Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (8): 2210036.doi: 10.3866/PKU.WHXB202210036
Special Issue: Electrocatalysis in Energy Conversion
• REVIEW • Previous Articles Next Articles
Chang Lan1,2, Yuyi Chu1,2, Shuo Wang1,2, Changpeng Liu1, Junjie Ge1,*(), Wei Xing1,*(
)
Received:
2022-10-26
Accepted:
2022-12-05
Published:
2022-12-09
Contact:
Junjie Ge, Wei Xing
E-mail:gejj@ciac.ac.cn;xingwei@ciac.ac.cn
Supported by:
Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts[J]. Acta Phys. -Chim. Sin. 2023, 39(8), 2210036. doi: 10.3866/PKU.WHXB202210036
Fig 2
(a) Atomic-resolution HAADF-STEM image of Fe atoms distributed across the surface of fibrous carbon phase showing randomly oriented, intertwined graphitic domains 18. (b) HAADF-STEM image of individual Fe atoms (labeled 1, 2, and 3) in a few-layer graphene sheet 18. (c) EEL spectra of the N K-edge (NK) and Fe L-edge (FeL) acquired from single atoms (1 and 2) and few-layer graphene (3), demonstrating the presence of N around the Fe atoms 18. (d) Corresponding EELS mapping of Co, Fe, and N 19. (e) Magnified HAADF-STEM of (Fe, Co)/N-C, showing Fe-Co dual sites dominant in (Fe, Co)/N-C 19. (f) Corresponding intensity profiles obtained on the zoomed areas 19. (a–c) Reproduced with permission from Ref. 18, Copyright 2017 American Association for the Advancement of Science. (d–f) Reproduced with permission from Ref. 19, Copyright 2017 American Chemical Society."
Fig 3
(a) The normalized Cr K-edge XANES spectra of Cr/N/C-950 as well as Cr foil and Cr2O3 22. (b) EXAFS fitting curve for Ru-SSC 23. (c) Co K-edge EXAFS analysis in k(c) spaces 24. (d) Wavelet transforms for the k2-weighted χ(k) K-edge EXAFS signals 24. (e) In situ X-ray absorption spectroscopy showing changes in the oxidation state of Fe in the same potential region as other catalysts exhibiting prominent redox signatures 25. (f) In situ XANES 26. (g) XANES spectra of ex situ and in situ FePhenMOF ArNH3 catalysts 46. (a) Reproduced with permission from Ref. 22, Copyright 2019 John Wiley and Sons. (b) Reproduced with permission from Ref. 23, Copyright 2019 American Chemical Society. (c, d) Reproduced with permission from Ref. 24, Copyright 2019 American Chemical Society. (e) Reproduced with permission from Ref. 25, Copyright 2021 United States Department of Energy. (f) Reproduced with permission from Ref. 26, Copyright 2018 American Chemical Society. (g) Reproduced with permission from Ref. 46, Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim."
Fig 5
Mößbauer spectra of the (Fe, Fe)1 catalyst (a) and the (Fe, Fe)1 + N2/H2 (b) 33. (c) Structural changes of the sites S1 and S2 under in situ conditions 34. (a, b) Reproduced with permission from Ref. 33, Copyright 2016 American Chemical Society. (c) Reproduced with permission from Ref. 34, Copyright 2020 Springer Nature."
Fig 6
Correlation between CO low-temperature adsorption Fe-based surface site density SDmass(CO) and Fe surface site density SDmass(NO2−) based on NO2-exfoliation, (a) micropore volume, (b) volumetric iron content, (c) pore volume correlation with doublet D1 molecular ratio obtained from 57Fe Mössbauer spectroscopy 41. Reproduced with permission from Ref. 41, Copyright 2020 The Royal Society of Chemistry."
Fig 7
(a) Schematic of the integrated scanning electrochemical cell microscopy (iSECCMS) platform that combines scanning electrochemical cell microscopy (SECCM) with fluorescence spectroscopy. (b) The capillary tip of the iSECCMS platform can be moved along the XYZ directions, which enables the operator to accurately locate the measurement position. (c) Photograph of the ISECMS platform. (d) Microscope image of the stretched theta capillary used in the platform. (e) The focal area of an inverted microscope placed under the working electrode. (f) The theta capillary is fitted with a shear force component to control the position of the tip in the Z direction while landing it on the electrode surface during the measurement 42. Reproduced with permission from Ref. 42, Copyright 2020 Frontiers Media S.A."
Table 1
Electrochemical and battery performance of representative M-Nx/C catalysts in recent years."
Catalyst | Active site | Electrolyte | Halfwave potential/V (vs. RHE) | Maximum Power |
TPI@Z8(SiO2)-650-Z | FeN4 | 0.5 mol∙L−1 H2SO4 | 0.823 | H2/2.5 bar O2: 1.18 W∙cm−2 |
Cr/N/C-950 | CrN4 | 0.1 mol∙L−1 HClO4 | 0.773 | – |
Ru-SSC | RuN4 | 0.1 mol∙L−1 HClO4 | 0.824 | H2/1.5 bar O2: 0.64 W∙cm−2 |
Ir-SAC | IrN4 | 0.1 mol∙L−1 HClO4 | 0.864 | H2/O2: 0.932 W∙cm−2 |
FeCoNx/C | FeCoN5-OH | 0.1 mol∙L−1 HClO4 | 0.860 | H2/O2: 0.819 W∙cm−2 |
Fe-N-C-YZ | FeN4 | 0.5 mol∙L−1 H2SO4 | 0.916 | H2/air 300/1000 sccm: 0.558 W∙cm–2 |
Mn(acac)3@ZIF-NC | MnN4 | 0.5 mol∙L−1 H2SO4 | 0.872 | 50%RH H2/air 250 kPa: 0.674 W∙cm−2 |
Fe/NC-NaCl | FeN4 | 0.1 mol∙L−1 HClO4 | 0.832 | H2/O2: 0.89 W∙cm−2 |
Cu-SAs/N-C | CuN4 | 0.1 mol∙L−1 HClO4 0.1 mol∙L−1 KOH | 0.730 0.895 | – |
Ce-SAS/HPNC | Ce-N4/O6 | 0.1 mol∙L−1 HClO4 | 0.862 | H2/2 bar O2: 0.525 W∙cm–2 |
Zn-N-C | ZnN4 | 0.1 mol∙L−1 HClO4 0.1 mol∙L−1 KOH | 0.746 0.873 | – |
Co-N-C | CoN4 | 0.5 mol∙L−1 H2SO4 | 0.820 | H2/O2: 0.64 W∙cm–2 |
Fig 8
(a) The polarization curve and power density curve of the catalyst. Test conditions: when the flow rate is 300 or 400 mL∙min−1, the cathode load Fe-N-C 2.7 mg∙cm−2, the anode load Pt 0.2 mg∙cm−2, 80 ℃, 100% relative humidity (RH) and 2.5 bar H2-O2. (b) ORR polarization curves of the synthesized catalysts at a rate scan of 5 mV∙s−1 at 900 r∙min−1 55. (c) H2-O2 power density curves of different catalysts 63. Experimental conditions: Fe-N-C 3.5 mg∙cm−2 loaded on cathode, 0.4 mg∙cm−2 loaded on anode; Nafion 211 membrane; 4.41 cm2 electrode area; 353 K, 100% relative humidity; gas flow rate O2 400 mL∙min−1, H2 300 mL∙min−1 63, (d) ORR polarization curves of different catalysts 63. (a) Reproduced with permission from Ref. 54, Copyright 2019 Springer Nature. (b) Reproduced with permission from Ref. 55, Copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (c, d) Reproduced with permission from Ref. 63, Copyright 2022 The Royal Society of Chemistry."
1 |
Chatterjee S. ; Dutta I. ; Lum Y. ; Lai Z. ; Huang K.-W. Energy Environ. Sci. 2021, 14, 1194.
doi: 10.1039/d0ee03011b |
2 |
Cullen D. A. ; Neyerlin K. C. ; Ahluwalia R. K. ; Mukundan R. ; More K. L. ; Borup R. L. ; Weber A. Z. ; Myers D. J. ; Kusoglu A. Nat. Energy 2021, 6, 462.
doi: 10.1038/s41560-021-00775-z |
3 |
Steele B. C. ; Heinzel A. Nature 2001, 414, 345.
doi: 10.1038/35104620 |
4 |
Staffell I. ; Scamman D. ; Abad A. V. ; Balcombe P. ; Dodds P. E. ; Ekins P. ; Shah N. ; Ward K. R. Energy Environ. Sci. 2019, 12, 463.
doi: 10.1039/c8ee01157e |
5 |
Shih C. F. ; Zhang T. ; Li J. H. ; Bai C. L. Joule 2018, 2, 1925.
doi: 10.1016/j.joule.2018.08.016 |
6 |
Debe M. K. Nature 2012, 486, 43.
doi: 10.1038/nature11115 |
7 |
Li Q. ; Wang T. ; Havas D. ; Zhang H. ; Xu P. ; Han J. ; Cho J. ; Wu G. Adv. Sci. 2016, 3, 1600140.
doi: 10.1002/advs.201600140 |
8 |
Xu X. ; Xia Z. ; Zhang X. ; Sun R. ; Sun X. ; Li H. ; Wu C. ; Wang J. ; Wang S. ; Sun G. Appl. Catal. B 2019, 259, 118042.
doi: 10.1016/j.apcatb.2019.118042 |
9 |
Wroblowa H. S. ; Yen Chi P. ; Razumney G. J. Electroanal. Chem. 1976, 69, 195.
doi: 10.1016/s0022-0728(76)80250-1 |
10 |
Muthukrishnan A. ; Nabae Y. ; Chang C. W. ; Okajima T. ; Ohsaka T. Catal. Sci. Technol. 2015, 5, 1764.
doi: 10.1039/c4cy01429d |
11 |
Luo E. ; Chu Y. ; Liu J. ; Shi Z. ; Zhu S. ; Gong L. ; Ge J. ; Choi C. H. ; Liu C. ; Xing W. Energy Environ. Sci. 2021, 14, 2158.
doi: 10.1039/d1ee00142f |
12 |
Wang X. ; Li Z. ; Qu Y. ; Yuan T. ; Wang W. ; Wu Y. ; Li Y. Chem 2019, 5, 1486.
doi: 10.1016/j.chempr.2019.03.002 |
13 |
Keith J. A. ; Jerkiewicz G. ; Jacob T. ChemPhysChem 2010, 11, 2779.
doi: 10.1002/cphc.201000286 |
14 |
Singh H. ; Zhuang S. ; Ingis B. ; Nunna B. B. ; Lee E. S. Carbon 2019, 151, 160.
doi: 10.1016/j.carbon.2019.05.075 |
15 |
Duan Z. ; Wang G. Phys. Chem. Chem. Phys. 2011, 13, 20178.
doi: 10.1039/c1cp21687b |
16 |
Tao X. ; Lu R. ; Ni L. ; Gridin V. ; Al-Hilfi S. H. ; Qiu Z. ; Zhao Y. ; Kramm U. I. ; Zhou Y. ; Mullen K. Mater. Horizons 2021, 9, 417.
doi: 10.1039/d1mh01307f |
17 |
Li X. ; Xiang Z. Nat. Commun. 2022, 13, 57.
doi: 10.1038/s41467-021-27735-1 |
18 |
Chung H. T. ; Cullen D. A. ; Higgins D. ; Sneed B. T. ; Holby E. F. ; More K. L. ; Zelenay P. Science 2017, 357, 479.
doi: 10.1126/science.aan2255 |
19 |
Wang J. ; Huang Z. ; Liu W. ; Chang C. ; Tang H. ; Li Z. ; Chen W. ; Jia C. ; Yao T. ; Wei S. ; et al J. Am. Chem. Soc. 2017, 139, 17281.
doi: 10.1021/jacs.7b10385 |
20 |
Yang G. ; Zhu J. ; Yuan P. ; Hu Y. ; Qu G. ; Lu B.-A. ; Xue X. ; Yin H. ; Cheng W. ; Cheng J. ; et al Nat. Commun. 2021, 12, 1734.
doi: 10.1038/s41467-021-21919-5 |
21 |
Zhang X. ; Xue D. ; Jiang S. ; Xia H. ; Yang Y. ; Yan W. ; Hu J. ; Zhang J. InfoMat 2022, 4, 12257.
doi: 10.1002/inf2.12257 |
22 |
Luo E. ; Zhang H. ; Wang X. ; Gao L. ; Gong L. ; Zhao T. ; Jin Z. ; Ge J. ; Jiang Z. ; Liu C. ; et al Angew. Chem. Int. Ed. 2019, 58, 12469.
doi: 10.1002/anie.201906289 |
23 |
Xiao M. ; Gao L. ; Wang Y. ; Wang X. ; Zhu J. ; Jin Z. ; Liu C. ; Chen H. ; Li G. ; Ge J. ; et al J. Am. Chem. Soc. 2019, 141, 19800.
doi: 10.1021/jacs.9b09234 |
24 |
Xiao M. ; Chen Y. ; Zhu J. ; Zhang H. ; Zhao X. ; Gao L. ; Wang X. ; Zhao J. ; Ge J. ; Jiang Z. ; et al J. Am. Chem. Soc. 2019, 141, 17763.
doi: 10.1021/jacs.9b08362 |
25 | Zelenay, P.; Myers, D. Electrocatalysis Consortium 2.0. https://www.hydrogen.energy.gov/pdfs/review21/fc160_myers_zelenay_2021_o.pdf. |
26 |
Xiao M. ; Zhu J. ; Ma L. ; Jin Z. ; Ge J. ; Deng X. ; Hou Y. ; He Q. ; Li J. ; Jia Q. ; et al ACS Catal. 2018, 8, 2824.
doi: 10.1021/acscatal.8b00138 |
27 |
Fei H. ; Dong J. ; Chen D. ; Hu T. ; Duan X. ; Shakir I. ; Huang Y. ; Duan X. Chem. Soc. Rev. 2019, 48, 5207.
doi: 10.1039/c9cs00422j |
28 |
van Oversteeg C. H. ; Doan H. Q. ; de Groot F. M. ; Cuk T. Chem. Soc. Rev. 2017, 46, 102.
doi: 10.1039/c6cs00230g |
29 |
Luo E. ; Wang C. ; Li Y. ; Wang X. ; Gong L. ; Zhao T. ; Jin Z. ; Ge J. ; Liu C. ; Xing W. Nano Res. 2020, 13, 2420.
doi: 10.1007/s12274-020-2868-8 |
30 |
Yu L. ; Li Y. ; Ruan Y. Angew. Chem. Int. Ed. 2021, 60, 25296.
doi: 10.1002/anie.202111761 |
31 |
Tamenori Y. ; Morita M. ; Nakamura T. J. Synchrotron Radiat. 2011, 18, 747.
doi: 10.1107/S0909049511027531 |
32 |
Toyoshima R. ; Kondoh H. J. Phys. Condens. Matter 2015, 27, 083003.
doi: 10.1088/0953-8984/27/8/083003 |
33 |
Kramm U. I. ; Herrmann-Geppert I. ; Behrends J. ; Lips K. ; Fiechter S. ; Bogdanoff P. J. Am. Chem. Soc. 2016, 138, 635.
doi: 10.1021/jacs.5b11015 |
34 |
Li J. ; Sougrati M. T. ; Zitolo A. ; Ablett J. M. ; Oğuz I. C. ; Mineva T. ; Matanovic I. ; Atanassov P. ; Huang Y. ; Zenyuk I. ; et al Nat. Catal. 2020, 4, 10.
doi: 10.1038/s41929-020-00545-2 |
35 |
Jia Q. ; Liu E. ; Jiao L. ; Pann S. ; Mukerjee S. Adv Mater 2019, 31, e1805157.
doi: 10.1002/adma.201805157 |
36 |
Saveleva V. A. ; Ebner K. ; Ni L. ; Smolentsev G. ; Klose D. ; Zitolo A. ; Marelli E. ; Li J. ; Medarde M. ; Safonova O. V. ; et al Angew. Chem. Int. Ed. 2021, 60, 11707.
doi: 10.1002/anie.202016951 |
37 |
Bandyopadhyay D. Int. Mater. Rev. 2006, 51, 171.
doi: 10.1179/174328006x79490 |
38 |
Malko D. ; Kucernak A. ; Lopes T. Nat. Commun. 2016, 7, 13285.
doi: 10.1038/ncomms13285 |
39 |
Xu X. ; Zhang X. ; Kuang Z. ; Xia Z. ; Rykov A. I. ; Yu S. ; Wang J. ; Wang S. ; Sun G. Appl. Catal. B 2022, 309, 121290.
doi: 10.1016/j.apcatb.2022.121290 |
40 |
Bae G. ; Kim H. ; Choi H. ; Jeong P. ; Kim D. H. ; Kwon H. C. ; Lee K. S. ; Choi M. ; Oh H. S. ; Jaouen F. ; et al JACS Au 2021, 1, 586.
doi: 10.1021/jacsau.1c00074 |
41 |
Primbs M. ; Sun Y. ; Roy A. ; Malko D. ; Mehmood A. ; Sougrati M.-T. ; Blanchard P.-Y. ; Granozzi G. ; Kosmala T. ; Daniel G. ; et al Energy Environ. Sci. 2020, 13, 2480.
doi: 10.1039/d0ee01013h |
42 |
Edgecomb J. ; Xie X. ; Shao Y. ; El-Khoury P. Z. ; Johnson G. E. ; Prabhakaran V. Front. Chem. 2020, 8, 572563.
doi: 10.3389/fchem.2020.572563 |
43 |
Jiao L. ; Li J. ; Richard L. L. ; Sun Q. ; Stracensky T. ; Liu E. ; Sougrati M. T. ; Zhao Z. ; Yang F. ; Zhong S. ; et al Nat. Mater. 2021, 20, 1385.
doi: 10.1038/s41563-021-01030-2 |
44 |
Jin Z. ; Li P. ; Meng Y. ; Fang Z. ; Xiao D. ; Yu G. Nat. Catal. 2021, 4, 615.
doi: 10.1038/s41929-021-00650-w |
45 |
Deng Y. ; Luo J. ; Chi B. ; Tang H. ; Li J. ; Qiao X. ; Shen Y. ; Yang Y. ; Jia C. ; Rao P. ; et al Adv. Energy Mater. 2021, 11, 2101222.
doi: 10.1002/aenm.202101222 |
46 |
Dong F. ; Wu M. ; Chen Z. ; Liu X. ; Zhang G. ; Qiao J. ; Sun S. Nanomicro Lett. 2022, 14, 36.
doi: 10.1007/s40820-021-00768-3 |
47 |
Jasinski R. Nature 1964, 201, 1212.
doi: 10.1038/2011212a0 |
48 |
Jahnke H. ; Schonborn M. ; Zimmermann G. Top. Curr. Chem. 1976, 61, 133.
doi: 10.1007/BFb0046059 |
49 |
Lefevre M. ; Proietti E. ; Jaouen F. ; Dodelet J. P. Science 2009, 324, 71.
doi: 10.1126/science.1170051 |
50 |
Wu G. ; More K. L. ; Johnston C. M. ; Zelenay P. Science 2011, 332, 443.
doi: 10.1126/science.1200832 |
51 |
Zhang H. ; Chung H. T. ; Cullen D. A. ; Wagner S. ; Kramm U. I. ; More K. L. ; Zelenay P. ; Wu G. Energy Environ. Sci. 2019, 12, 2548.
doi: 10.1039/c9ee00877b |
52 |
He Y. ; Liu S. ; Priest C. ; Shi Q. ; Wu G. Chem. Soc. Rev. 2020, 49, 3484.
doi: 10.1039/c9cs00903e |
53 | Li, X.; Li, J.; Wu, G.; Litster, S. Stationary Direct Methanol Fuel Cells Using Pure Methanol. https://www.hydrogen.energy.gov/pdfs/review21/fc317_Li_2021_o.pdf |
54 |
Wan X. ; Liu X. ; Li Y. ; Yu R. ; Zheng L. ; Yan W. ; Wang H. ; Xu M. ; Shui J. Nat. Catal. 2019, 2, 259.
doi: 10.1038/s41929-019-0237-3 |
55 |
Xiao M. ; Zhu J. ; Li G. ; Li N. ; Li S. ; Cano Z. P. ; Ma L. ; Cui P. ; Xu P. ; Jiang G. ; et al Angew. Chem. Int. Ed. 2019, 58, 9640.
doi: 10.1002/anie.201905241 |
56 |
Gong L. ; Zhang H. ; Wang Y. ; Luo E. ; Li K. ; Gao L. ; Wang Y. ; Wu Z. ; Jin Z. ; Ge J. ; et al Angew. Chem. Int. Ed. 2020, 59, 13923.
doi: 10.1002/anie.202004534 |
57 | Xu, H. Electrocat: Durable Mn-Based Pgm-Free Catalysts for Polymer Electrolyte Membrane Fuel Cells. https://www.hydrogen.energy.gov/pdfs/review21/fc170_xu_2021_o.pdf. |
58 |
Wang Q. ; Yang Y. ; Sun F. ; Chen G. ; Wang J. ; Peng L. ; Chen W. T. ; Shang L. ; Zhao J. ; Sun-Waterhouse D. ; et al Adv. Energy Mater. 2021, 11, 2100219.
doi: 10.1002/aenm.202100219 |
59 |
Qu Y. ; Li Z. ; Chen W. ; Lin Y. ; Yuan T. ; Yang Z. ; Zhao C. ; Wang J. ; Zhao C. ; Wang X. ; et al Nat. Catal. 2018, 1, 781.
doi: 10.1038/s41929-018-0146-x |
60 |
Zhu M. ; Zhao C. ; Liu X. ; Wang X. ; Zhou F. ; Wang J. ; Hu Y. ; Zhao Y. ; Yao T. ; Yang L.-M.; ; et al ACS Catal. 2021, 11, 3923.
doi: 10.1021/acscatal.0c05503 |
61 |
Li J. ; Chen S. ; Yang N. ; Deng M. ; Ibraheem S. ; Deng J. ; Li J. ; Li L. ; Wei Z. Angew. Chem. Int. Ed. 2019, 58, 7035.
doi: 10.1002/anie.201902109 |
62 |
Xie X. ; He C. ; Li B. ; He Y. ; Cullen D. A. ; Wegener E. C. ; Kropf A. J. ; Martinez U. ; Cheng Y. ; Engelhard M. H. ; et al Nat. Catal. 2020, 3, 1044.
doi: 10.1038/s41929-020-00546-1 |
63 |
Yin S. ; Yang S. ; Li G. ; Li G. ; Zhang B. ; Wang C. ; Chen M. ; Liao H.-G. ; Yang J. ; Jiang Y. ; et al Energy Environ. Sci. 2022, 15, 3033.
doi: 10.1039/d2ee00061j |
64 |
Mehmood A. ; Gong M. ; Jaouen F. ; Roy A. ; Zitolo A. ; Khan A. ; Sougrati M.-T. ; Primbs M. ; Bonastres A. M. ; Fongalland D. ; et al Nat. Catal. 2022, 5, 311.
doi: 10.1038/s41929-022-00772-9 |
65 |
Wei X. ; Song S. ; Cai W. ; Luo X. ; Jiao L. ; Fang Q. ; Wang X. ; Wu N. ; Luo Z. ; Wang H. ; et al Chem 2022, 9, 1.
doi: 10.1016/j.chempr.2022.10.001 |
66 |
Xie H. ; Xie X. ; Hu G. ; Prabhakaran V. ; Saha S. ; Gonzalez-Lopez L. ; Phakatkar A. H. ; Hong M. ; Wu M. ; Shahbazian-Yassar R. ; et al Nat. Energy 2022, 7, 281.
doi: 10.1038/s41560-022-00988-w |
67 |
Ramaswamy N. ; Mukerjee S. J. Phys. Chem. C 2011, 115, 18015.
doi: 10.1021/jp204680p |
68 |
Ramaswamy N. ; Mukerjee S. Adv. Phys 2012, 2012, 1.
doi: 10.1155/2012/491604 |
69 |
Liu Q. T. ; Liu X. F. ; Zheng L. R. ; Shui J. L. Angew. Chem. Int. Ed. 2018, 57, 1204.
doi: 10.1002/anie.201709597 |
70 |
Shao Y. ; Dodelet J.-P. ; Wu G. ; Zelenay P. Adv. Mater. 2019, 31, 1807615.
doi: 10.1002/adma.201807615 |
71 |
Miao Z. ; Li S. ; Priest C. ; Wang T. ; Wu G. ; Li Q. Adv. Mater. 2022, 2200595
doi: 10.1002/adma.202200595 |
72 |
Miao Z. ; Wang X. ; Zhao Z. ; Zuo W. ; Chen S. ; Li Z. ; He Y. ; Liang J. ; Ma F. ; Wang H.-L. ; et al Adv. Mater. 2021, 33, 2006613.
doi: 10.1002/adma.202006613 |
73 |
Li L. ; Wen Y. ; Han G. ; Liu Y. ; Song Y. ; Zhang W. ; Sun J. ; Du L. ; Kong F. ; Ma Y. ; et al Chem. Eng. J. 2022, 437, 135320.
doi: 10.1016/j.cej.2022.135320 |
74 |
Wan X. ; Shui J. ACS Energy Lett. 2022, 7, 1696.
doi: 10.1021/acsenergylett.2c00473 |
75 |
Ahluwalia R. K. ; Wang X. ; Osmieri L. ; Peng J. K. ; Cetinbas C. F. ; Park J. ; Myers D. J. ; Chung H. T. ; Neyerlin K. C. J. Electrochem. Soc. 2021, 168, 024513.
doi: 10.1149/1945-7111/abe34c |
76 |
Du L. ; Prabhakaran V. ; Xie X. ; Park S. ; Wang Y. ; Shao Y. Adv. Mater. 2021, 33, 1908232.
doi: 10.1002/adma.201908232 |
77 |
Xia D. ; Yang X. ; Xie L. ; Wei Y. ; Jiang W. ; Dou M. ; Li X. ; Li J. ; Gan L. ; Kang F. Adv. Funct. Mater. 2019, 29, 1906174.
doi: 10.1002/adfm.201906174 |
78 |
Ma Q. ; Jin H. ; Zhu J. ; Li Z. ; Xu H. ; Liu B. ; Zhang Z. ; Ma J. ; Mu S. Adv. Sci. 2021, 8, 2102209.
doi: 10.1002/advs.202102209 |
79 |
Li J. ; Zhang H. ; Samarakoon W. ; Shan W. ; Cullen D. A. ; Karakalos S. ; Chen M. ; Gu D. ; More K. L. ; Wang G. ; et al Angew. Chem. Int. Ed. 2019, 58, 18971.
doi: 10.1002/anie.201909312 |
80 |
Wei H. ; Su X. ; Liu J. ; Tian J. ; Wang Z. ; Sun K. ; Rui Z. ; Yang W. ; Zou Z. Electrochem. Commun. 2018, 88, 19.
doi: 10.1016/j.elecom.2018.01.011 |
81 |
Wang Z. ; Tang H. ; Zhang H. ; Lei M. ; Chen R. ; Xiao P. ; Pan M. J. Membr. Sci. 2012, 421, 201.
doi: 10.1016/j.memsci.2012.07.014 |
82 |
Yoon K. R. ; Lee K. A. ; Jo S. ; Yook S. H. ; Lee K. Y. ; Kim I.-D. ; Kim J. Y. Adv. Funct. Mater. 2019, 29, 1806929.
doi: 10.1002/adfm.201806929 |
83 |
Wang Y. ; Wan X. ; Liu J. ; Li W. ; Li Y. ; Guo X. ; Liu X. ; Shang J. ; Shui J. Nano Res. 2021, 15, 3082.
doi: 10.1007/s12274-021-3966-y |
84 |
Liu S. ; Li C. ; Zachman M. J. ; Zeng Y. ; Yu H. ; Li B. ; Wang M. ; Braaten J. ; Liu J. ; Meyer H. M. ; et al Nat. Energy 2022, 7, 652.
doi: 10.1038/s41560-022-01062-1 |
85 |
Yang N. ; Peng L. ; Li L. ; Li J. ; Liao Q. ; Shao M. ; Wei Z. Chem. Sci. 2021, 12, 12476.
doi: 10.1039/d1sc02901k |
86 |
Herranz J. ; Jaouen F. ; Lefevre M. ; Kramm U. I. ; Proietti E. ; Dodelet J. P. ; Bogdanoff P. ; Fiechter S. ; Abs-Wurmbach I. ; Bertrand P. ; et al J. Phys. Chem. C 2011, 115, 16087.
doi: 10.1021/jp2042526 |
87 |
Li H. ; Tang Y. ; Wang Z. ; Shi Z. ; Wu S. ; Song D. ; Zhang J. ; Fatih K. ; Zhang J. ; Wang H. ; et al J. Power Sources 2008, 178, 103.
doi: 10.1016/j.jpowsour.2007.12.068 |
88 |
Fu X. ; Zamani P. ; Choi J.-Y. ; Hassan F. M. ; Jiang G. ; Higgins D. C. ; Zhang Y. ; Hoque M. A. ; Chen Z. Adv. Mater. 2017, 29, 1604456.
doi: 10.1002/adma.201604456 |
89 |
Chenitz R. ; Kramm U. I. ; Lefèvre M. ; Glibin V. ; Zhang G. ; Sun S. ; Dodelet J.-P. Energy Environ. Sci. 2018, 11, 365.
doi: 10.1039/c7ee02302b |
90 |
Zhang X. ; Xia Z. ; Li H. ; Yu S. ; Wang S. ; Sun G. RSC Adv. 2019, 9, 7086.
doi: 10.1039/c9ra00167k |
91 |
Choi J.-Y. ; Yang L. ; Kishimoto T. ; Fu X. ; Ye S. ; Chen Z. ; Banham D. Energy Environ. Sci. 2017, 10, 296.
doi: 10.1039/c6ee03005j |
92 |
Wang Y.-C. ; Zhu P.-F. ; Yang H. ; Huang L. ; Wu Q.-H. ; Rauf M. ; Zhang J.-Y. ; Dong J. ; Wang K. ; Zhou Z.-Y. ; et al ChemElectroChem 2018, 5, 1914.
doi: 10.1002/celc.201700939 |
93 |
Hao Y.-C. ; Guo Y. ; Chen L.-W. ; Shu M. ; Wang X.-Y. ; Bu T.-A. ; Gao W.-Y. ; Zhang N. ; Su X. ; Feng X. ; et al Nat. Catal. 2019, 2, 467.
doi: 10.1038/s41929-019-0267-x |
94 |
Mun Y. ; Kim M. J. ; Park S.-A. ; Lee E. ; Ye Y. ; Lee S. ; Kim Y.-T. ; Kim S. ; Kim O.-H. ; Cho Y.-H. ; et al Appl. Catal. B 2018, 222, 191.
doi: 10.1016/j.apcatb.2017.10.015 |
95 |
Cheng Q. ; Han S. ; Mao K. ; Chen C. ; Yang L. ; Zou Z. ; Gu M. ; Hu Z. ; Yang H. Nano Energy 2018, 52, 485.
doi: 10.1016/j.nanoen.2018.08.005 |
96 |
Slack J. ; Halevi B. ; McCool G. ; Li J. ; Paylicek R. ; Wycisk R. ; Mukerjee S. ; Pintauro P. ChemElectroChem 2018, 5, 1537.
doi: 10.1002/celc.201800283 |
97 |
Yin H. ; Yuan P. ; Lu B.-A. ; Xia H. ; Guo K. ; Yang G. ; Qu G. ; Xue D. ; Hu Y. ; Cheng J. ; et al ACS Catal. 2021, 11, 12754.
doi: 10.1021/acscatal.1c02259 |
98 |
Wan X. ; Liu Q. ; Liu J. ; Liu S. ; Liu X. ; Zheng L. ; Shang J. ; Yu R. ; Shui J. Nat. Commun. 2022, 13, 2963.
doi: 10.1038/s41467-022-30702-z |
99 |
Ye W. ; Chen S. ; Lin Y. ; Yang L. ; Chen S. ; Zheng X. ; Qi Z. ; Wang C. ; Long R. ; Chen M. ; et al Chem 2019, 5, 2865.
doi: 10.1016/j.chempr.2019.07.020 |
100 |
Peng L. ; Yang J. ; Yang Y. ; Qian F. ; Wang Q. ; Sun-Waterhouse D. ; Shang L. ; Zhang T. ; Waterhouse G. I. N. Adv. Mater. 2022, 34, 2202544.
doi: 10.1002/adma.202202544 |
101 |
Xu M.-J. ; Liu J. ; Ge J.-J. ; Liu C.-P. ; Xing W. J. Electrochem. 2020, 26, 464.
doi: 10.13208/j.electrochem.200444 |
102 |
Wang X. ; Zhang L. ; Liu C.-P. ; Ge J.-J. ; Zhu J.-B. ; Xing W. J. Electrochem. 2022, 28, 2108501.
doi: 10.13208/j.electrochem.210850 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[3] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[4] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[5] | Yanhui Yu, Peng Rao, Suyang Feng, Min Chen, Peilin Deng, Jing Li, Zhengpei Miao, Zhenye Kang, Yijun Shen, Xinlong Tian. Atomic Co Clusters for Efficient Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210039-0. |
[6] | Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211025-0. |
[7] | Yifei Xu, Hanwen Yang, Xiaoxia Chang, Bingjun Xu. Introduction to Electrocatalytic Kinetics [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2210025-0. |
[8] | Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2301023-0. |
[9] | Ruifang Wei, Dongfeng Li, Heng Yin, Xiuli Wang, Can Li. Operando Electrochemical UV-Vis Absorption Spectroscopy with Microsecond Time Resolution [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207035-0. |
[10] | Tianran Wei, Shusheng Zhang, Qian Liu, Yuan Qiu, Jun Luo, Xijun Liu. Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207026-0. |
[11] | Jingxue Li, Yue Yu, Siran Xu, Wenfu Yan, Shichun Mu, Jia-Nan Zhang. Function of Electron Spin Effect in Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302049-. |
[12] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[13] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[14] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[15] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
|