Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (10): 1905084.doi: 10.3866/PKU.WHXB201905084
• ARTICLE • Previous Articles Next Articles
Zhen Wei, Minjie Li(), Wencong Lu()
Received:
2019-05-30
Accepted:
2019-07-25
Published:
2019-07-31
Contact:
Minjie Li,Wencong Lu
E-mail:minjieli@shu.edu.cn;wclu@shu.edu.cn
About author:
Email: wclu@shu.edu.cn (W.L.); Tel.: +86-21-66133513 (W.L.)Supported by:
Zhen Wei, Minjie Li, Wencong Lu. Theoretical Study of High-Efficiency Organic Dyes with Different Electron-Withdrawing Groups Based on R6 toward Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin. 2021, 37(10), 1905084. doi: 10.3866/PKU.WHXB201905084
"
Dye | λ/nm/) | f | E/eV | Charge | Composition | S0-Sa |
R6 | 624.74 | 2.03 | 1.74 | -0.21 | H → L(72%) | |
RD1 | 692.01 | 2.22 | 1.57 | -0.34 | H - 1 → L(10%)H→L(77%) | |
RD2 | 680.99 | 2.13 | 1.61 | -0.39 | H - 1 → L(13%)H → L(76%) | |
D3 | 631.85 | 2.02 | 1.68 | -0.32 | H - 1 → L(11%)H→L(68%) | |
RD4 | 611.09 | 2.06 | 1.93 | -0.23 | H → L(86%) | |
RD5 | 631.51 | 2.18 | 1.86 | -0.21 | H → L(85%) | |
RD6 | 632.55 | 2.04 | 1.78 | -0.36 | H - 1 → L(10%)H → L(78%) |
"
Dye | JScPred./(mA·cm-2) | ECBM/eV | nc/cm-3 | VocPred./mV | PCE/% |
R6 | 19.69 | -4.48 | 4.71 × 1024 | 850 | 12.6 |
RD1 | 22.17 | -4.49 | 4.76 × 1024 | 841 | 14.1 |
RD2 | 21.92 | -4.47 | 4.69 × 1024 | 853 | 14.1 |
RD3 | 20.04 | -4. 49 | 4.80 × 1024 | 837 | 12.6 |
RD4 | 19.01 | -4.54 | 4.29 × 1024 | 784 | 12.6 |
RD5 | 20.20 | -4.49 | 4.16 × 1024 | 829 | 12.6 |
RD6 | 20.14 | -4.49 | 3.44 × 1024 | 830 | 12.6 |
1 |
O'Regan B. ; Grätzel M. Nature 1991, 353, 737.
doi: 10.1038/353737a0 |
2 | Yang L. ; Li Y. ; Chen S. ; Zhang J. ; Zhang M. ; Wang P. Acta Phys. -Chim. Sin. 2016, 32, 329. |
杨林; 李阳; 陈淑; 张静; 张敏; 王鹏. 物理化学学报, 2016, 32, 329.
doi: 10.3866/PKU.WHXB201511031 |
|
3 |
Mathew S. ; Yella A. ; Gao P. ; Humphry-Baker R. ; Curchod B. F. ; Ashari-Astani N. Nat. Chem. 2014, 6, 242.
doi: 10.1038/nchem.1861 |
4 |
Yang Z. ; Shao D. ; Li J. Spectrochim. Acta A 2018, 196, 385.
doi: 10.1016/j.saa.2018.02.002 |
5 |
Listorti A. ; O'Regan B. ; Durrant J. R. Chem. Mater. 2011, 23, 3381.
doi: 10.1021/cm200651e |
6 |
Mohamed R. E. ; Rui S. ; Fadda A. A. ; Etman H. A. ; Eman H. T. ; Ahmed E. New J. Chem. 2018, 42, 11430.
doi: 10.1039/c8nj01482e |
7 |
Jia H. L. ; Peng Z. J. ; Guan M. Y. New J. Chem. 2018, 42, 13770.
doi: 10.1039/c8nj02889c |
8 |
Bisht R. ; Sudhakar V. ; Karjule N. ; Nithyanandhan J. ACS Appl. Mater. Inter. 2018, 10, 26335.
doi: 10.1021/acsami.8b09866 |
9 |
Santhini P. V. ; Jayadev V. ; Sourava C. ; Sivasankaran L. ; Nitha P. R. ; Chaithanya M. V. ; Rakesh K. M. New J. Chem. 2019, 43, 862.
doi: 10.1039/c8nj04561e |
10 |
Chunxiang D. A. ; Kazuhiro K. ; Mizuho K. ; Dai M. ; Kathleen I. ; Moineau C. C. ; Shogo M. J. Photochem. Photobiol. A 2018, 3659, 403.
doi: 10.1016/j.jphotochem.2018.01.021 |
11 |
Telugu B. R. ; Peddaboodi G. ; Jayraj V. V. ; Saurabh S. S. ; Parameswar K. I. J. Photochem. Photobiol. A 2019, 6030, 31901.
doi: 10.1016/j.jphotochem.2019.02.015 |
12 |
Xu Z. J. ; Li Y. Y. ; Zhang W. J. Spectrochim. Acta A 2019, 212, 272.
doi: 10.1016/j.saa.2019.01.002 |
13 |
Yao Z. ; Wu H. ; Li Y. ; Wang J. ; Zhang J. ; Zhang M. ; Guo Y. ; Wang P. Energy Environ. Sci. 2015, 8, 3192.
doi: 10.1039/C5EE02822A |
14 | Li Z. G. ; Lu T. ; Gao H. ; Zhang Q. ; Li M. J. ; Ren W. ; Lu W. C. Acta Phys.-Chim. Sin. 2017, 9, 1789. |
李重杲; 卢天; 高恒; 张庆; 李敏杰; 任伟; 陆文聪. 物理化学学报, 2017, 9, 1789.
doi: 10.3866/PKU.WHXB201705082 |
|
15 |
Yang Z. ; Liu C. ; Li K. ; Cole J. M. ; Cao D. ACS Appl. Energy Mater. 2018, 1, 1435.
doi: 10.1021/acsaem.7b00154 |
16 |
Yan F. ; Tian L. ; Xu Y. ; Li M. ; Zhen W. ; Liu H. ; Lu W. C. Dyes Pigments 2018, 155, 292.
doi: 10.1016/j.dyepig.2018.03.045 |
17 |
Wang L. ; Zhang J. ; Duan Y. C. ; Pan Q. Q. ; Wu Y. ; Geng Y. ; Su Z. M. J. Photochem. Photobiol. A 2019, 369, 150.
doi: 10.1039/C8NJ03592J |
18 |
Li M. ; Kou L. ; Diao L. ; Zhang Q. ; Li Z. ; Wu Q. ; Lu W. ; Pan D. J. Phys. Chem. A 2015, 119, 3299.
doi: 10.1021/acs.jpca.5b00798 |
19 |
Walid S. ; Zeinab M. H. ; Basant A. A. ; Mohamed M. E. ; Rayhan M. A. ; Nageh K. A. S. J. Photochem. Photobiol. A 2018, 367, 128.
doi: 10.1016/j.jphotochem.2018.08.034 |
20 |
Puttavva M. ; Goli N. ; Jung W. Y. ; Sun H. J. ; Young D. G. New J. Chem. 2019, 43, 3017.
doi: 10.1039/c8nj06083e |
21 |
Yao Z. ; Zhang M. ; Wu H. ; Yang L. ; Li R. ; Wang P. J. Am. Chem. Soc. 2015, 137, 3799.
doi: 10.1021/jacs.5b01537 |
22 |
Yao Z. ; Zhang M. ; Li R. ; Yang L. ; Qiao Y. ; Wang P. Angew. Chem. Int. Ed. 2015, 54, 5994.
doi: 10.1002/ange.201501195 |
23 |
Yao Z. ; Wu H. ; Li Y. ; Wang J. ; Zhang J. ; Zhang M. ; Guo Y. ; Wang P. Energ. Environ. Sci. 2015, 8, 3192.
doi: 10.1039/c5ee02822a |
24 |
Ren Y. ; Li Y. ; Chen S. ; Liu J. ; Zhang J. ; Wang P. Energ. Environ. Sci. 2016, 9, 1390.
doi: 10.1039/C5EE03309H |
25 |
Ren Y. ; Liu J. ; Zheng A. ; Dong X. ; Wang P. Adv. Sci. 2017, 4, 1700099.
doi: 10.1002/advs.201700099 |
26 |
Ren Y. ; Sun D. ; Cao Y. ; Tsao H. N. ; Yuan Y. ; Zakeeruddin S. M. ; Wang P. ; Gratzel M. J. Am. Chem. Soc. 2018, 140, 2405.
doi: 10.1021/jacs.7b12348 |
27 |
Becke A. D. J. Chem. Phy. 1993, 98, 5648.
doi: 10.1063/1.464913 |
28 |
Chen S. L. ; Yang L. N. ; Li Z. S. J. Power Sources 2013, 223, 86.
doi: 10.1016/j.jpowsour.2012.09.053 |
29 |
Cossi M. ; Rega N. ; Scalmani G. ; Barone V. J. Comput. Chem. 2003, 24, 669.
doi: 10.1002/jcc.10189 |
30 | Wang Y. L. ; Wu G. S. Acta Phys. -Chim. Sin. 2007, 23, 1831. |
王溢磊; 吴国是. 物理化学学报, 2007, 23, 1831.
doi: 10.1016/S1872-1508(07)60086-2 |
|
31 |
Hao D. ; Lin Z. ; Xin Z. Theor. Chem. Acc. 2014, 133, 1.
doi: 10.1007/s00214-014-1496-3 |
32 |
Yanai T. ; Tew D. P. ; Handy N. C. Chem. Phys. Lett. 2004, 393, 51.
doi: 10.1016/j.cplett.2004.06.011 |
33 |
Lu X. ; Shao Y. ; Wei S. ; Zhao Z. ; Li K. ; Guo C. ; Wang W. ; Zhang M. ; Guo W. J. Mater. Chem. C 2015, 3, 10129.
doi: 10.1039/C5TC02286J |
34 |
Heyd J. ; Scuseria G. E. ; Ernzerhof M. J. Chem. Phys. 2006, 124, 21.
doi: 10.1063/1.2204597 |
35 |
Lynch B. J. ; Fast P. L. ; Harris M. ; Truhlar D. G. J. Phys. Chem. A 2000, 104, 4811.
doi: 10.1021/jp000497z |
36 |
Becke A. D. J. Chem. Phys. 1993, 98, 1372.
doi: 10.1063/1.464304 |
37 |
Zhao Y. ; Truhlar D. G. Theor. Chem. Acc. 2008, 120, 215.
doi: 10.1007/s00214-007-0401-8 |
38 |
Fan W. J. ; Chang Y. Z. ; Zhao J. L. ; Xu Z. N. ; Chen Y. New J. Chem. 2018, 42, 20163.
doi: 10.1016/j.jphotochem.2018.10.022 |
39 | Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Scalmani G. ; BaroneV. ; Petersson G. A. ; Nakatsuji X. ; et al Gaussian 16, Revision B.03 Gaussian, Inc.: Wallingford, CT, USA, 2016. |
40 |
Lu T. ; Chen F. J. Comput. Chem. 2012, 33, 580.
doi: 10.1002/jcc.22885 |
41 |
De Angelis F. ; Tilocca A. ; Selloni A. J. Am. Chem. Soc. 2004, 126, 15024.
doi: 10.1021/ja045152z |
42 |
De Angelis F. Chem. Phys. Lett. 2010, 493, 323.
doi: 10.1016/j.cplett.2010.05.064 |
43 |
Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
doi: 10.1103/physrevlett.77.3865 |
44 |
Perdew J. P. ; Wang Y. Phys. Rev. B 2018, 98, 7.
doi: 10.1103/PhysRevB.98.079904 |
45 |
Mulliken R. S. J. Chem. Phys. 1955, 23, 1833.
doi: 10.1063/1.1740588 |
46 |
Zeng W. ; Liu T. ; Wang Z. ; Tsukimoto S. ; Saito M. ; Ikuhara Y. Mater. Trans. 2010, 51, 171.
doi: 10.2320/matertrans.M2009317 |
47 |
Graetzel M. Acc. Chem. Res. 2009, 42, 1788.
doi: 10.1021/ar900141y |
48 |
Zhang J. ; Li H. B. ; Zhang J. Z. ; Wu Y. ; Geng Y. ; Fu Q. ; Su Z. M. J. Mater. Chem. A 2013, 1, 14000.
doi: 10.1039/c3ta12311a |
49 |
Nazeeruddin M. K. ; Kay A. ; Rodicio I. ; Humphry-Baker R. ; Mueller E. ; Liska P. ; Vlachopoulos N. ; Graetzel M. J. Am. Chem. Soc. 1993, 115, 6382.
doi: 10.1021/ja00067a063 |
50 |
Marinado T. ; Nonomura K. ; Nissfolk J. ; Karlsson M. K. ; Hagberg D. P. ; Sun L. ; Mori S. ; Hagfeldt A. Langmuir 2010, 26, 2592.
doi: 10.1021/la902897z |
51 |
Feldt S. M. ; Gibson E. A. ; Gabrielsson E. ; Sun L. ; Boschloo G. ; Hagfeldt A. J. Am. Chem. Soc. 2010, 132, 16714.
doi: 10.1021/ja1088869 |
52 |
Muscat J. P. ; Newns D. M. Prog. Surf. Sci. 1978, 9, 1.
doi: 10.1016/0079-6816(78)90005-9 |
53 |
Schiff L. I. Phys. Today 1949, 24, 70.
doi: 10.1119/1.1934159 |
54 |
Persson P. ; Lundqvist M. J. ; Ernstorfer R. ; Goddard W. A. ; Willig F. J. Chem. Theory Comput. 2006, 2, 441.
doi: 10.1021/ct050141x |
[1] | Yawen Li, Guangren Na, Shulin Luo, Xin He, Lijun Zhang. Structural, Thermodynamical and Electronic Properties of All-Inorganic Lead Halide Perovskites [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007015-. |
[2] | Baiqiao Liu, Yunhua Xu, Dongdong Xia, Chengyi Xiao, Zhaofan Yang, Weiwei Li. Semitransparent Organic Solar Cells based on Non-Fullerene Electron Acceptors [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2009056-. |
[3] | Meiqi ZHANG, Yunlong MA, Qingdong ZHENG. Bandgap Modulation of Dithienonaphthalene-Based Small-Molecule Acceptors for Nonfullerene Organic Solar Cells [J]. Acta Physico-Chimica Sinica, 2019, 35(5): 503-508. |
[4] | Zhongqiang ZHANG, Shuhua ZHANG, Zhixi LIU, Zhiguo ZHANG, Yongfang LI, Changzhi LI, Hongzheng CHEN. A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells [J]. Acta Phys. -Chim. Sin., 2019, 35(4): 394-400. |
[5] | Qingqing XU,Chunmei CHANG,Wanbin LI,Bing GUO,Xia GUO,Maojie ZHANG. Non-Fullerene Polymer Solar Cells Based on a New Polythiophene Derivative as Donor [J]. Acta Phys. -Chim. Sin., 2019, 35(3): 268-274. |
[6] | Dan DENG,Erjun ZHOU,Zhixiang WEI. Fluorination: An Effective Molecular Design Strategy for Efficient Photovoltaic Materials [J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1239-1249. |
[7] | Ping HE,Fanglong YUAN,Zifei WANG,Zhanao TAN,Louzhen FAN. Growing Carbon Quantum Dots for Optoelectronic Devices [J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1250-1263. |
[8] | Xia GUO,Qunping FAN,Chaohua CUI,Zhiguo ZHANG,Maojie ZHANG. Wide Bandgap Random Terpolymers for High Efficiency Halogen-Free Solvent Processed Polymer Solar Cells [J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1279-1285. |
[9] | Shao-Qing ZHANG,Jian-Hui HOU. Rational Design Strategies for Polymer Donors for Applications in Non-Fullerene Organic Photovoltaic Cells [J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2327-2338. |
[10] | Guo-Cheng XU,Xian-Yun DENG,Jun-Li LI,Rui ZHANG,Yun-Peng XIE,Guo-Li TU,Jiang-Bin XIA,Xing LU. Lead Iodide as a New Type of Hole Transport Layer for the High Performance of P3HT:PC61BM-Based Solar Cells [J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1307-1313. |
[11] | NI Ting, ZOU Fan, JIANG Yu-Rong, YANG Sheng-Yi. To Improve the Efficiency of Bulk Heterojunction Organic Solar Cells by Incorporating CdSe/ZnS Quantum Dots [J]. Acta Phys. -Chim. Sin., 2014, 30(3): 453-459. |
[12] | LI Dan, LIANG Ran, YUE He, WANG Peng, FU Li-Min, ZHANG Jian-Ping, AI Xi-Cheng. Influence of Donor and Acceptor Mass Ratios on P3HT:PCBM Film Structure and Device Performance [J]. Acta Phys. -Chim. Sin., 2012, 28(06): 1373-1379. |
[13] | ZHUO Zu-Liang, ZHANG Fu-Jun, XU Xiao-Wei, WANG Jian, LU Li-Fang, XU Zheng. Photovoltaic Performance Improvement of P3HT:PCBM Polymer Solar Cells by Annealing Treatment [J]. Acta Phys. -Chim. Sin., 2011, 27(04): 875-880. |
|