Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (4): 2007015.doi: 10.3866/PKU.WHXB202007015
Special Issue: Metal Halide Perovskite Optoelectronic Material and Device
• ARTICLE • Previous Articles Next Articles
Yawen Li1, Guangren Na1, Shulin Luo1, Xin He1,2,*(), Lijun Zhang1,*()
Received:
2020-07-06
Accepted:
2020-08-11
Published:
2020-08-17
Contact:
Xin He,Lijun Zhang
E-mail:xin_he@jlu.edu.cn;lijun_zhang@jlu.edu.cn
About author:
Email:lijun_zhang@jlu.edu.cn (L.Z.)Supported by:
Yawen Li, Guangren Na, Shulin Luo, Xin He, Lijun Zhang. Structural, Thermodynamical and Electronic Properties of All-Inorganic Lead Halide Perovskites[J]. Acta Phys. -Chim. Sin. 2021, 37(4), 2007015. doi: 10.3866/PKU.WHXB202007015
"
Phase | Symmetry | Lattice constants (nm) | Band gap (eV) | |||
PBE | Expt. | PBE + SOC | HSE + SOC | Expt. | ||
CsPbCl3 | ||||||
α | Pm${\rm{\bar 3}}$m | a =0.5719 | 0.5605 | 1.088 | 1.972 | 2.99 |
β | P4/mbm | a = 0.7958, c = 0.5777 | – | 1.377 | 2.199 | 2.86 |
γ | Pnma | a = 0.8085 b = 1.1393 c = 0.7884 | 0.7973, 1.1355, 0.7916 | 1.546 | 2.344 | 2.98 |
CsPbBr3 | ||||||
α | Pm${\rm{\bar 3}}$m | a =0.5985 | 0.5874 | 0.666 | 1.448 | 2.36 |
β | P4/mbm | a = 0.8415, c = 0.5997 | 0.8266, 0.5897 | 0.851 | 1.495 | – |
γ | Pnma | a =0.8462, b = 1.1933, c = 0.8244 | 0.8244, 1.1735, 0.8198 | 1.135 | 1.807 | 2.25 2.36 |
CsPbI3 | ||||||
α | Pm${\rm{\bar 3}}$m | a = 0.638 | 0.6289 | 0.325 | 0.77 | – |
β | P4/mbm | a = 0.8833, c = 0.647 | 0.8833 0.647 | 0.673 | 1.164 | 1.68 |
γ | Pnma | a = 0.909, b = 1.2658, c = 0.8714 | 0.8906, 1.2665, 0.8819 | 0.822 | 1.331 | 1.73 |
1 |
Kojima A. ; Teshima K. ; Shirai Y. ; Miyasaka T. J. Am. Chem. Soc. 2009, 131, 6050.
doi: 10.1021/ja809598r |
2 |
Powalla M. ; Paetel S. ; Ahlswede E. ; Wuerz R. ; Wessendorf C. D. ; Friedlmeier T. M. Appl. Phys. Rev. 2018, 5, 041602.
doi: 10.1063/1.5061809 |
3 |
Jost M. ; Bertram T. ; Koushik D. ; Marquez J. A. ; Verheijen M. A. ; Heinemann M. D. ; Köhnen E. ; Al-Ashouri A. ; Braunger S. ; Lang F. ; et al ACS Energy Lett. 2019, 4, 583.
doi: 10.1021/acsenergylett.9b00135 |
4 |
Yang W. S. ; Park B. W. ; Jung E. H. ; Jeon N. J. ; Kim Y. C. ; Lee D. U. ; Shin S. S. ; Seo J. ; Kim E. K. ; Noh J. H. ; Seok S. Science 2017, 356, 1376.
doi: 10.1126/science.aan2301 |
5 |
Huang P. ; Chen Q. ; Zhang K. ; Yuan L. ; Zhou Y. ; Song B. ; Li Y. J. Mater. Chem. A 2019, 7, 6213.
doi: 10.1039/C8TA11841H |
6 |
Yang B. ; Mahjouri-Samani M. ; Rouleau C. M. ; Geohegan D. B. ; Xiao K. Phys. Chem. Chem. Phys. 2016, 18, 27067.
doi: 10.1039/C6CP02896A |
7 |
Chen X. ; Tang L. J. ; Yang S. ; Hou Y. ; Yang H. G. J. Mater. Chem. A 2016, 4, 6521.
doi: 10.1039/C6TA00893C |
8 |
Schulze P. S. C. ; Bett A. J. ; Winkler K. ; Hinsch A. ; Lee S. ; Mastroianni S. ; Mundt L. E. ; Mundus M. ; Würfel U. ; Glunz S. W. ; Hermle M. ; Goldschmidt J. C. Interfaces 2017, 9, 30567.
doi: 10.1021/acsami.7b05718 |
9 |
Azmi R. ; Hwang S. ; Yin W. ; Kim T. W. ; Ahn T. K. ; Jang S. Y. ACS Energy Lett. 2018, 3, 1241.
doi: 10.1021/acsenergylett.8b00493 |
10 |
Tan H. ; Jain A. ; Voznyy O. ; Lan X. ; García de Arquer F. P. ; Fan J. Z. ; Quintero-Bermudez R. ; Yuan M. ; Zhang B. ; Zhao Y. Science 2017, 355, 722.
doi: 10.1126/science.aai9081 |
11 | Zhao D. ; Li T. ; Xu Q. ; Wang X. ; Zhang L. Chinese Optics 2019, 12, 964. |
赵电龙; 李天姝; 徐巧玲; 王雪婷; 张立军. 中国光学, 2019, 12, 964.
doi: 10.3788/CO.20191205.0964 |
|
12 |
Meng L. ; You J. ; Guo T. F. ; Yang Y. Acc. Chem. Res 2016, 49, 155.
doi: 10.1021/acs.accounts.5b00404 |
13 | https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf (accessed Apr 4, 2020). |
14 |
Wang P. ; Zhang P. ; Zhou Y. ; Jiang Q. ; Ye Q. ; Chu Z. ; Li X. ; Yang X. ; Yin Z. ; You J. Nat. Commun. 2018, 9, 1.
doi: 10.1038/s41467-018-04636-4 |
15 | Wang X. ; Fu Y. ; Na G. ; Li H. ; Zhang L. Acta Phys. Sin 2019, 68, 27. |
王雪婷; 付钰豪; 那广仁; 李红东; 张立军. 物理学报, 2019, 68, 27.
doi: 10.7498/aps.68.20190596 |
|
16 |
Yang Y. ; You J. Nature 2017, 544, 155.
doi: 10.1038/544155a |
17 |
Liu Z. ; Na G. ; Tian F. ; Yu L. ; Li J. ; Zhang L. InfoMat 2020, 27, 1.
doi: 10.1002/inf2.12099 |
18 |
Wang X. ; Li Y. ; Pang Y. X. ; Sun Y. ; Zhao X. G. ; Wang J. R. ; Zhang L. Sci. China Phys. Mech. Astron. 2018, 61, 107311.
doi: 10.1007/s11433-018-9207-9 |
19 |
Wang Z. ; Zhao D. ; Yu S. ; Nie Z. ; Li Y. ; Zhang L. Prog. Nat. Sci-Mater 2019, 29, 316.
doi: 10.1016/j.pnsc.2019.03.015 |
20 | Ding X. ; Li X. ; Gao X. ; Zhang S. ; Huang Y. ; Li H. Acta Phys. -Chim. Sin 2015, 31, 576. |
丁绪坤; 李效民; 高相东; 张树德; 黄宇迪; 李浩然. 物理化学学报, 2015, 31, 576.
doi: 10.3866/PKU.WHXB201501201 |
|
21 | Gao S. ; Lan Z. ; Wu X. ; Kan L. ; Wu J. ; Lin J. ; Huang M. Acta Phys. -Chim. Sin 2014, 30, 446. |
高素雯; 兰章; 吴晚霞; 阙兰芳; 吴季怀; 林建明; 黄妙良. 物理化学学报, 2014, 30, 446.
doi: 10.3866/PKU.WHXB201401022 |
|
22 | Wei H. ; Wang S. ; Wu H. ; Hong Y. ; Li D. ; Meng Q. Acta Phys. -Chim. Sin 2016, 32, 201. |
卫会云; 王国帅; 吴会觉; 罗艳红; 李冬梅; 孟庆波. 物理化学学报, 2016, 32, 201.
doi: 10.3866/PKU.WHXB201512031 |
|
23 |
Xu Q. ; Stroppa A. ; Lv J. ; Zhao X. ; Yang D. ; Biswas K. ; Zhang L. Phys. Rev. Mater. 2019, 3, 125401.
doi: 10.1103/PhysRevMaterials.3.125401 |
24 |
Wang Y. ; Dar M. I. ; Ono L. K. ; Zhang T. ; Kan M. ; Li Y. ; Zhang L. ; Wang X. ; Yang Y. ; Gao X. ; et al Science 2019, 365, 591.
doi: 10.1126/science.aav8680 |
25 |
Wang H. ; Bian H. ; Jin Z. ; Zhang H. ; Liang L. ; Wen J. ; Wang Q. ; Ding L. ; Liu S. F. Chem. Mater. 2019, 31, 6231.
doi: 10.1021/acs.chemmater.9b02248 |
26 |
Jia X. ; Zuo C. ; Tao S. ; Sun K. ; Zhao Y. ; Yang S. ; Cheng M. ; Wang M. ; Yuan Y. ; Yang J. ; et al Sci. Bull. 2019, 64, 1532.
doi: 10.1016/j.scib.2019.08.017 |
27 |
Zhang T. ; Wang Y. ; Wang X. ; Wu M. ; Liu W. ; Zhao Y. Sci. Bull. 2019, 64, 1773.
doi: 10.1016/j.scib.2019.09.022 |
28 |
Shi J. ; Wang Y. ; Zhao Y. Energy Environ. Mater. 2019, 2, 73.
doi: 10.1002/eem2.12039 |
29 |
Eperon G. E. ; Paternò G. M. ; Sutton R. J. ; Zampetti A. ; Haghighirad A. A. ; Cacialli F. ; Snaith H. J. J. Mater. Chem. A 2015, 3, 19688.
doi: 10.1039/C5TA06398A |
30 |
Kulbak M. ; Cahen D. ; Hodes G. J. Phys. Chem. Lett. 2015, 6, 2452.
doi: 10.1021/acs.jpclett.5b00968 |
31 |
Wang Y. ; Zhang T. ; Kan M. ; Zhao Y. J. Am. Chem. Soc. 2018, 140, 12345.
doi: 10.1021/jacs.8b07927 |
32 |
Wang D. ; Wright M. ; Elumalai N. K. ; Uddin A. Sol. Energy Mater. Sol. Cells 2016, 147, 255.
doi: 10.1016/j.solmat.2015.12.025 |
33 |
Lim A. R. ; Jeong S. Y. Phys. B: Condensed Matter 1998, 245, 277.
doi: 10.1016/S0921-4526(97)00883-1 |
34 |
Haeger T. ; Ketterer M. ; Bahr J. ; Pourdavoud N. ; Runkel M. ; Heiderhoff R. ; Riedl T. J. Phys. Mater. 2020, 3, 024004.
doi: 10.1088/2515-7639/ab749d |
35 |
Hirotsu S. ; Harada J. ; Iizumi M. ; Gesi K. J. Phys. Soc. Jpn. 1974, 37, 1393.
doi: 10.1143/JPSJ.37.1393 |
36 |
Stoumpos C. C. ; Malliakas C. D. ; Peters J. A. ; Liu Z. ; Sebastian M. ; Im J. ; Chasapis T. C. ; Wibowo A. C. ; Chung D. Y. ; Freeman A. J. Cryst. Growth & Des 2013, 13, 2722.
doi: 10.1021/cg400645t |
37 |
Marronnier A. ; Roma G. ; Boyer-Richard S. ; Pedesseau L. ; Jancu J. M. ; Bonnassieux Y. ; Katan C. ; Stoumpos C. C. ; Kanatzidis M. G. ; Even J. ACS Nano 2018, 12, 3477.
doi: 10.1021/acsnano.8b00267 |
38 |
Zhang L. ; Wang L. ; Wang K. ; Zou B. J. Phys. Chem. C 2018, 122, 15220.
doi: 10.1021/acs.jpcc.8b05397 |
39 |
Wang Y. ; Zhang Y. ; Zhang P. ; Zhang W. Phys. Chem. Chem. Phys. 2015, 17, 11516.
doi: 10.1039/c5cp00448a |
40 | Liu, Z.; Peters, J. A.; Stoumpos, C. C.; Sebastian, M.; Wessels, B. W.; Im, J.; Freeman, A. J.; Kanatzidis, M. G. Heavy Metal Ternary Halides for Room-Temperature X-ray and Gamma-ray Detection. Proceedings SPIE 8852, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XV, California, United States, September 26, 2013. SPIE press: Unite states, 2013. |
41 |
Sutton R. J. ; Filip M. R. ; Haghighirad A. A. ; Sakai N. ; Wenger B. ; Giustino F. ; Snaith H. J. ACS Energy Lett. 2018, 3, 1787.
doi: 10.1021/acsenergylett.8b00672 |
42 |
Zhang T. ; Dar M. I. ; Li G. ; Xu F. ; Guo N. ; Grätzel M. ; Zhao Y. Sci. Adv. 2017, 3, e1700841.
doi: 10.1126/sciadv.1700841 |
43 | Kresse, G.; Furthmüller, J. Comp. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0 |
44 |
Kresse G. ; Joubert D. Phys. Rev. B 1999, 59, 1758.
doi: 10.1103/PhysRevB.59.1758 |
45 |
Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
doi: 10.1103/PhysRevLett.77.3865 |
46 |
Perdew J. P. ; Zunger A. Phys. Rev. B 1981, 23, 50g.
doi: 10.1103/PhysRevB.23.5048 |
47 |
Hrirotsu S. J. Phys. Soc. Jpn. 1971, 31, 552.
doi: 10.1143/JPSJ.31.552 |
48 |
Møller C. K. Nature 1958, 182, 1436.
doi: 10.1038/1821436a0 |
49 |
Sharma S. ; Weiden N. ; Weiss A. Z. Phys. Chem. 1992, 175, 63.
doi: 10.1524/zpch.1992.175.Part_1.063 |
50 |
Paul T. ; Chatterjee B. K. ; Maiti S. ; Sarkar S. ; Besra N. ; Das B. K. ; Panigrahi K. J. ; Thakur S. ; Ghorai U. K. ; Chattopadhyay K. K. J. Mater. Chem. C 2018, 6, 3322.
doi: 10.1039/C7TC05703B |
51 |
Cottingham P. ; Brutchey R. L. Chem. Mater. 2018, 30, 6711.
doi: 10.1023/A:1022836800820 |
52 |
Gesi K. ; Ozawa K. ; Hirotsu S. J. Phys. Soc. Jpn. 1975, 38, 463.
doi: 10.1143/JPSJ.38.463 |
53 |
Pandey N. ; Kumar A. ; Chakrabarti S. RSC Adv. 2019, 9, 29556.
doi: 10.1039/C9RA05685H |
54 | Zhang, L.; Hu, T.; Li, J.; Zhang, L.; Li, H.; Lu, Z.; Wang, G. Front. Mater. 2020, 6. 1. doi: 10.3389/fmats.2019.00330 |
55 |
Saidi W. A. ; Choi J. J. J. Chem. Phys. 2016, 145, 144702.
doi: 10.1063/1.4964094 |
56 | Yin W. ; Yang J. ; Kang J. ; Yan Y. ; Wei S. J. Mater. Chem. A 2015, 3, 8926. |
57 |
Long M. Q. ; Tang L. ; Wang D. ; Wang L. ; Shuai Z. J. Am. Chem. Soc. 2009, 131, 17728.
doi: 10.1021/ja907528a |
58 |
Xie J. ; Zhang Z. Y. ; Yang D. Z. ; Xue D. S. ; Si M. S. J. Phys. Chem. Lett. 2014, 5, 4073.
doi: 10.1021/jz502006z |
59 |
Fang Z. ; Shang M. ; Hou X. ; Zheng Y. ; Du Z. ; Yang Z. ; Chou K. C. ; Yang W. ; Wang Z. L. ; Yang Y. ano Energy 2019, 61, 389.
doi: 10.1016/j.nanoen.2019.04.084 |
60 |
Giorgi G. ; Fujisawa J. I. ; Segawa H. ; Yamashita K. J. Phys. Chem. Lett. 2013, 4, 4213.
doi: 10.1021/jz4023865 |
[1] | Muhammad Faizan, Guoqi Zhao, Tianxu Zhang, Xiaoyu Wang, Xin He, Lijun Zhang. Elastic and Thermoelectric Properties of Vacancy Ordered Double Perovskites A2BX6: A DFT Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303004-. |
[2] | Yaowu Luo, Dingsheng Wang. Enhancing Heterogeneous Catalysis by Electronic Property Regulation of Single Atom Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212020-0. |
[3] | Tianmi Tang, Zhenlu Wang, Jingqi Guan. Electronic Structure Regulation of Single-Site M-N-C Electrocatalysts for Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2208033-0. |
[4] | Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301032-. |
[5] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[6] | Peng Chen, Ying Zhou, Fan Dong. Advances in Regulation Strategies for Electronic Structure and Performance of Two-Dimensional Photocatalytic Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010010-. |
[7] | Chao Zheng, Aqiang Liu, Chenghao Bi, Jianjun Tian. SCN-doped CsPbI3 for Improving Stability and Photodetection Performance of Colloidal Quantum Dots [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007084-. |
[8] | Peiliang Lü, Caiyun Gao, Xiuhong Sun, Mingliang Sun, Zhipeng Shao, Shuping Pang. Synthesis of Cs-Rich CH(NH2)2)xCs1−xPbI3 Perovskite Films Using Additives with Low Sublimation Temperature [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009036-. |
[9] | Tangfei Zheng, Jinxia Jiang, Jian Wang, Sufang Hu, Wei Ding, Zidong Wei. Regulation of Electrocatalysts Based on Confinement-Induced Properties [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011027-. |
[10] | Zhen Wei, Minjie Li, Wencong Lu. Theoretical Study of High-Efficiency Organic Dyes with Different Electron-Withdrawing Groups Based on R6 toward Dye-Sensitized Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1905084-. |
[11] | Junjie Shi, Ziqi Hu, Yihao Yang, Yuxiang Bu, Zujin Shi. Stability and Formation Mechanism of Endohedral Metal Carbonitride Clusterfullerenes [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1907077-. |
[12] | Yiqing Wang,Shaohua Shen. Progress and Prospects of Non-Metal Doped Graphitic Carbon Nitride for Improved Photocatalytic Performances [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905080-. |
[13] | Fuzhen BI,Xiao ZHENG,Chiyung YAM. First-Principles Study of Mixed Cation Methylammonium-Formamidinium Hybrid Perovskite [J]. Acta Phys. -Chim. Sin., 2019, 35(1): 69-75. |
[14] | Jinyang XI,Yuma NAKAMURA,Tianqi ZHAO,Dong WANG,Zhigang SHUAI. Theoretical Studies on the Deformation Potential, Electron-Phonon Coupling, and Carrier Transports of Layered Systems [J]. Acta Phys. -Chim. Sin., 2018, 34(9): 961-976. |
[15] | Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules [J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277. |
|