Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (12): 2302037.doi: 10.3866/PKU.WHXB202302037
Special Issue: Carbon Dioxide Valorization
• REVIEW • Previous Articles Next Articles
Luwei Peng1,3, Yang Zhang1, Ruinan He1, Nengneng Xu1, Jinli Qiao1,2,*()
Received:
2023-02-23
Accepted:
2023-03-28
Published:
2023-04-04
Contact:
Jinli Qiao
E-mail:qiaojl@dhu.edu.cn
Supported by:
Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction[J]. Acta Phys. -Chim. Sin. 2023, 39(12), 2302037. doi: 10.3866/PKU.WHXB202302037
Table 1
Standard hydrogen electrode (SHE) for electrochemical conversion of CO2 to variousC1 and C2 products under standard conditions(1.0 atmosphere and 25 ℃) 14."
Reactions | Potential Eo/ (V vs. SHE) |
CO2(g) + 4H+ + 4e− = C(s) + 2H2O(l) | 0.210 |
CO2(g) + 2H2O(l) + 4e− = C(s) + 4OH− | −0.627 |
CO2(g) + 2H+ + 2e− = HCOOH(l) | −0.250 |
CO2(g) + 2H2O(l) + 2e− = HCOO−(aq) + OH− | −1.078 |
CO2(g) + 2H+ + 2e− = CO(g) + H2O(l) | −0.106 |
CO2(g) + 2H2O(l) + 2e− = CO(g) + 2OH− | −0.934 |
CO2(g) + 4H+ + 4e− = CH2O(l) + H2O(l) | −0.070 |
CO2(g) + 3H2O(l) + 4e− = CH2O(l) + 4OH− | −0.898 |
CO2(g) + 6H+ + 6e− = CH3OH(l) + H2O(l) | 0.016 |
CO2(g) + 5H2O(l) + 6e− = CH3OH(l) + 6OH− | −0.812 |
CO2(g) + 8H+ + 8e− = CH4(g) + 2H2O(l) | 0.169 |
CO2(g) + 6H2O(l) + 8e− = CH4(g) + 8OH− | −0.659 |
2CO2(g) + 2H+ + 2e− = H2C2O4(aq) | −0.500 |
2CO2(g) + 2e− = C2O42−(aq) | −0.590 |
2CO2(g) + 12H+ + 12e− = CH2CH2(g) + 4H2O(l) | 0.064 |
2CO2(g) + 8H2O(l) + 12e− = CH2CH2(g) + 12OH− | −0.764 |
2CO2(g) + 12H+ + 12e− = CH3CH2OH(l) + 3H2O(l) | 0.084 |
2CO2(g) + 9H2O(l) + 12e− = CH3CH2OH(l) + 12OH− | −0.744 |
Fig 4
The free energy diagram and possible reaction mechanism for various products of CO2RR 17, 18, 20-22. (a) Free energy diagram of CO2RR on boron phosphide (111) surface, (b) Free energy profiles (ΔG) of major pathways of CO2 reduction to CH4 on Cu79 nanoparticles, (c) Proposed CO2RR mechanism of Cu metal-organic framework. Color codes: carbon (gray), nitrogen (blue), oxygen (red), hydrogen (white), copper (orange), (d) The free energy diagram of CO2RR on Cu(200) at U = 0 V and the free energies of the rate-determined step for CH4 and C2H4 formation at U = 0 V, (e) Schematic representations of the species involved in the pathways to C2H4 (blue) and CH3CH2OH (green). Color online."
Fig 7
Calculated free reaction energies as a function of *ECOOH on transition metals at different potentials 67. (a) (211) surface and (b) (111) surface at 0 V vs. RHE, (c) (211) and (d) (111) surfaces at −1.14 V vs. RHE. The electrochemical potential effect was estimated using the computational hydrogen electrode approximations. The blue, red, black lines are the ΔG-limiting steps for CO, formic acid, and hydrogen production, respectively. Color online."
1 | LiangL.;SunJ.;YueM.;GengH.World Petroleum Ind.2020,(3),7. |
梁玲;孙静;岳脉健;耿惠丽.世界石油工业,2020,3,7. | |
2 | https://www.carbonmonitor.org.cn (accessed on Jul 02, 2022). |
3 | https://www.noaa.gov (accessed on Jul 02, 2022). |
4 |
Hö nischB.;RidgwellA.;SchmidtD. N.;ThomasE.;GibbsS. J.;SluijsA.;ZeebeR.;KumpL.;MartindaleR. C.;GreeneS. E.;et alScience2012,335(6072),1058.
doi: 10.1126/science.1208277 |
5 | DautzenbergF. M.;LuY.;XuB.Acta Phys.-Chim. Sin.2021,37(5),2008066. |
DautzenbergF. M.;路勇;徐彬.物理化学学报,2021,37(5),2008066.
doi: 10.3866/PKU.WHXB202008066 |
|
6 | http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm (accessed on Jul 02, 2022). |
7 | SongY.;XieW.;ShaoM.Acta Phys.-Chim. Sin.2021,38(6),2101028. |
宋雨珂;谢文富;邵明飞.物理化学学报,2021,38(6),2101028.
doi: 10.3866/PKU.WHXB202101028 |
|
8 |
WangX.;FanM.;GuanY.;LiuY.;LiuM.;KarsiliT. N.;YiJ.;ZhouX.-D.J. Mater. Chem. A2021,9(40),22710.
doi: 10.1039/D1TA05960B |
9 |
ChenC.;Khosrowabadi KotykJ. F.;SheehanS. W.Chem2018,4(11),2571.
doi: 10.1016/j.chempr.2018.08.019 |
10 | LanB. Y.;ShiH. F.Acta Phys.-Chim. Sin.2014,30(12),20. |
蓝奔月;史海峰.物理化学学报,2014,30(12),20.
doi: 10.3866/PKU.WHXB201409303 |
|
11 | JiangH.;JiX.;SiW.;PanJ.;CaiL.J. Civ. Eng. Manag.2015,37(3),127. |
蒋海明;季祥;司万童;潘建刚;蔡禄.土木与环境工程学报(中英文),2015,37(3),127.
doi: 10.11835/j.issn.1674-4764.2015.03.017 |
|
12 | WangY.;ZhongZ.;LiuT.;LiuG.;HongX.Acta Phys.-Chim. Sin.2021,37(5),2007089. |
王艳秋;钟子欣;刘唐康;刘国亮;洪昕林.物理化学学报,2021,37(5),2007089.
doi: 10.3866/PKU.WHXB202007089 |
|
13 | ShiY.;HouM.;LiJ.;LiL.;ZhangZ.Acta Phys.-Chim. Sin.2022,38(11),2206020. |
石永霞;侯曼;李俊俊;李丽;张志成.物理化学学报,2022,38(11),2206020.
doi: 10.3866/PKU.WHXB202206020 |
|
14 |
QiaoJ.;LiuY.;HongF.;ZhangJ.Chem. Soc. Rev.2014,43(2),631.
doi: 10.1039/c3cs60323g |
15 |
BirdjaY. Y.;Pérez-GallentE.;FigueiredoM. C.;Gö ttleA. J.;Calle-VallejoF.;KoperM. T. M.Nat. Energy2019,4(9),732.
doi: 10.1038/s41560-019-0450-y |
16 |
ZhaoZ.;LuG.J. Phys. Chem. C2019,123(7),4380.
doi: 10.1021/acs.jpcc.8b12449 |
17 |
MouS.;WuT.;XieJ.;ZhangY.;JiL.;HuangH.;WangT.;LuoY.;XiongX.;TangB.;et alAdv. Mater.2019,31(36),1903499.
doi: 10.1002/adma.201903499 |
18 |
DongH.;LiY.;JiangD.J. Phys. Chem. C2018,122(21),11392.
doi: 10.1021/acs.jpcc.8b01928 |
19 |
HuangB.;WuY.;LuoY.;ZhouN.Chem. Phys. Lett.,2020,756,137852.
doi: 10.1016/j.cplett.2020.137852 |
20 |
QiuX.-F.;ZhuH.-L.;HuangJ.-R.;LiaoP.-Q.;ChenX.-M.J. Am. Chem. Soc.2021,143(19),7242-7246.
doi: 10.1021/jacs.1c01466 |
21 |
MengD. L.;ZhangM. D.;SiD. H.;MaoM. J.;HouY.;HuangY. B.;CaoR.Angew. Chem. Int. Ed.2021,133(48),25689.
doi: 10.1002/anie.202111136 |
22 |
Calle-VallejoF.;KoperM. T.Angew. Chem. Int. Ed.2013,125(28),7423.
doi: 10.1002/ange.201301470 |
23 |
HoriY.;WakebeH.;TsukamotoT.;KogaO.Electrochim. Acta1994,39(11–12),1833.
doi: 10.1016/0013-4686(94)85172-7 |
24 | JinH.;XiongL.;ZhangX.;LianY.;ChenS.;LuY.;DengZ.;PengY.Acta Phys.-Chim. Sin.2021,37(11),2006017. |
金惠东;熊力堃;张想;连跃彬;陈思;陆永涛;邓昭;彭扬.物理化学学报,2021,37(11),2006017.
doi: 10.3866/PKU.WHXB202006017 |
|
25 | MengY.;KuangS.;LiuH.;FanQ.;MaX.;ZhangS.Acta Phys.-Chim. Sin.2021,37(5),2006034. |
孟怡辰;况思宇;刘海;范群;马新宾;张生.物理化学学报,2021,37(5),2006034.
doi: 10.3866/PKU.WHXB202006034 |
|
26 |
ZhangX.;LiuC.;ZhaoY.;LiL.;ChenY.;RaziqF.;QiaoL.;GuoS.-X.;WangC.;WallaceG. G.Appl. Catal. B2021,291,120030.
doi: 10.1016/j.apcatb.2021.120030 |
27 |
ZhangY.;LiP.;ZhaoC.;ZhouG.;ZhouF.;ZhangQ.;SuC.;WuY.Sci. Bull.2022,67(16),1679.
doi: 10.1016/j.scib.2022.07.029 |
28 |
ChenY.;LiC. W.;KananM. W.J. Am. Chem. Soc.2012,134(49),19969.
doi: 10.1021/ja309317u |
29 |
LiuM.;PangY.;ZhangB.;De LunaP.;VoznyyO.;XuJ.;ZhengX.;DinhC. T.;FanF.;CaoC.;et alNature2016,537(7620),382.
doi: 10.1038/nature19060 |
30 |
ZhuW.;ZhangY.-J.;ZhangH.;LvH.;LiQ.;MichalskyR.;PetersonA. A.;SunS.J. Am. Chem. Soc.2014,136(46),16132.
doi: 10.1021/ja5095099 |
31 |
MaM.;TrześniewskiB. J.;XieJ.;SmithW. A.Angew. Chem. Int. Ed.2016,128(33),9900.
doi: 10.1002/anie.201604654 |
32 |
RosenJ.;HutchingsG. S.;LuQ.;RiveraS.;ZhouY.;VlachosD. G.;JiaoF.ACS Catal.2015,5(7),4293.
doi: 10.1021/acscatal.5b00840 |
33 |
LuQ.;RosenJ.;ZhouY.;HutchingsG. S.;KimmelY. C.;ChenJ. G.;JiaoF.Nat. Commun.2014,5(1),1.
doi: 10.1038/ncomms4242 |
34 |
BackS.;YeomM. S.;JungY.ACS Catal.2015,5(9),5089.
doi: 10.1021/acscatal.5b00462 |
35 |
HaoJ.;ZhuH.;LiY.;LiuP.;DuM.Chem. Eng. J.,2020,404,126523.
doi: 10.1016/j.cej.2020.126523 |
36 |
DaiL.;QinQ.;WangP.;ZhaoX.;HuC.;LiuP.;QinR.;ChenM.;OuD.;XuC.;et alSci. Adv.2017,3(9),e1701069.
doi: 10.1126/sciadv.1701069 |
37 |
WoyessaG. W.;CruzJ.;RameezM.;HungC. H.Appl. Catal. B2021,29(15),120052.
doi: 10.1016/j.apcatb.2021.120052 |
38 |
ZengJ.;BejtkaK.;JuW.;CastellinoM.;ChiodoniA.;SaccoA.Appl. Catal. B2018,236(15),475-482.
doi: 10.1016/j.apcatb.2018.05.056 |
39 |
LiQ.;FuJ.;ZhuW.;ChenZ.;ShenB.;WuL.;XiZ.;WangT.;LuG.;ZhuJ.-J.;et alJ. Am. Chem. Soc.2017,139(12),4290.
doi: 10.1021/jacs.7b00261 |
40 |
JuW.;JiangF.;MaH.;PanZ.;ZhaoY. B.;PaganiF.;RentschD.;WangJ.;BattagliaC.Adv. Energy Mater.2019,9(32),1901514.
doi: 10.1002/aenm.201901514 |
41 | ChenY.;WangL.;YaoZ.;HaoL.;TanX.;MasaJ.;RobertsonA. W.;SunZ.Acta Phys.-Chim. Sin.2022,38(11),2207024. |
陈宇新;王丽君;姚志波;郝磊端;谭心怡;MasaJ.;RobertsonA. W.;孙振宇.物理化学学报,2022,38(11),2207024.
doi: 10.3866/PKU.WHXB202207024 |
|
42 |
NguyenT. N.;SalehiM.;LeQ. V.;SeifitokaldaniA.;DinhC. T.ACS Catal.2020,10(17),10068.
doi: 10.1021/acscatal.0c02643 |
43 |
LiX.;BiW.;ChenM.;SunY.;JuH.;YanW.;ZhuJ.;WuX.;ChuW.;WuC.;et alJ. Am. Chem. Soc.2017,139(42),14889.
doi: 10.1021/jacs.7b09074 |
44 | HuangX.;MaY.;ZhiL.Acta Phys.-Chim. Sin.2022,38(2),2011050. |
黄小雄;马英杰;智林杰.物理化学学报,2022,38(2),2011050.
doi: 10.3866/PKU.WHXB202011050 |
|
45 |
ZhangC.;YangS.;WuJ.;LiuM.;YazdiS.;RenM.;ShaJ.;ZhongJ.;NieK.;JalilovA. S.Adv. Energy Mater.2018,8(19),1703487.
doi: 10.1002/aenm.201703487 |
46 |
PanY.;LinR.;ChenY.;LiuS.;ZhuW.;CaoX.;ChenW.;WuK.;CheongW.-C.;WangY.;et alJ. Am. Chem. Soc.2018,140(12),4218-4221.
doi: 10.1021/jacs.8b00814 |
47 |
VijayS.;JuW.;BrücknerS.;TsangS.-C.;StrasserP.;ChanK.Nat. Catal.2021,4(12),1024.
doi: 10.1038/s41929-021-00705-y |
48 | DuY.;MengX.;WangZ.;ZhaoX.;QiuJ.Acta Phys.-Chim. Sin.2022,38(2),2101009. |
杜亚东;孟祥桐;汪珍;赵鑫;邱介山.物理化学学报,2022,38(2),2101009.
doi: 10.3866/PKU.WHXB202101009 |
|
49 |
GuoB. D.;LiuQ. A.;ChenE. D.;ZhuH. W.;FangL. A.;GongJ. R.Nano Lett.2010,10(12),4975.
doi: 10.1021/nl103079j |
50 |
WuJ.;YadavR. M.;LiuM.;SharmaP. P.;TiwaryC. S.;MaL.;ZouX.;ZhouX.-D.;YakobsonB. I.;LouJ.;et alACS Nano2015,9(5),5364.
doi: 10.1021/acsnano.5b01079 |
51 |
LiH.;XiaoN.;HaoM.;SongX.;WangY.;JiY.;LiuC.;LiC.;GuoZ.;ZhangF.;et alChem. Eng. J.2018,351,613.
doi: 10.1016/j.cej.2018.06.077 |
52 |
KumarB.;AsadiM.;PisasaleD.;Sinha-RayS.;RosenB. A.;HaaschR.;AbiadeJ.;YarinA. L.;Salehi-KhojinA.Nat. Commun.2013,4(1),2819.
doi: 10.1038/ncomms3819 |
53 |
WangY.;ZhouJ.;LvW.;FangH.;WangW.Appl. Surf. Sci.,2016,362,394.
doi: 10.1016/j.apsusc.2015.11.255 |
54 |
LiuS.;PangF.;ZhangQ.;GuoR.;WangZ.;WangY.;ZhangW.;OuJ.Appl. Mater. Today2018,13,135.
doi: 10.1016/j.apmt.2018.08.014 |
55 |
FuY.;LiY.;ZhangX.;LiuY.;QiaoJ.;ZhangJ.;WilkinsonD. P.Appl. Energy,2016,175,536.
doi: 10.1016/j.apenergy.2016.03.115 |
56 |
Nguyen-PhanT.-D.;HuL.;HowardB. H.;XuW.;StavitskiE.;LeshchevD.;RothenbergerA.;NeyerlinK. C.;KauffmanD. R.Sci. Rep.2022,12(1),1.
doi: 10.1038/s41598-022-11890-6 |
57 |
WangX.;ZouY.;ZhangY.;MarchettiB.;LiuY.;YiJ.;ZhouX.-D.;ZhangJ.J. Colloid Interface Sci.2022,626,836.
doi: 10.1016/j.jcis.2022.07.008 |
58 |
WuJ.;SharmaP. P.;HarrisB. H.;ZhouX.-D.J. Power Sources,2014,258,189.
doi: 10.1016/j.jpowsour.2014.02.014 |
59 |
ZouJ.;LeeC. Y.;WallaceG. G.Adv. Sci.2021,8(15),2004521.
doi: 10.1002/advs.202004521 |
60 |
LiY.;QiaoJ.;ZhangX.;LeiT.;GirmaA.;LiuY.;ZhangJ.ChemElectroChem2016,3(10),1618.
doi: 10.1002/celc.201600290 |
61 |
ZhangQ.;ZhangY.;MaoJ.;LiuJ.;ZhouY.;GuayD.;QiaoJ.ChemSusChem2019,12(7),1443.
doi: 10.1002/cssc.201802725 |
62 |
LiuH.;SuY.;LiuZ.;ChuaiH.;ZhangS.;MaX.Nano Energy2023,105,108031.
doi: 10.1016/j.nanoen.2022.108031 |
63 |
YeK.;ZhouZ.;ShaoJ.;LinL.;GaoD.;TaN.;SiR.;WangG.;BaoX.Angew. Chem. Int. Ed.2020,59(12),4814.
doi: 10.1002/anie.201916538 |
64 |
LucW.;CollinsC.;WangS.;XinH.;HeK.;KangY.;JiaoF.J. Am. Chem. Soc.2017,139(5),1885.
doi: 10.1021/jacs.6b10435 |
65 |
HouX.;CaiY.;ZhangD.;LiL.;ZhangX.;ZhuZ.;PengL.;LiuY.;QiaoJ.J. Mater. Chem. A2019,7(7),3197.
doi: 10.1039/c8ta10650a |
66 |
LiuH.;XiaJ.;ZhangN.;ChengH.;BiW.;ZuX.;ChuW.;WuH.;WuC.;XieY.Nat. Catal.2021,4(3),202.
doi: 10.1038/s41929-021-00576-3 |
67 |
YeK.;CaoA.;ShaoJ.;WangG.;SiR.;TaN.;XiaoJ.;WangG.Sci. Bull.2020,65(9),711.
doi: 10.1016/j.scib.2020.01.020 |
68 |
BaiX.;ChenW.;ZhaoC.;LiS.;SongY.;GeR.;WeiW.;SunY.Angew. Chem. Int. Ed.2017,129(40),12387.
doi: 10.1002/anie.201707098 |
69 |
KohJ. H.;WonD. H.;EomT.;KimN.-K.;JungK. D.;KimH.;HwangY. J.;MinB. K.ACS Catal.2017,7(8),5071.
doi: 10.1021/acscatal.7b00707 |
70 |
ChenJ.;ChenS.;LiY.;LiaoX.;ZhaoT.;ChengF.;WangH.Small,2022,2201633.
doi: 10.1002/smll.202201633 |
71 |
ZhangW.;HuY.;MaL.;ZhuG.;ZhaoP.;XueX.;ChenR.;YangS.;MaJ.;LiuJ.Nano Energy2018,53,808.
doi: 10.1016/j.nanoen.2018.09.053 |
72 |
HanN.;WangY.;YangH.;DengJ.;WuJ.;LiY.;LiY.Nat. Commun.2018,9(1),1.
doi: 10.1038/s41467-018-03712-z |
73 |
DuanJ.;LiuT.;ZhaoY.;YangR.;ZhaoY.;WangW.;LiuY.;LiH.;LiY.;ZhaiT.Nat. Commun.2022,13(1),2039.
doi: 10.1038/s41467-022-29699-2 |
74 |
GuanY.;ZhangX.;ZhangY.;KarsiliT. N.;FanM.;LiuY.;MarchettiB.;ZhouX.-D.J. Colloid Interface Sci.2022,612,235.
doi: 10.1016/j.jcis.2021.12.174 |
75 |
ZhangX.;LeiT.;LiuY.;QiaoJ.Appl. Catal. B2017,218,46.
doi: 10.1016/j.apcatb.2017.06.032 |
76 |
ZhangX.;HouX.;ZhangQ.;CaiY.;LiuY.;QiaoJ.J. Catal.2018,365,63.
doi: 10.1016/j.jcat.2018.06.019 |
77 |
HuangY.;MaoX.;YuanG.;ZhangD.;PanB.;DengJ.;ShiY.;HanN.;LiC.;ZhangL.;et alAngew. Chem. Int. Ed.2021,133(29),15978.
doi: 10.1002/anie.202105256 |
78 |
PanB.;YuanG.;ZhaoX.;HanN.;HuangY.;FengK.;ChengC.;ZhongJ.;ZhangL.;WangY.;et alSmall Sci.2021,1(10),2100029.
doi: 10.1002/smsc.202100029 |
79 |
DuX.;QinY.;GaoB.;WangK.;LiD.;LiY.;DingS.;SongZ.;SuY.;XiaoC.Appl. Surf. Sci.,2021,563,150405.
doi: 10.1016/j.apsusc.2021.150405 |
80 |
GrigioniI.;SagarL. K.;LiY. C.;LeeG.;YanY.;BertensK.;MiaoR. K.;WangX.;AbedJ.;WonD. H.;et alACS Energy Lett.2020,6(1),79.
doi: 10.1021/acsenergylett.0c02165 |
81 |
ChiL.-P.;NiuZ.-Z.;ZhangX.-L.;YangP.-P.;LiaoJ.;GaoF.-Y.;WuZ.-Z.;TangK.-B.;GaoM.Nat. Commun.2021,12(1),5835.
doi: 10.1038/s41467-021-26124-y |
82 | WangH.;WuY.;ZhaoY.;LiuZ.Acta Phys.-Chim. Sin.2020,37(5),2010022. |
王欢;吴云雁;赵燕飞;刘志敏.物理化学学报,2020,37(5),2010022.
doi: 10.3866/PKU.WHXB202010022 |
|
83 |
HoriY.;MurataA.;TakahashiR.J. Chem. Soc., Perkin Trans.1989,85(8),2309.
doi: 10.1039/F19898502309 |
84 |
WangL.;NitopiS. A.;BertheussenE.;OrazovM.;Morales-GuioC. G.;LiuX.;HigginsD. C.;ChanK.;NørskovJ. K.;HahnC.;et alACS Catal.2018,8(8),7445.
doi: 10.1021/acscatal.8b01200 |
85 | YuanQ.;YangH.;XieM.;ChengT.Acta Phys.-Chim. Sin.2020,37(5),2010040. |
苑琦;杨昊;谢淼;程涛.物理化学学报,2020,37(5),2010040.
doi: 10.3866/PKU.WHXB202010040 |
|
86 |
RacitiD.;MaoM.;WangC.Nanotechnology2017,29(4),044001.
doi: 10.1088/1361-6528/aa9bd7 |
87 |
HuangJ. E.;LiF.;OzdenA.;Sedighian RasouliA.;García de ArquerF. P.;LiuS.;ZhangS.;LuoM.;WangX.;LumY.;et alScience2021,372(6546),1074.
doi: 10.1126/science.abg6582 |
88 |
FuY.;LiY.;ZhangX.;LiuY.;ZhouX.;QiaoJ.Chin. J. Catal.2016,37(7),1081.
doi: 10.1016/S1872-2067(15)61048-8 |
89 |
MurataA.;HoriY.Bull. Chem. Soc. Jpn.1991,64(1),123.
doi: 10.1246/Bcsj.64.123 |
90 |
WuJ. J.;RisalvatoF. G.;KeF. S.;PellechiaP. J.;ZhouX. D.J. Electrochem. Soc.2012,159(7),F353.
doi: 10.1149/2.049207jes |
91 |
SchizodimouA.;KyriacouG.Electrochim. Acta,2012,78,171.
doi: 10.1016/j.electacta.2012.05.118 |
92 |
PengL.;WangY.;MasoodI.;ZhouB.;WangY.;LinJ.;QiaoJ.;ZhangF.-Y.Appl. Catal. B,2020,264,118447.
doi: 10.1016/j.apcatb.2019.118447 |
93 |
ZhuS.;JiangB.;CaiW.-B.;ShaoM.J. Am. Chem. Soc.2017,139(44),15664.
doi: 10.1021/jacs.7b10462 |
94 |
XuB.;HasanI. M. U.;PengL.;LiuJ.;XuN.;FanM.;NiaziN. K.;QiaoJ.Mater. Rep. Energy2022,2(3),100139.
doi: 10.1016/j.matre.2022.100139 |
95 | GaoD.;WeiP.;LiH.;LinL.;WangG.;BaoX.Acta Phys.-Chim. Sin.2020,37(5),2009021. |
高敦峰;魏鹏飞;李合肥;林龙;汪国雄;包信和.物理化学学报,2020,37(5),2009021.
doi: 10.3866/PKU.WHXB202009021 |
|
96 |
KuhlK. P.;CaveE. R.;AbramD. N.;JaramilloT. F.Energy Environ. Sci.2012,5(5),7050.
doi: 10.1039/C2EE21234J |
97 |
LiuP.-X.;PengL.-W.;HeR.-N.;LiL.-L.;QiaoJ.-L.J. Electrochem.2022,28(1),2104231.
doi: 10.13208/j.electrochem.210423 |
98 |
WhippleD. T.;FinkeE. C.;KenisP. J.Electrochem. Solid-State Lett.2010,13(9),B109.
doi: 10.1149/1.3456590 |
99 |
TornowC. E.;ThorsonM. R.;MaS.;GewirthA. A.;KenisP. J.J. Am. Chem. Soc.2012,134(48),19520.
doi: 10.1021/ja308217w |
100 |
JhongH. R. M.;BrushettF. R.;KenisP. J.Adv. Energy Mater.2013,3(5),589.
doi: 10.1002/aenm.201200759 |
101 |
DinhC.-T.; BurdynyT.;KibriaM. G.;SeifitokaldaniA.;GabardoC. M.;García de ArquerF. P.;KianiA.;EdwardsJ. P.;De LunaP.;BushuyevO. S.;et alScience2018,360(6390),783.
doi: 10.1126/science.aas9100 |
102 |
EndrődiB.;BencsikG.;DarvasF.;JonesR.;RajeshwarK.;JanákyC.Prog. Energy Combust. Sci.2017,62,133.
doi: 10.1016/j.pecs.2017.05.005 |
103 |
LuX.;WuY.;YuanX.;HuangL.;WuZ.;XuanJ.;WangY.;WangH.ACS Energy Lett.2018,3(10),2527.
doi: 10.1021/acsenergylett.8b01681 |
104 |
BurdynyT.;SmithW. A.Energy Environ. Sci.2019,12(5),1442.
doi: 10.1039/C8EE03134G |
105 |
LiG.;YanT.;ChenX.;LiuH.;ZhangS.;MaX.Energy Fuels2022,36(8),4234.
doi: 10.1021/acs.energyfuels.2c00271 |
106 |
XingZ.;HuL.;RipattiD. S.;HuX.;FengX.Nat. Commun.2021,12(1),136.
doi: 10.1038/s41467-020-20397-5 |
107 |
WakerleyD.;LamaisonS.;WicksJ.;ClemensA.;FeasterJ.;CorralD.;JafferS. A.;SarkarA.;FontecaveM.;DuossE. B.;et alNat. Energy2022,7(2),130.
doi: 10.1038/s41560-021-00973-9 |
108 |
SaccoA.;ZengJ.;BejtkaK.;ChiodoniA.J. Catal.,2019,372,39.
doi: 10.1016/j.jcat.2019.02.016 |
109 |
LiuC.;WangX.;XuJ.;WangC.;ChenH.;LiuW.;ChenZ.;DuX.;WangS.;WangZ.Int. J. Hydrog. Energy2020,45(1),945.
doi: 10.1016/j.ijhydene.2019.10.166 |
110 |
MaS.;LuoR.;GoldJ. I.;YuA. Z.;KimB.;KenisP. J. A.J. Mater. Chem. A2016,4(22),8573.
doi: 10.1039/C6TA00427J |
111 |
YinZ.;PengH.;WeiX.;ZhouH.;GongJ.;HuaiM.;XiaoL.;WangG.;LuJ.;ZhuangL.Energy Environ. Sci.2019,12(8),2455.
doi: 10.1039/C9EE01204D |
112 |
BlommaertM. A.;SubramanianS.;YangK.;SmithW. A.;VermaasD. A.ACS Appl. Mater. Interfaces2021,14(1),557.
doi: 10.1021/acsami.1c16513 |
113 |
LiuJ.;PengL.;ZhouY.;LvL.;FuJ.;LinJ.;GuayD.;QiaoJ.ACS Sustain. Chem. Eng.2019,7(18),15739.
doi: 10.1021/acssuschemeng.9b03892 |
114 |
YangH.;KaczurJ. J.;SajjadS. D.;MaselR. I.J. CO2 Util.,2017,20,208.
doi: 10.1016/j.jcou.2017.04.011 |
115 |
XiaC.;ZhuP.;JiangQ.;PanY.;LiangW.;StavitskiE.;AlshareefH. N.;WangH.Nat. Energy2019,4(9),776.
doi: 10.1038/s41560-019-0451-x |
116 |
DelacourtC.;RidgwayP. L.;KerrJ. B.;NewmanJ.J. Electrochem. Soc.2007,155(1),B42.
doi: 10.1149/1.2801871 |
117 |
KutzR. B.;ChenQ.;YangH.;SajjadS. D.;LiuZ.;MaselI. R.Energy Technol.2017,5(6),929.
doi: 10.1002/ente.201600636 |
118 |
PengL.;WangY.;WangY.;XuN.;LouW.;LiuP.;CaiD.;HuangH.;QiaoJ.Appl. Catal. B2021,288,120003.
doi: 10.1016/j.apcatb.2021.120003 |
119 |
WangM.;PrestonN.;XuN.;WeiY.;LiuY.;QiaoJ.ACS Appl. Mater. Interfaces2019,11(7),6881.
doi: 10.1021/acsami.8b11845 |
120 |
WangM.;ZouQ.;DongX.;XuN.;ShaoR.;DingJ.;ZhangY.;QiaoJ.Green Energy Environ.2021,8(3),893.
doi: 10.1016/j.gee.2021.12.003 |
121 |
WuH.;GuoX.;GaoL.;ZhouT.;NiuZ.;DongX.;ZhouY.;LiZ.;HongF. F.;QiaoJ.Chem. Eng. J.,2023,454,139807.
doi: 10.1016/j.cej.2022.139807 |
122 |
WangM.;XuB.;ZouQ.;DongX.;ShaoR.;QiaoJ.Sep. Purif. Technol.2023,307,122792.
doi: 10.1016/j.seppur.2022.122792 |
123 |
Vargas-BarbosaN. M.;GeiseG. M.;HicknerM. A.;MalloukT. E.ChemSusChem2014,7(11),3017.
doi: 10.1002/cssc.201402535 |
124 |
SimonsR.Electrochim. Acta1986,31(9),1175.
doi: 10.1016/0013-4686(86)80130-X |
125 |
YanZ.;HittJ. L.;ZengZ.;HicknerM. A.;MalloukT. E.Nat. Chem.2021,13(1),33.
doi: 10.1038/s41557-020-00602-0 |
126 |
VermaasD. A.;SmithW. A.ACS Energy Lett.2016,1(6),1143.
doi: 10.1021/acsenergylett.6b00557 |
127 |
PengL.;ChenC.;HeR.;XuN.;QiaoJ.;LinZ.;ZhuY.;HuangH.EcoMat2022,4(6),e12260.
doi: 10.1002/eom2.12260 |
[1] | Zhuo Han, Danfeng Zhang, Haixian Wang, Guorui Zheng, Ming Liu, Yanbing He. Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries [J]. Acta Phys. -Chim. Sin., 2024, 40(9): 2307034-. |
[2] | Rui Yang, Hui Li, Qingfei Meng, Wenjie Li, Jiliang Wu, Yongjin Fang, Chi Huang, Yuliang Cao. Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery [J]. Acta Phys. -Chim. Sin., 2024, 40(9): 2308053-. |
[3] | Lutian Zhao, Yangge Guo, Liuxuan Luo, Xiaohui Yan, Shuiyun Shen, Junliang Zhang. Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge [J]. Acta Phys. -Chim. Sin., 2024, 40(7): 2306029-. |
[4] | Hao Chen, Dongyue Yang, Gang Huang, Xinbo Zhang. Progress on Liquid Organic Electrolytes of Li-O2 Batteries [J]. Acta Phys. -Chim. Sin., 2024, 40(7): 2305059-. |
[5] | Da Wang, Xiaobin Yin, Jianfang Wu, Yaqiao Luo, Siqi Shi. All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation [J]. Acta Phys. -Chim. Sin., 2024, 40(7): 2307029-. |
[6] | Jiandong Liu, Xin Li, Daxiong Wu, Huaping Wang, Junda Huang, Jianmin Ma. Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery [J]. Acta Phys. -Chim. Sin., 2024, 40(6): 2306039-. |
[7] | Yue Zhang, Bao Li, Lixin Wu. GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions [J]. Acta Phys. -Chim. Sin., 2024, 40(5): 2305038-. |
[8] | Bizhu Shao, Huijun Dong, Yunnan Gong, Jianhua Mei, Fengshi Cai, Jinbiao Liu, Dichang Zhong, Tongbu Lu. Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows [J]. Acta Phys. -Chim. Sin., 2024, 40(4): 2305026-. |
[9] | Jia Wang, Qing Qin, Zhe Wang, Xuhao Zhao, Yunfei Chen, Liqiang Hou, Shangguo Liu, Xien Liu. P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions [J]. Acta Phys. -Chim. Sin., 2024, 40(3): 2304044-. |
[10] | Yajie Li, Bin Chen, Yiping Wang, Hui Xing, Wei Zhao, Geng Zhang, Siqi Shi. Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study [J]. Acta Phys. -Chim. Sin., 2024, 40(3): 2305053-. |
[11] | Ke Qiu, Fengmei Wang, Mochou Liao, Kerun Zhu, Jiawei Chen, Wei Zhang, Yongyao Xia, Xiaoli Dong, Fei Wang. A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries [J]. Acta Phys. -Chim. Sin., 2024, 40(3): 2304036-. |
[12] | Hanmei Lü, Xin Chen, Qifu Sun, Ning Zhao, Xiangxin Guo. Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes [J]. Acta Phys. -Chim. Sin., 2024, 40(3): 2305016-. |
[13] | Chen Pu, Daijie Deng, Henan Li, Li Xu. Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability [J]. Acta Phys. -Chim. Sin., 2024, 40(2): 2304021-. |
[14] | Qing Xue, Shengyi Li, Yanan Zhao, Peng Sheng, Li Xu, Zhengxi Li, Bo Zhang, Hui Li, Bo Wang, Libin Yang, Yuliang Cao, Zhongxue Chen. Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan [J]. Acta Phys. -Chim. Sin., 2024, 40(2): 2303041-. |
[15] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
|