Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (8): 2210039.doi: 10.3866/PKU.WHXB202210039
Special Issue: Electrocatalysis in Energy Conversion
• ARTICLE • Previous Articles Next Articles
Yanhui Yu, Peng Rao, Suyang Feng, Min Chen, Peilin Deng(), Jing Li, Zhengpei Miao(), Zhenye Kang, Yijun Shen, Xinlong Tian()
Received:
2022-10-27
Accepted:
2022-11-14
Published:
2022-11-21
Contact:
Peilin Deng, Zhengpei Miao, Xinlong Tian
E-mail:dengpeilin@hainanu.edu.cn;zpmiao92@hainanu.edu.cn;tianxl@hainanu.edu.cn
Supported by:
Yanhui Yu, Peng Rao, Suyang Feng, Min Chen, Peilin Deng, Jing Li, Zhengpei Miao, Zhenye Kang, Yijun Shen, Xinlong Tian. Atomic Co Clusters for Efficient Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin. 2023, 39(8), 2210039. doi: 10.3866/PKU.WHXB202210039
1 |
TianX.;ZhaoX.;SuY. Q.;WangL.;WangH.;DangD.;ChiB.;LiuH.;HensenE. J. M.;LouX. W.Science2019,366,850.
doi: 10.1126/science.aaw7493 |
2 |
TianX.;LuX. F.;XiaB. Y.;LouX. W.Joule2020,4,45.
doi: 10.1016/j.joule.2019.12.014 |
3 | LiL.;ShenS.;WeiG.;ZhangJ.Acta Phys. -Chim. Sin.2021,37,1911011. |
李琳;沈水云;魏光华;章俊良;物理化学学报,2021,37,1911011.
doi: 10.3866/PKU.WHXB201911011 |
|
4 | DingL.;TangT.;HuJ.-S. Acta Phys. -Chim. Sin.2021,37,2010048. |
丁亮;唐堂;胡劲松;物理化学学报,2021,37,2010048.
doi: 10.3866/PKU.WHXB202010048 |
|
5 |
LinZ.;XiaoB.;HuangM.;YanL.;WangZ.;HuangY.;ShenS.;ZhangQ.;GuL.;ZhongW.Adv. Energy Mater.2022,12,2200855.
doi: 10.1002/aenm.202200855 |
6 |
NanH.;SuY. Q.;TangC.;CaoR.;LiD.;YuJ.;LiuQ.;DengY.;TianX.Sci. Bull.2020,65,1396.
doi: 10.1016/j.scib.2020.04.015 |
7 |
GuJ.;ZhaoY.;LinS.;HuangJ.;CabreraC. R.;SumpterB. G.;ChenZ.J. Energy Chem.2021,63,285.
doi: 10.1016/j.jechem.2021.08.004 |
8 |
HuangB.;HouK.;LiuY.;HuR.;GuanL.J. Energy Chem.2021,63,521.
doi: 10.1016/j.jechem.2021.08.024 |
9 |
LiJ.;WangY.;YinZ.;HeR.;WangY.;QiaoJ.J. Energy Chem.2022,66,348.
doi: 10.1016/j.jechem.2021.08.007 |
10 | LiuM.;YangM.;ShuX.;ZhangJ.Acta Phys. -Chim. Sin.2021,37,2007072. |
刘苗苗;杨茅茂;舒欣欣;张进涛;物理化学学报,2021,37,2007072.
doi: 10.3866/PKU.WHXB202007072 |
|
11 |
YangH.;GaoS.;RaoD.;YanX.Energy Storage Mater.2022,46,553.
doi: 10.1016/j.ensm.2022.01.040 |
12 |
DengY.;LuoJ.;ChiB.;TangH.;LiJ.;QiaoX.;ShenY.;YangY.;JiaC.;RaoP.;TianX.Adv. Energy Mater.2021,11,2101222.
doi: 10.1002/aenm.202101222 |
13 |
YangY.;WuD.;LiR.;RaoP.;LiJ.;DengP.;LuoJ.;HuangW.;ChenQ.;KangZ.;TianX.Appl. Catal. B: Environ.2022,317,121796.
doi: 10.1016/j.apcatb.2022.121796 |
14 |
LouY.;LiuJ.;LiuM.;WangF.ACS Catal.2020,10,2443.
doi: 10.1021/acscatal.9b03716 |
15 |
WangY.;LiZ.;ZhangP.;PanY.;ZhangY.;CaiQ.;SilvaS. R. P.;LiuJ.;ZhangG.;SunX.;et alNano Energy2021,87,106147.
doi: 10.1016/j.nanoen.2021.106147 |
16 | XiaoY.;PeiY.;HuY.;MaR.;WangD.;WangJ.Acta Phys. -Chim. Sin.2021,37,2009051. |
肖瑶;裴煜;胡一帆;马汝广;王德义;王家成;物理化学学报,2021,37,2009051.
doi: 10.3866/PKU.WHXB202009051 |
|
17 |
LiY.;ZangK.;DuanX.;LuoJ.;ChenD.J. Energy Chem.2021,55,572.
doi: 10.1016/j.jechem.2020.07.041 |
18 |
XieX.;HeC.;LiB.;HeY.;CullenD. A.;WegenerE. C.;KropfA. J.;MartinezU.;ChengY.;EngelhardM. H.Nat. Catal.2020,3,1044.
doi: 10.1038/s41929-020-00546-1 |
19 |
RaoP.;DengY.;FanW.;LuoJ.;DengP.;LiJ.;ShenY.;TianX.Nat. Commun.2022,13,5071.
doi: 10.1038/s41467-022-32850-8 |
20 |
WangH. Y.;WengC. C.;YuanZ. Y.J. Energy Chem.2021,56,470.
doi: 10.1016/j.jechem.2020.08.030 |
21 |
YangJ.;LiuW.;XuM.;LiuX.;QiH.;ZhangL.;YangX.;NiuS.;ZhouD.;LiuY.J. Am. Chem. Soc.2021,143,14530.
doi: 10.1021/jacs.1c03788 |
22 |
KumarA.;BuiV. Q.;LeeJ.;WangL.;JadhavA. R.;LiuX.;ShaoX.;LiuY.;YuJ.;HwangY.Nat. Commun.2021,12,6766.
doi: 10.1038/s41467-021-27145-3 |
23 |
LeiZ.;CaiW.;RaoY.;WangK.;JiangY.;LiuY.;JinX.;LiJ.;LvZ.;JiaoS.Nat. Commun.2022,13,24.
doi: 10.1038/s41467-021-27664-z |
24 |
ZhangM.;ZhangJ.;RanS.;QiuL.;SunW.;YuY.;ChenJ.;ZhuZ.Nano Res.2020,14,1175.
doi: 10.1007/s12274-020-3168-z |
25 |
LeiZ.;TanY.;ZhangZ.;WuW.;ChengN.;ChenR.;MuS.;SunX.Nano Res.2020,14,868.
doi: 10.1007/s12274-020-3127-8 |
26 |
YangJ.;QiH.;LiA.;LiuX.;YangX.;ZhangS.;ZhaoQ.;JiangQ.;SuY.;ZhangL.J. Am. Chem. Soc.2022,144,12062.
doi: 10.1021/jacs.2c02262 |
27 |
XingG.;TongM.;YuP.;WangL.;ZhangG.;TianC.;FuH.Angew. Chem. Int. Ed.2022,61,e202211098.
doi: 10.1002/anie.202211098 |
28 |
BaiX.;ZhaoX.;ZhangY.;LingC.;ZhouY.;WangJ.;LiuY.J. Am. Chem. Soc.2022,144,17140.
doi: 10.1021/jacs.2c07178 |
29 |
ShenS.;HuZ.;ZhangH.;SongK.;WangZ.;LinZ.;ZhangQ.;GuL.;ZhongW.Angew. Chem. Int. Ed.2022,61,e202206460.
doi: 10.1002/anie.202206460 |
30 |
LiuJ. C.;MaX. L.;LiY.;WangY. G.;XiaoH.;LiJ.Nat. Commun.2018,9,1610.
doi: 10.1038/s41467-018-03795-8 |
31 |
HuangH.;YuD.;HuF.;HuangS. C.;SongJ.;ChenH. Y.;LiL. L.;PengS.Angew. Chem. Int. Ed.2022,61,e202116068.
doi: 10.1002/anie.202116068 |
32 |
WangQ.;HuangX.;ZhaoZ. L.;WangM.;XiangB.;LiJ.;FengZ.;XuH.;GuM.J. Am. Chem. Soc.2020,142,7425.
doi: 10.1021/jacs.9b12642 |
33 |
CaiC.;WangM.;HanS.;WangQ.;ZhangQ.;ZhuY.;YangX.;WuD.;ZuX.;SterbinskyG. E.ACS Catal.2020,11,123.
doi: 10.1021/acscatal.0c04656 |
34 |
ChenZ. W.;YanJ. M.;JiangQ.Small Methods2018,3,1800291.
doi: 10.1002/smtd.201800291 |
35 |
ZhangX.;ChenA.;ZhangZ.;ZhouZ.J. Mater. Chem. A2018,6,18599.
doi: 10.1039/c8ta07683a |
36 |
YuP.;WangL.;SunF.;XieY.;LiuX.;MaJ.;WangX.;TianC.;LiJ.;FuH.Adv. Mater.2019,31,e1901666.
doi: 10.1002/adma.201901666 |
37 |
YangZ.;ZhaoC.;QuY.;ZhouH.;ZhouF.;WangJ.;WuY.;LiY.Adv. Mater.2019,31,e1808043.
doi: 10.1002/adma.201808043 |
38 |
HanX.;LingX.;YuD.;XieD.;LiL.;PengS.;ZhongC.;ZhaoN.;DengY.;HuW.Adv. Mater.2019,31,e1905622.
doi: 10.1002/adma.201905622 |
39 |
RaoP.;WuD.;WangT.-J.;LiJ.;DengP.;ChenQ.;ShenY.;ChenY.;TianX.eScience2022,2,399.
doi: 10.1016/j.esci.2022.05.004 |
40 |
GaoJ.;HuY.;WangY.;LinX.;HuK.;LinX.;XieG.;LiuX.;ReddyK. M.;YuanQ.Small2021,17,e2104684.
doi: 10.1002/smll.202104684 |
41 |
YangZ.;ChenB.;ChenW.;QuY.;ZhouF.;ZhaoC.;XuQ.;ZhangQ.;DuanX.;WuY.Nat. Commun.2019,10,3734.
doi: 10.1038/s41467-019-11796-4 |
42 |
ZhongH.;ShiC.;LiJ.;YuR.;YuQ.;LiuH.;YaoY.;WuJ.;ZhouL.;MaiL.Chem. Commun.2020,56,4488.
doi: 10.1039/c9cc10036a |
43 |
RenW.;TanX.;YangW.;JiaC.;XuS.;WangK.;SmithS. C.;ZhaoC.Angew. Chem. Int. Ed.2019,58,6972.
doi: 10.1002/anie.201901575 |
[1] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[2] | Yang Hu, Bin Liu, Luyao Xu, Ziqiang Dong, Yating Wu, Jie Liu, Cheng Zhong, Wenbin Hu. High-Throughput Synthesis and Screening of Pt-Based Ternary Electrocatalysts Using a Microfluidic-Based Platform [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209004-0. |
[3] | Jingxue Li, Yue Yu, Siran Xu, Wenfu Yan, Shichun Mu, Jia-Nan Zhang. Function of Electron Spin Effect in Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302049-. |
[4] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
[5] | Baihua Cui, Yi Shi, Gen Li, Yanan Chen, Wei Chen, Yida Deng, Wenbin Hu. Challenges and Opportunities for Seawater Electrolysis: A Mini-Review on Advanced Materials in Chlorine-Involved Electrochemistry [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106010-. |
[6] | Ke Sun, Yongqing Zhao, Jie Yin, Jing Jin, Hanwen Liu, Pinxian Xi. Surface Modification of NiCo2O4 Nanowires using Organic Ligands for Overall Water Splitting [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107005-. |
[7] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-. |
[8] | Miaomiao Liu, Maomao Yang, XinXin Shu, Jintao Zhang. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007072-. |
[9] | Hongsa Han, Yanqing Wang, Yunlong Zhang, Yuanyuan Cong, Jiaqi Qin, Rui Gao, Chunxiao Chai, Yujiang Song. Oxygen Reduction Reaction Electrocatalysts Derived from Metalloporphyrin-Modified Meso-/Macroporous Polyaniline [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2008017-. |
[10] | Yufei Bao, Ligang Feng. Formic Acid Electro-Oxidation Catalyzed by PdNi/Graphene Aerogel [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2008031-. |
[11] | Lei Huang, Shahid Zaman, Zhitong Wang, Huiting Niu, Bo You, Bao Yu Xia. Synthesis and Application of Platinum-Based Hollow Nanoframes for Direct Alcohol Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009035-. |
[12] | Fang Luo, Shuyuan Pan, Zehui Yang. Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009087-. |
[13] | Jian Wang, Wei Ding, Zidong Wei. Performance of Polymer Electrolyte Membrane Fuel Cells at Ultra-Low Platinum Loadings [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009094-. |
[14] | Yanrong Xue, Xingdong Wang, Xiangqian Zhang, Jinjie Fang, Zhiyuan Xu, Yufeng Zhang, Xuerui Liu, Mengyuan Liu, Wei Zhu, Zhongbin Zhuang. Cost-Effective Hydrogen Oxidation Reaction Catalysts for Hydroxide Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009103-. |
[15] | Liang Ding, Tang Tang, Jin-Song Hu. Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010048-. |
|