ; Won J. H. ; Lum Y. ; Cheng M. J. ; Kim K. H. ; Head Gordon M. ; Kang J. K. Adv. Energy Mater. 2020, 10, 1903423.
doi: 10.1002/aenm.201903423 |
27 |
Yang W. ; Wang H. ; Liu R. ; Wang J. ; Zhang C. ; Li C. ; Zhong D. ; Lu T. Angew. Chem. Int. Ed. 2020.
doi: 10.1002/anie.202011068 |
28 |
Li T. ; Zhong W. ; Jing C. ; Li X. ; Zhang T. ; Jiang C. ; Chen W. Environ. Sci. Technol. 2020, 54, 8658.
doi: 10.1021/acs.est.9b07473 |
29 |
Jiang L. ; Liu K. ; Hung S. ; Zhou L. ; Qin R. ; Zhang Q. ; Liu P. ; Gu L. ; Chen H. ; Fu G. ; Zheng N. Nat. Nanotechnol. 2020, 15, 848.
doi: 10.1038/s41565-020-0746-x |
30 |
Pan X. ; Fan L. ; Chen W. ; Ding J. ; Luo Y. ; Bao X. Nat. Mater. 2007, 6, 507.
doi: 10.1038/nmat1916 |
31 |
Pan X. ; Bao X. Acc. Chem. Res. 2011, 44, 553.
doi: 10.1021/ar100160t |
32 |
Deng D. ; Yu L. ; Chen X. ; Wang G. ; Jin L. ; Pan X. ; Deng J. ; Sun G. ; Bao X. Angew. Chem. Int. Ed. 2013, 52, 371.
doi: 10.1002/anie.201204958 |
33 |
Guan J. ; Pan X. ; Liu X. ; Bao X. J. Phys. Chem. C. 2009, 113, 21687.
doi: 10.1021/jp906092c |
34 |
Jiao F. ; Li J. ; Pan X. ; Xiao J. ; Li H. ; Ma H. ; Wei M. ; Pan Y. ; Zhou Z. ; Bao X. ; et al Science 2016, 351, 1065.
doi: 10.1126/science.aaf1835 |
35 | Bao X. H. Chin. Sci. Bull. 2018, 63, 1266. |
包信和. 科学通报, 2018, 63, 1266.
doi: 10.1360/N972018-00441 |
|
36 | Bao X. H. Sci. China Chem. 2012, 42, 355. |
包信和. 中国科学(化学), 2012, 42, 355.
doi: 10.1360/032012-130 |
|
37 |
Fu Q. ; Li W. ; Yao Y. ; Liu H. ; Su H. ; Ma D. ; Gu X. K. ; Chen L. ; Wang Z. ; Zhang H. Science 2010, 328, 1141.
doi: 10.1126/science.1188267 |
38 |
Klein J. ; Kumacheva E. Science 1995, 269, 816.
doi: 10.1126/science.269.5225.816 |
39 |
Heuberger M. Science 2001, 292, 905.
doi: 10.1126/science.1058573 |
40 |
Gersappe D. ; Zhu S. ; Liu Y. ; Rafailovich M. H. ; Sokolov J. ; Winesett D. A. ; Ade H. Nature 1999, 400, 49.
doi: 10.1038/21854 |
41 |
Fumagalli L. ; Esfandiar A. ; Fabregas R. ; Hu S. ; Ares P. ; Janardanan A. ; Watanabe K. ; Gomila G. ; Novoselov K. S. ; Geim A. K. ; et al Science 2018, 360, 1339.
doi: 10.1126/science.aat4191 |
42 |
Corma A. ; García H. ; Sastre G. ; Viruela P. M. J. Phys. Chem. B 1997, 101, 4575.
doi: 10.1021/jp9622593 |
43 |
Wang L. ; Zhu Y. ; Wang J. ; Liu F. ; Huang J. ; Meng X. ; Basset J. M. ; Han Y. ; Xiao F. S. Nat. Commun. 2015, 6, 6957.
doi: 10.1038/ncomms7957 |
44 |
Mostafa Moujahid E. ; Besse J. P. ; Leroux F. J. Mater. Chem. 2002, 12, 3324.
doi: 10.1039/B205837P |
45 |
Yuan K. ; Zhuang X. ; Fu H. ; Brunklaus G. ; Forster M. ; Chen Y. ; Feng X. ; Scherf U. Angew. Chem. Int. Ed. 2016, 55, 6858.
doi: 10.1002/anie.201600850 |
46 |
Xu S. ; Ren Z. ; Liu X. ; Liang X. ; Wang K. ; Chen J. Energy Stor. Mater. 2018, 15, 291.
doi: 10.1016/j.ensm.2018.05.015 |
47 |
Ding W. ; Wei Z. ; Chen S. ; Qi X. ; Yang T. ; Hu J. ; Wang D. ; Wan L. J. ; Alvi S. F. ; Li L. Angew. Chem. Int. Ed. 2013, 52, 11755.
doi: 10.1002/anie.201303924 |
48 |
Li W. ; Ding W. ; Wu G. ; Liao J. ; Yao N. ; Qi X. ; Li L. ; Chen S. ; Wei Z. Chem. Eng. Sci. 2015, 135, 45.
doi: 10.1016/j.ces.2015.07.008 |
49 |
Wang H. ; Yang N. ; Li W. ; Ding W. ; Chen K. ; Li J. ; Li L. ; Wang J. ; Jiang J. ; Wei Z. ; et al ACS Energy Lett. 2018, 3, 1345.
doi: 10.1021/acsenergylett.8b00522 |
50 |
Zhu H. ; Xiao C. ; Cheng H. ; Grote F. ; Zhang X. ; Yao T. ; Li Z. ; Wei S. ; Lei Y. ; Xie Y. ; et al Nat. Commun. 2014, 5, 3960.
doi: 10.1038/ncomms4960 |
51 |
Li Y. ; Wang Y. ; Lu J. ; Yang B. ; San X. ; Wu Z. Nano Energy 2020, 78, 105185.
doi: 10.1016/j.nanoen.2020.105185 |
52 |
Zeng Z. ; Su Y. ; Quan X. ; Choi W. ; Zhang G. ; Liu N. ; Kim B. ; Chen S. ; Yu H. ; Zhang S. Nano Energy 2020, 69, 104409.
doi: 10.1016/j.nanoen.2019.104409 |
53 |
Jiang J. ; Ding W. ; Li W. ; Wei Z. Chem 2019, 6, 431.
doi: 10.1016/j.chempr.2019.11.003 |
54 |
Ding W. ; Li L. ; Xiong K. ; Wang Y. ; Li W. ; Nie Y. ; Chen S. ; Qi X. ; Wei Z. J. Am. Chem. Soc. 2015, 137, 5414.
doi: 10.1021/jacs.5b00292 |
55 |
Li W. ; Ding W. ; Jiang J. ; He Q. ; Tao S. ; Wang W. ; Li J. ; Wei Z. J. Mater. Chem. A 2018, 6, 878.
doi: 10.1039/C7TA09435C |
56 |
Li J. ; Chen S. ; Li W. ; Wu R. ; Ibraheem S. ; Li J. ; Ding W. ; Li L. ; Wei Z. J. Mater. Chem. A 2018, 6, 15504.
doi: 10.1039/C8TA05419C |
57 |
Li X. ; Guan B. Y. ; Gao S. ; Lou X. W. Energy Environ. Sci. 2019, 12, 648.
doi: 10.1039/C8EE02779J |
58 |
Najam T. ; Shah S. S. A. ; Ding W. ; Jiang J. ; Jia L. ; Yao W. ; Li L. ; Wei Z. Angew. Chem. Int. Ed. 2018, 57, 15101.
doi: 10.1002/anie.201808383 |
59 |
Wu G. ; Wang J. ; Ding W. ; Nie Y. ; Li L. ; Qi X. ; Chen S. ; Wei Z. Angew. Chem. Int. Ed. 2016, 55, 1340.
doi: 10.1002/anie.201508809 |
60 |
Zhou Y. ; Xie Z. ; Jiang J. ; Wang J. ; Song X. ; He Q. ; Ding W. ; Wei Z. Nat. Catal. 2020, 3, 454.
doi: 10.1038/s41929-020-0446-9 |
61 |
Jiang J. ; Tao S. ; He Q. ; Wang J. ; Zhou Y. ; Xie Z. ; Ding W. ; Wei Z. J. Mater. Chem. A 2020, 20, 10168.
doi: 10.1039/D0TA02528C |
[1] | Muhammad Faizan, Guoqi Zhao, Tianxu Zhang, Xiaoyu Wang, Xin He, Lijun Zhang. Elastic and Thermoelectric Properties of Vacancy Ordered Double Perovskites A2BX6: A DFT Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303004-. |
[2] | Yaowu Luo, Dingsheng Wang. Enhancing Heterogeneous Catalysis by Electronic Property Regulation of Single Atom Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212020-0. |
[3] | Yanhui Yu, Peng Rao, Suyang Feng, Min Chen, Peilin Deng, Jing Li, Zhengpei Miao, Zhenye Kang, Yijun Shen, Xinlong Tian. Atomic Co Clusters for Efficient Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210039-0. |
[4] | Tianmi Tang, Zhenlu Wang, Jingqi Guan. Electronic Structure Regulation of Single-Site M-N-C Electrocatalysts for Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2208033-0. |
[5] | Yang Hu, Bin Liu, Luyao Xu, Ziqiang Dong, Yating Wu, Jie Liu, Cheng Zhong, Wenbin Hu. High-Throughput Synthesis and Screening of Pt-Based Ternary Electrocatalysts Using a Microfluidic-Based Platform [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209004-0. |
[6] | Jingxue Li, Yue Yu, Siran Xu, Wenfu Yan, Shichun Mu, Jia-Nan Zhang. Function of Electron Spin Effect in Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302049-. |
[7] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
[8] | Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301032-. |
[9] | Yongjiu Lei, Xu Wang, Zhiye Wang, Jianghao Zhou, Haijian Chen, Lei Liang, Yunchuan Li, Bohuai Xiao, Shuai Chang. Effect of Modified Thiophene Anchor on Molecule-Electrode Bonding [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212023-. |
[10] | Baihua Cui, Yi Shi, Gen Li, Yanan Chen, Wei Chen, Yida Deng, Wenbin Hu. Challenges and Opportunities for Seawater Electrolysis: A Mini-Review on Advanced Materials in Chlorine-Involved Electrochemistry [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106010-. |
[11] | Ke Sun, Yongqing Zhao, Jie Yin, Jing Jin, Hanwen Liu, Pinxian Xi. Surface Modification of NiCo2O4 Nanowires using Organic Ligands for Overall Water Splitting [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107005-. |
[12] | Miaomiao Liu, Maomao Yang, XinXin Shu, Jintao Zhang. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007072-. |
[13] | Yufei Bao, Ligang Feng. Formic Acid Electro-Oxidation Catalyzed by PdNi/Graphene Aerogel [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2008031-. |
[14] | Lei Huang, Shahid Zaman, Zhitong Wang, Huiting Niu, Bo You, Bao Yu Xia. Synthesis and Application of Platinum-Based Hollow Nanoframes for Direct Alcohol Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009035-. |
[15] | Fang Luo, Shuyuan Pan, Zehui Yang. Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009087-. |
|