Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (4): 2009036.doi: 10.3866/PKU.WHXB202009036
Special Issue: Metal Halide Perovskite Optoelectronic Material and Device
• ARTICLE • Previous Articles Next Articles
Peiliang Lü1,2, Caiyun Gao1,2, Xiuhong Sun2, Mingliang Sun1,*(), Zhipeng Shao2,*(), Shuping Pang2,*()
Received:
2020-09-09
Accepted:
2020-10-26
Published:
2020-11-02
Contact:
Mingliang Sun,Zhipeng Shao,Shuping Pang
E-mail:mlsun@ouc.edu.cn;shaozp@qibebt.ac.cn;pangsp@qibebt.ac.cn
About author:
Email: pangsp@qibebt.ac.cn. (S.P.)Supported by:
Peiliang Lü, Caiyun Gao, Xiuhong Sun, Mingliang Sun, Zhipeng Shao, Shuping Pang. Synthesis of Cs-Rich CH(NH2)2)xCs1−xPbI3 Perovskite Films Using Additives with Low Sublimation Temperature[J]. Acta Phys. -Chim. Sin. 2021, 37(4), 2009036. doi: 10.3866/PKU.WHXB202009036
Fig 1
(a) Schematics of the fabrication process of FAxCs1−xPbI3 film using FAI additive in one step reaction. (b) The photos of FA0.15Cs0.85PbI3 films prepared with different additives. (c) XRD patterns of precursor films using different additives placed in vacuum at room temperature for 5 min. (d) XRD patterns of precursor films using different additives after annealing at 100 ℃ for 5 min."
Fig 2
(a, f) XRD patterns of the film with MAI additive annealed at 100 and 200 ℃. (b, g) XRD patterns of the films with DMAI additive annealed at 100 and 200 ℃. (c, h) XRD patterns of the films with EAI additive annealed at 100 and 200 ℃. (d, i) XRD patterns of the films with FAAC additive annealed at 100 and 200 ℃. (e, j) XRD patterns of the films with NH4I additive annealed at 100 and 200 ℃."
Fig 3
(a, b) Comparison of the XRD patterns of the perovskite films with MAI additive heated at 200 ℃ for different time. (c) Comparison of the UV-Vis absorbance spectra of the perovskite films with MAI additive heated at 200 ℃ for different time. (d, e) Comparison of the XRD patterns of the perovskite films with DMAI additive heated at 200 ℃ for different time. (f) Comparison of the UV-Vis absorbance spectra of the perovskite films with DMAI additive heated at 200 ℃ for different time."
1 |
Lee M. M. ; Teuscher J. ; Miyasaka T. ; Murakami T. N. ; Snaith H. J. Science 2012, 338, 643.
doi: 10.1126/science.1228604 |
2 |
Stranks S. D. ; Eperon G. E. ; Grancini G. ; Menelaou C. ; Alcocer M. J. ; Leijtens T. ; Herz L. M. ; Petrozza A. ; Snaith H. J. Science 2013, 342, 341.
doi: 10.1126/science.1243982 |
3 |
Kojima A. ; Teshima K. ; Shirai Y. ; Miyasaka T. J. Am. Chem. Soc 2009, 131, 6050.
doi: 10.1021/ja809598r |
4 | NREL Research Cell Record Efficiency Chart NREL, 2019. |
5 |
Wehrenfennig C. ; Eperon G. E. ; Johnston M. B. ; Snaith H. J. ; Herz L. M. Adv. Mater 2014, 26, 1584.
doi: 10.1002/adma.201305172 |
6 | Huang Y. ; Sun Q. D. ; Xu W. ; He Y. ; Yin W. J. Acta Phys. -Chim. Sin. 2017, 33, 1730. |
黄杨; 孙庆德; 徐文; 何垚; 尹万健. 物理化学学报, 2017, 33, 1730.
doi: 10.3866/PKU.WHXB201705042 |
|
7 |
Yang W. S. ; Park B. W. ; Jung E. H. ; Jeon N. J. ; Kim Y. C. ; Lee D. U. ; Shin S. S. ; Seo J. ; Kim E. K. ; Noh J. H. ; Seok S. I. Science 2017, 356, 1376.
doi: 10.1126/science.aan2301 |
8 |
Jung E. H. ; Jeon N. J. ; Park E. Y. ; Moon C. S. ; Shin. T. J. ; Yang T. Y. ; Noh J. H. ; Seo J. Nature 2019, 567, 511.
doi: 10.1038/s41586-019-1036-3 |
9 |
Wang J. ; Zhang J. ; Zhou Y. ; Liu H. ; Xue Q. ; Li X. ; Chueh C. C. ; Yip H. L. ; Zhu Z. ; Jen A. K. Y. Nat. Commun. 2020, 11, 177.
doi: 10.1038/s41467-019-13909-5 |
10 |
Jena A. K. ; Kulkarni A. ; Miyasaka T. Chem. Rev. 2019, 119, 3036.
doi: 10.1021/acs.chemrev.8b00539 |
11 |
Zhou W. ; Zhao Y. ; Zhou X. ; Fu R. ; Li Q. ; Zhao Y. ; Liu K. ; Yu D. ; Zhao Q. J. Phys. Chem. Lett. 2017, 8, 4122.
doi: 10.1021/acs.jpclett.7b01851 |
12 |
Binek A. ; Hanusch F. C. ; Docampo P. ; Bein T. J. Phys. Chem. Lett. 2015, 6, 1249.
doi: 10.1021/acs.jpclett.5b00380 |
13 |
Chen W. ; Zhang J. ; Xu G. ; Xue R. ; Li Y. ; Zhou Y. ; Hou J. ; Li Y. Adv. Mater. 2018, 30, e1800855.
doi: 10.1002/adma.201800855 |
14 |
Liang J. ; Zhao P ; Wang C. ; Wang Y. ; Hu Y. ; Zhu G. ; Ma L. ; Liu J. ; Jin Z. J. Am. Chem. Soc. 2017, 139, 14009.
doi: 10.1021/jacs.7b07949.5156 |
15 |
Saparov B. ; Mitzi D. B. Chem. Rev. 2016, 116, 4558.
doi: 10.1021/acs.chemrev.5b00715.516 |
16 |
Wei D. ; Ma F. ; Wang R. ; Dou S. ; Cui P. ; Huang H. ; Ji J. ; Jia E. ; Jia X. ; Sajid S. ; et al Adv. Mater. 2018, 30, e1707583.
doi: 10.1002/adma.201707583.315 |
17 |
Stoumpos C. C. ; Malliakas C. D. ; Kanatzidis M. G. Inorg. Chem. 2013, 52, 9019.
doi: 10.1021/ic401215x |
18 |
Jing C. Q. ; Wu J. H ; Cao Y. Y. ; Che H. X. ; Zhao X. M. ; Yue M. ; Liao Y. Y. ; Yue C. Y. ; Lei X. W. Chem. Commun. 2020, 56, 5925.
doi: 10.1039/d0cc01779e |
19 |
De Marco N. ; Zhou H. ; Chen Q. ; Sun P. ; Liu Z. ; Meng L. ; Yao E. P. ; Liu Y. ; Schiffer A. ; Yang Y. Nano Lett 2016, 16, 1009.
doi: 10.1021/acs.nanolett.5b04060 |
20 |
Saliba M. ; Correa-Baena J. P. ; Grätzel M. ; Hagfeldt A. ; Abate A. Angew. Chem. Int. Ed. 2018, 57, 2554.
doi: 10.1002/anie.201703226.151 |
21 |
Marronnier A. ; Roma G. ; Boyer-Richard S. ; Pedesseau L. ; Jancu J. M. ; Bonnassieux Y. ; Katan C. ; Stoumpos C. C. ; Kanatzidis M. G. ; Even J. ACS Nano 2018, 12, 3477.
doi: 10.1021/acsnano.8b00267.1651 |
22 |
Ke W. ; Spanopoulos I. ; Stoumpos C. C. ; Kanatzidis M. G. Nat. Commun. 2018, 9, 4785d.
doi: 10.1038/s41467-018-07204-y.5151 |
23 |
Zhang J. ; Yang L. ; Zhong Y. ; Hao H. ; Yang M. ; Liu R. Phys. Chem. Chem. Phys. 2019, 21, 11175.
doi: 10.1039/c9cp01211g |
24 |
Pang S. ; Hu H. ; Zhang J. ; Lv S. ; Yu Y. ; Wei F. ; Qin T. ; Xu H. ; Liu Z. ; Cui G. Chem. Mater. 2014, 26, 1485.
doi: 10.1021/cm404006p |
25 |
Luo P. ; Zhou S. ; Zhou Y. ; Xia W. ; Sun L. ; Cheng J. ; Xu C. ; Lu Y. ACS Appl. Mater. Interfaces. 2017, 9, 42708.
doi: 10.1021/acsami.7b12939.3 |
26 |
Luo P. ; Xia W. ; Zhou S. ; Sun L. ; Cheng J. ; Xu C. ; Lu Y. J. Phys. Chem. Lett. 2016, 7, 3603.
doi: 10.1021/acs.jpclett.6b01576.2 |
27 |
Shao Z. ; Meng H. ; Du X. ; Sun X. ; Lv P. ; Gao C. ; Rao Y. ; Chen C. ; Li Z. ; Wang X. ; Cui G. ; Pang S. Adv. Mater. 2020, e2001054.
doi: 10.1002/adma.202001054 |
28 |
Li Z. ; Wang L. ; Liu R. ; Fan Y. ; Meng H. ; Shao Z. ; Cui G. ; Pang S. Adv. Energy Mater 2019, 9, 1902142.
doi: 10.1002/aenm.201902142 |
[1] | Lianlian Ji, Xianpeng Wang, Yingying Zhang, Xueli Shen, Di Xue, Lu Wang, Zi Wang, Wenchong Wang, Lizhen Huang, Lifeng Chi. In situ and Ex situ Investigation of the Organic-Organic Interface Effect [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304002-. |
[2] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[3] | Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301019-0. |
[4] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[5] | Qiuju Liang, Yinxia Chang, Chaowei Liang, Haolei Zhu, Zibin Guo, Jiangang Liu. Application of Crystallization Kinetics Strategy in Morphology Control of Solar Cells based on Nonfullerene Blends [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212006-0. |
[6] | Huan Liu, Yu Ma, Bin Cao, Qizhen Zhu, Bin Xu. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2210027-0. |
[7] | Mingxu Zhang, Qisen Zhou, Xinyi Mei, Jingxuan Chen, Junming Qiu, Xiuzhi Li, Shuang Li, Mubing Yu, Chaochao Qin, Xiaoliang Zhang. Colloidal Quantum Dot Solids with a Diminished Epitaxial PbI2 Matrix for Efficient Infrared Solar Cells [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210002-0. |
[8] | Mingli Xu, Mengchuang Liu, Zezhou Yang, Chen Wu, Jiangfeng Qian. Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210043-0. |
[9] | Yongtao Wen, Jing Li, Xiaofeng Gao, Congcong Tian, Hao Zhu, Guomu Yu, Xiaoli Zhang, Hyesung Park, Fuzhi Huang. Two-Step Sequential Blade-Coating Large-Area FA-Based Perovskite Thin Film via a Controlled PbI2 Microstructure [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203048-0. |
[10] | Zhen Liu, Xiangfu Meng, Wanmiao Gu, Jun Zha, Nan Yan, Qing You, Nan Xia, Hui Wang, Zhikun Wu. Introducing Novel, Multiple Cd Coordination Modes into Gold Nanoclusters by Combined Doping for Enhancing Electrocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2212064-. |
[11] | Tao Zhang, Simin Gong, Ping Chen, Qi Chen, Liwei Chen. Incorporation of a Polyfluorinated Acrylate Additive for High-Performance Quasi-2D Perovskite Light-Emitting Diodes [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301024-. |
[12] | Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110014-. |
[13] | Yue Lu, Yang Ge, Manling Sui. Degradation Mechanism of CH3NH3PbI3-based Perovskite Solar Cells under Ultraviolet Illumination [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007088-. |
[14] | Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005007-. |
[15] | Ying Liu, Xiaofang Liu, Lin Xia, Chaojie Huang, Zhaoxuan Wu, Hui Wang, Yuhan Sun. Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002017-. |
|