Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (11): 2207024.doi: 10.3866/PKU.WHXB202207024
Special Issue: Special Issue of Emerging Scientists
• REVIEW • Previous Articles
Yuxin Chen1, Lijun Wang1, Zhibo Yao1, Leiduan Hao1, Xinyi Tan2,*(), Justus Masa3, Alex W. Robertson4, Zhenyu Sun1,*
Received:
2022-07-12
Accepted:
2022-07-29
Published:
2022-08-03
Contact:
Xinyi Tan,Zhenyu Sun
E-mail:monica950521@126.com
About author:
Email: sunzy@mail.buct.edu.cn (Z.S.). Tel.: +86-13301308339 (Z.S.)Supported by:
Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction[J]. Acta Phys. -Chim. Sin. 2022, 38(11), 2207024. doi: 10.3866/PKU.WHXB202207024
1 |
JosepG. C.;CorinneL. Q.;MichaelR. R.;ChristopherB. F.;ErikT. B.;PhilippeC.;ThomasJ. C.;NathanP. G.;HoughtonR. A.;GreggM.Proc. Natl. Acad. Sci.2007,104,47.
doi: 10.1073/pnas.0702737104 |
2 |
McgladeC.;EkinsP.Nature2015,517,7533.
doi: 10.1038/nature14016 |
3 |
ShakunJ. D.;ClarkP. U.;HeF.;MarcottS. A.;MixA. C.;LiuZ.;Otto-BliesnerB.;SchmittnerA.;BardE.Nature2012,484,7392.
doi: 10.1038/nature10915 |
4 |
ShiJ.;JiangY.;JiangZ.;WangX.;WangX.;ZhangS.;HanP.;YangC.Chem. Soc. Rev.2015,44,17.
doi: 10.1039/c5cs00182j |
5 |
YuF.;WangC.;MaH.;SongM.;LiD.;LiY.;LiS.;ZhangX.;LiuY.Nanoscale2020,12,13.
doi: 10.1039/c9nr09743k |
6 |
SunZ.;MaT.;TaoH.;FanQ.;HanB.Chem2017,3,4.
doi: 10.1016/j.chempr.2017.09.009 |
7 |
ZhangW.;MaD.;Pérez-RamírezJ.;ChenZ.Adv. Energy Sustain. Res.2021,3,2.
doi: 10.1002/aesr.202100169 |
8 |
GrodkowskiJ.;NetaP.J. Phys. Chem. B2001,105,21.
doi: 10.1021/jp004567d |
9 |
LiM.;WangH.;LuoW.;SherrellP. C.;ChenJ.;YangJ.Adv. Mater.2020,32,34.
doi: 10.1002/adma.202001848 |
10 |
GaoD.;Arán-AisR. M.;JeonH. S.;Roldan CuenyaB.Nat. Catal.2019,2,3.
doi: 10.1038/s41929-019-0235-5 |
11 |
NielsenD. U.;HuX.-M.;DaasbjergK.;SkrydstrupT.Nat. Catal.2018,1,4.
doi: 10.1038/s41929-018-0051-3 |
12 |
WangH.;TzengY. K.;JiY.;LiY.;LiJ.;ZhengX.;YangA.;LiuY.;GongY.;CaiL.;et alNat. Nanotechnol.2020,15,2.
doi: 10.1038/s41565-019-0603-y |
13 |
WangY.;WangZ.;DinhC.-T.;LiJ.;OzdenA.;Golam KibriaM.;SeifitokaldaniA.;TanC.-S.;GabardoC. M.;LuoM.;et alNat. Catal.2019,3,2.
doi: 10.1038/s41929-019-0397-1 |
14 |
ZhangC.;YangS.;WuJ.;LiuM.;YazdiS.;RenM.;ShaJ.;ZhongJ.;NieK.;JalilovA. S.;et alAdv. Energy Mater.2018,8,19.
doi: 10.1002/aenm.201703487 |
15 |
LiX.;HongS.;HaoL.;SunZ.Chin. J. Chem. Eng.2022,43
doi: 10.1016/j.cjche.2021.10.013 |
16 |
ZhangZ.;MaC.;TuY.;SiR.;WeiJ.;ZhangS.;WangZ.;LiJ.-F.;WangY.;DengD.Nano Res.2019,12,9.
doi: 10.1007/s12274-019-2316-9 |
17 |
LiF.;GuG. H.;ChoiC.;KollaP.;HongS.;WuT.-S.;SooY.-L.;MasaJ.;MukerjeeS.;JungY.;et alAppl. Catal. B: Environ.2020,277,119241.
doi: 10.1016/j.apcatb.2020.119241 |
18 |
WangA.;LiJ.;ZhangT.Nat. Rev. Chem.2018,2,6.
doi: 10.1038/s41570-018-0010-1 |
19 |
SunT.;LiY.;CuiT.;XuL.;WangY. G.;ChenW.;ZhangP.;ZhengT.;FuX.;ZhangS.;et alNano Lett.2020,20,8.
doi: 10.1021/acs.nanolett.0c02677 |
20 |
JiangY.;ChoiC.;HongS.;ChuS.;WuT.-S.;SooY.-L.;HaoL.;JungY.;SunZ.Cell Rep. Phys. Sci.2021,2,3.
doi: 10.1016/j.xcrp.2021.100356 |
21 |
LiX.;RongH.;ZhangJ.;WangD.;LiY.Nano Res.2020,13,7.
doi: 10.1007/s12274-020-2755-3 |
22 |
LinR.;MaX.;CheongW. -C.;ZhangC.;ZhuW.;PeiJ.;ZhangK.;WangB.;LiangS.;LiuY.;et alNano Res.2019,12,11.
doi: 10.1007/s12274-019-2526-1 |
23 | HaoL.;SunZ.Acta Phys. -Chim. Sin.2021,37,2009033. |
郝磊端;孙振宇;物理化学学报,2021,37,2009033.
doi: 10.3866/PKU.WHXB202009033 |
|
24 |
FanQ.;HouP.;ChoiC.;WuT. S.;HongS.;LiF.;SooY. L.;KangP.;JungY.;SunZ.Adv. Energy Mater.2019,10,5.
doi: 10.1002/aenm.201903068 |
25 |
JiaM.;HongS.;WuT. S.;LiX.;SooY. L.;SunZ.Chem. Commun.2019,55,80.
doi: 10.1039/c9cc06178a |
26 | CuiX.;ShiF.Acta Phys. -Chim. Sin.2021,37,2006080. |
崔新江;石峰;物理化学学报,2021,37,2006080.
doi: 10.3866/PKU.WHXB202006080 |
|
27 |
WangY.;LiuY.;LiuW.;WuJ.;LiQ.;FengQ.;ChenZ.;XiongX.;WangD.;LeiY.Energy Environ. Sci.2020,13,12.
doi: 10.1039/d0ee02833a |
28 |
BackS.;LimJ.;KimN. Y.;KimY. H.;JungY.Chem. Sci.2017,8,2.
doi: 10.1039/c6sc03911a |
29 |
BaggerA.;JuW.;VarelaA. S.;StrasserP.;RossmeislJ.Catal. Today2017,288,74.
doi: 10.1016/j.cattod.2017.02.028 |
30 |
JiangK.;SiahrostamiS.;ZhengT.;HuY.;HwangS.;StavitskiE.;PengY.;DynesJ.;GangisettyM.;SuD.;et alEnergy Environ. Sci.2018,11,4.
doi: 10.1039/c7ee03245e |
31 |
ShengT.;SunS.-G. Chem. Phys. Lett2017,688,37.
doi: 10.1016/j.cplett.2017.09.052 |
32 |
HanL.;SongS.;LiuM.;YaoS.;LiangZ.;ChengH.;RenZ.;LiuW.;LinR.;QiG.;et alJ. Am. Chem. Soc.2020,142,29.
doi: 10.1021/jacs.9b12111 |
33 |
ShangH.;WangT.;PeiJ.;JiangZ.;ZhouD.;WangY.;LiH.;DongJ.;ZhuangZ.;ChenW.;et alAngew. Chem. Int. Ed.2020,59,50.
doi: 10.1002/anie.202010903 |
34 |
LiuL.;CormaA.Chem. Rev.2018,118,10.
doi: 10.1021/acs.chemrev.7b00776 |
35 |
HanS.;MaD.;ZhuQ.Small Methods2021,5,8.
doi: 10.1002/smtd.202100102 |
36 |
JiaM.;FanQ.;LiuS.;QiuJ.;SunZ.Curr. Opin. Green Sustain. Chem.2019,16,1.
doi: 10.1016/j.cogsc.2018.11.002 |
37 |
SaéEantJ.-M. Chem. Rev.2008,108,7.
doi: 10.1021/cr8004026 |
38 |
SunL.;RedduV.;FisherA. C.;WangX.Energy Environ. Sci.2020,13,374.
doi: 10.1039/c9ee03660a |
39 |
HoriY.;KikuchiK.;SuzukiS.Chem. Lett.1985,14,1695.
doi: 10.1246/cl.1985.1695 |
40 |
JuW.;BaggerA.;HaoG. P.;VarelaA. S.;SinevI.;BonV.;Roldan CuenyaB.;KaskelS.;RossmeislJ.;StrasserP.Nat. Commun.2017,8,1.
doi: 10.1038/s41467-017-01035-z |
41 |
NguyenT. N.;SalehiM.;LeQ. V.;SeifitokaldaniA.;DinhC. T.ACS Catal.2020,10,17.
doi: 10.1021/acscatal.0c02643 |
42 |
ChengY.;YangS.;JiangS. P.;WangS.Small Methods2019,3,9.
doi: 10.1002/smtd.201800440 |
43 |
ZhangN.;ZhangX.;TaoL.;JiangP.;YeC.;LinR.;HuangZ.;LiA.;PangD.;YanH.;et alAngew. Chem. Int. Ed.2021,60,11.
doi: 10.1002/anie.202014718 |
44 |
WangY.;CaoL.;LibrettoN.J.;LiX.;LiC.;WanY.;HeC.;LeeJ.;GreggJ.;ZongH.;et alJ. Am. Chem. Soc.2019,141,42.
doi: 10.1021/jacs.9b05766 |
45 |
BabucciM.;Sarac OztunaF. E.;DebefveL. M.;BoubnovA.;BareS. R.;GatesB. C.;UnalU.;UzunA.ACS Catal.2019,9,11.
doi: 10.1021/acscatal.9b02231 |
46 |
HeX.;HeQ.;DengY.;PengM.;ChenH.;ZhangY.;YaoS.;ZhangM.;XiaoD.;MaD.;et alNat. Commun.2019,10,1.
doi: 10.1038/s41467-019-11619-6 |
47 |
HuangK.;ZhangL.;XuT.;WeiH.;ZhangR.;ZhangX.;GeB.;LeiM.;MaJ. Y.;LiuL. M.;et alNat. Commun.2019,10,1.
doi: 10.1038/s41467-019-08484-8 |
48 |
LangR.;XiW.;LiuJ. C.;CuiY. T.;LiT.;LeeA. F.;ChenF.;ChenY.;LiL.;LiL.;et alNat. Commun.2019,10,1.
doi: 10.1038/s41467-018-08136-3 |
49 |
FengS.;SongX.;LiuY.;LinX.;YanL.;LiuS.;DongW.;YangX.;JiangZ.;DingY.Nat. Commun.2019,10,1.
doi: 10.1038/s41467-019-12965-1 |
50 |
PengP.;ShiL.;HuoF.;MiC.;WuX.;ZhangS.;XiangZ.Sci. Adv.2019,5,2322.
doi: 10.1126/sciadv.aaw2322 |
51 |
WangQ.;CaiC.;DaiM.;FuJ.;ZhangX.;LiH.;ZhangH.;ChenK.;LinY.;LiH.;et alSmall Sci.2020,1,2.
doi: 10.1002/smsc.202000028 |
52 |
GaoD.;LiuT.;WangG.;BaoX.ACS Energy Lett.2021,6,2.
doi: 10.1021/acsenergylett.0c02665 |
53 |
WengZ.;JiangJ.;WuY.;WuZ.;GuoX.;MaternaK. L.;LiuW.;BatistaV. S.;BrudvigG. W.;WangH.J. Am. Chem. Soc.2016,138,26.
doi: 10.1021/jacs.6b04746 |
54 |
HanN.;WangY.;MaL.;WenJ.;LiJ.;ZhengH.;NieK.;WangX.;ZhaoF.;LiY.;et alChem2017,3,4.
doi: 10.1016/j.chempr.2017.08.002 |
55 |
YaoC.;LiJ.;GaoW.;JiangQ.Chem.-Eur. J.2018,24,43.
doi: 10.1002/chem.201800363 |
56 |
DiercksC. S.;LiuY.;CordovaK. E.;YaghiO. M.Nat. Mater.2018,17,4.
doi: 10.1038/s41563-018-0033-5 |
57 |
MaL.;HuW.;MeiB.;LiuH.;YuanB.;ZangJ.;ChenT.;ZouL.;ZouZ.;YangB.;et alACS Catal.2020,10,8.
doi: 10.1021/acscatal.0c00243 |
58 |
CorbinN.;ZengJ.;WilliamsK.;ManthiramK.Nano Res.2019,12,9.
doi: 10.1007/s12274-019-2403-y |
59 |
SunL.;RedduV.;FisherA. C.;WangX.Energy Environ. Sci.2020,13,2.
doi: 10.1039/c9ee03660a |
60 |
LiuS.;YangH. B.;HungS.F.;DingJ.;CaiW.;LiuL.;GaoJ.;LiX.;RenX.;KuangZ.;et alAngew. Chem. Int. Ed.2020,59,2.
doi: 10.1002/anie.201911995 |
61 |
GeJ.;HeD.;ChenW.;JuH.;ZhangH.;ChaoT.;WangX.;YouR.;LinY.;WangY.;et alJ. Am. Chem. Soc.2016,138,42.
doi: 10.1021/jacs.6b09246 |
62 |
WanJ.;ChenW.;JiaC.;ZhengL.;DongJ.;ZhengX.;WangY.;YanW.;ChenC.;PengQ.;et alAdv. Mater.2018,30,11.
doi: 10.1002/adma.201705369 |
63 |
RenW.;TanX.;YangW.;JiaC.;XuS.;WangK.;SmithS. C.;ZhaoC.Angew. Chem. Int. Ed.2019,58,21.
doi: 10.1002/anie.201901575 |
64 |
ZhangE.;WangT.;YuK.;LiuJ.;ChenW.;LiA.;RongH.;LinR.;JiS.;ZhengX.;et alJ. Am. Chem. Soc.2019,141,42.
doi: 10.1021/jacs.9b08259 |
65 |
YinP.;YaoT.;WuY.;ZhengL.;LinY.;LiuW.;JuH.;ZhuJ.;HongX.;DengZ.;et alAngew. Chem. Int. Ed.2016,55,36.
doi: 10.1002/anie.201604802 |
66 |
LiX.;ZhuQ.-L.Energy Chem2020,2,3.
doi: 10.1016/j.enchem.2020.100033 |
67 |
WuY. L.;LiX.;WeiY. S.;FuZ.;WeiW.;WuX. T.;ZhuQ. L.;XuQ.Adv. Mater.2021,33,12.
doi: 10.1002/adma.202006965 |
68 |
WangX.;ChenW.;ZhangL.;YaoT.;LiuW.;LinY.;JuH.;DongJ.;ZhengL.;YanW.;et alJ. Am. Chem. Soc.2017,139,28.
doi: 10.1021/jacs.7b01686 |
69 |
LiQ.;ChenW.;XiaoH.;GongY.;LiZ.;ZhengL.;ZhengX.;YanW.;CheongW.C.;ShenR.;et alAdv. Mater.2018,30,25.
doi: 10.1002/adma.201800588 |
70 |
FeiH.;DongJ.;FengY.;AllenC.S.;WanC.;VolosskiyB.;LiM.;ZhaoZ.;WangY.;SunH.;et alNat. Catal.2018,1,1.
doi: 10.1038/s41929-017-0008-y |
71 |
GuanJ.;DuanZ.;ZhangF.;KellyS. D.;SiR.;DupuisM.;HuangQ.;ChenJ. Q.;TangC.;LiC.Nat. Catal.2018,1,11.
doi: 10.1038/s41929-018-0158-6 |
72 |
HuX.-M.;HvalH. H.;BjerglundE. T.;DalgaardK. J.;MadsenM. R.;PohlM.-M.;WelterE.;LamagniP.;BuhlK.B.;BremholmM.;et alACS Catal.2018,8,7.
doi: 10.1021/acscatal.8b01022 |
73 |
WenX.;DuanZ.;BaiL.;GuanJ.J. Power Sources2019,431,265.
doi: 10.1016/j.jpowsour.2019.126650 |
74 |
YuanK.;Lutzenkirchen-HechtD.;LiL.;ShuaiL.;LiY.;CaoR.;QiuM.;ZhuangX.;LeungM. K. H.;ChenY.;et alJ. Am. Chem. Soc.2020,142,5.
doi: 10.1021/jacs.9b11852 |
75 |
LiX.;BiW.;ChenM.;SunY.;JuH.;YanW.;ZhuJ.;WuX.;ChuW.;WuC.;et alJ. Am. Chem. Soc.2017,139,42.
doi: 10.1021/jacs.7b09074 |
76 |
Jonesj.;XiongH.;DeLaRivaA. T.;PetersonE. J.;PhamH.;ChallaS. R.;QiG.;OhS.;WiebengaM. H.;HernándezX. I.P.;et alScience2016,353,150.
doi: 10.1126/science.aaf8800 |
77 |
WeiS.;LiA.;LiuJ. C.;LiZ.;ChenW.;GongY.;ZhangQ.;CheongW.C.;WangY.;ZhengL.;et alNat. Nanotechnol.2018,13,9.
doi: 10.1038/s41565-018-0197-9 |
78 |
QuY.;LiZ.;ChenW.;LinY.;YuanT.;YangZ.;ZhaoC.;WangJ.;ZhaoC.;WangX.;et alNat. Catal.2018,1,10.
doi: 10.1038/s41929-018-0146-x |
79 |
ChenM. X.;ZhuM.;ZuoM.;ChuS. Q.;ZhangJ.;WuY.;LiangH. W.;FengX.Angew. Chem. Int. Ed.2020,59,4.
doi: 10.1002/anie.201912275 |
80 |
ZhouP.;LiN.;ChaoY.;ZhangW.;LvF.;WangK.;YangW.;GaoP.;GuoS.Angew. Chem. Int. Ed.2019,58,40.
doi: 10.1002/anie.201908351 |
81 |
YangZ.;ChenB.;ChenW.;QuY.;ZhouF.;ZhaoC.;XuQ.;ZhangQ.;DuanX.;WuY.Nat. Commun.2019,10,1.
doi: 10.1038/s41467-019-11796-4 |
82 |
QiaoB.;WangA.;YangX.;AllardL. F.;JiangZ.;CuiY.;LiuJ.;LiJ.;ZhangT.Nat. Chem.2011,3,8.
doi: 10.1038/nchem.1095 |
83 |
YangM.;AllardL. F.;Flytzani-StephanopoulosM.J. Am. Chem. Soc.2013,135,10.
doi: 10.1021/ja312646d |
84 |
GeX.;ZhouP.;ZhangQ.;XiaZ.;ChenS.;GaoP.;ZhangZ.;GuL.;GuoS.Angew. Chem. Int. Ed.2020,59,1.
doi: 10.1002/anie.201911516 |
85 |
ZhangZ.;FengC.;LiuC.;ZuoM.;QinL.;YanX.;XingY.;LiH.;SiR.;ZhouS.;et alNat. Commun.2020,11,1.
doi: 10.1038/s41467-020-14917-6 |
86 |
SunS.;ZhangG.;GauquelinN.;ChenN.;ZhouJ.;YangS.;ChenW.;MengX.;GengD.;BanisM. N.;et alSci. Rep.2013,3,1.
doi: 10.1038/srep01775 |
87 |
LiJ.;GuanQ.;WuH.;LiuW.;LinY.;SunZ.;YeX.;ZhengX.;PanH.;ZhuJ.;et alJ. Am. Chem. Soc.2019,141,37.
doi: 10.1021/jacs.9b06482 |
88 |
DengD.;ChenX.;YuL.;WuX.;LiuQ.;LiuY.;YangH.;TianH.;HuY.;DuP.;et alSci. Adv.2015,1,e1500462.
doi: 10.1126/sciadv.1500462 |
89 |
ZhangJ.;CaiW.;HuF. X.;YangH.;LiuB.Chem. Sci.2021,12,20.
doi: 10.1039/d1sc01375k |
90 |
HuX.;LuoG.;ZhaoQ.;WuD.;YangT.;WenJ.;WangR.;XuC.;HuN.J. Am. Chem. Soc.2020,142,39.
doi: 10.1021/jacs.0c07317 |
91 |
HuangP.;ChengM.;ZhangH.;ZuoM.;XiaoC.;XieY.Nano Energy2019,61,428.
doi: 10.1016/j.nanoen.2019.05.003 |
92 |
LiY.;WeiB.;ZhuM.;ChenJ.;JiangQ.;YangB.;HouY.;LeiL.;LiZ.;ZhangR.;et alAdv. Mater.2021,33,41.
doi: 10.1002/adma.202102212 |
93 |
LiangS.;JiangQ.;WangQ.;LiuY.Adv. Energy Mater.2021,11,36.
doi: 10.1002/aenm.202101477 |
94 |
ShangH.;JiangZ.;ZhouD.;PeiJ.;WangY.;DongJ.;ZhengX.;ZhangJ.;ChenW.Chem. Sci.2020,11,23.
doi: 10.1039/d0sc02343d |
95 |
SunX.;TuoY.;YeC.;ChenC.;LuQ.;LiG.;JiangP.;ChenS.;ZhuP.;MaM.;et alAngew. Chem. Int. Ed.2021,60,44.
doi: 10.1002/anie.202110433 |
96 |
WangY.;SuH.;HeY.;LiL.;ZhuS.;ShenH.;XieP.;FuX.;ZhouG.;FengC.;et alChem. Rev.2020,120,21.
doi: 10.1021/acs.chemrev.0c00594 |
97 |
ZhangN.;ZhangX.;KangY.;YeC.;JinR.;YanH.;LinR.;YangJ.;XuQ.;WangY.;et alAngew. Chem. Int. Ed.2021,60,24.
doi: 10.1002/anie.202101559 |
98 |
LiZ.;ChenY.;JiS.;TangY.;ChenW.;LiA.;ZhaoJ.;XiongY.;WuY.;GongY.;et alNat. Chem.2020,12,8.
doi: 10.1038/s41557-020-0473-9 |
99 |
JiS.;ChenY.;FuQ.;ChenY.;DongJ.;ChenW.;LiZ.;WangY.;GuL.;HeW.;et alJ. Am. Chem. Soc.2017,139,29.
doi: 10.1021/jacs.7b05018 |
100 |
GongM.;ZhouW.;TsaiM. C.;ZhouJ.;GuanM.;LinM. C.;ZhangB.;HuY.;WangD. Y.;YangJ.;et alNat. Commun.2014,5,4695.
doi: 10.1038/ncomms5695 |
101 |
KuhlK. P.;HatsukadeT.;CaveE. R.;AbramD. N.;KibsgaardJ.;JaramilloT. F.J. Am. Chem. Soc.2014,136,40.
doi: 10.1021/ja505791r |
102 |
ZhaoZ.;ChenZ.;LuG.J. Phys. Chem. C2017,121,38.
doi: 10.1021/acs.jpcc.7b06895 |
103 |
WangX.;SangX.;DongC.L.;YaoS.;ShuaiL.;LuJ.;YangB.;LiZ.;LeiL.;QiuM.;et alAngew. Chem. Int. Ed.2021,60,21.
doi: 10.1002/anie.202100011 |
104 |
WangX.;WangY.;SangX.;ZhengW.;ZhangS.;ShuaiL.;YangB.;LiZ.;ChenJ.;LeiL.;et alAngew. Chem. Int. Ed.2021,60,8.
doi: 10.1002/anie.202013427 |
105 |
JiangK.;SiahrostamiS.;AkeyA.J.;LiY.;LuZ.;LattimerJ.;HuY.;StokesC.;GangishettyM.;ChenG.;et alChem2017,3,6.
doi: 10.1016/j.chempr.2017.09.014 |
106 |
YangH. B.;HungS.-F.;LiuS.;YuanK.;MiaoS.;ZhangL.;HuangX.;WangH.-Y.;CaiW.;ChenR.;et alNat. Energy2018,3,2.
doi: 10.1038/s41560-017-0078-8 |
107 |
HuanT. N.;RanjbarN.;RousseG.;SougratiM.;ZitoloA.;MougelV.;JaouenF.;FontecaveM.ACS Catal.2017,7,3.
doi: 10.1021/acscatal.6b03353 |
108 |
GuJun.;HsuC-S.;BaiL.;ChenH.;HuX.Science2019,364,6445.
doi: 10.1126/science.aaw7515 |
109 |
LiX.;XiS.;SunL.;DouS.;HuangZ.;SuT.;WangX.Adv. Sci.2020,7,17.
doi: 10.1002/advs.202001545 |
110 |
LinL.;LiH.;YanC.;LiH.;SiR.;LiM.;XiaoJ.;WangG.;BaoX.Adv. Mater.2019,31,41.
doi: 10.1002/adma.201903470 |
111 |
PanF.;LiB.;SarnelloE.;FeiY.;FengX.;GangY.;XiangX.;FangL.;LiT.;HuY. H.;et alACS Catal.2020,10,19.
doi: 10.1021/acscatal.0c02499 |
112 |
WangT.;SangX.;ZhengW.;YangB.;YaoS.;LeiC.;LiZ.;HeQ.;LuJ.;LeiL.;et alAdv. Mater.2020,32,29.
doi: 10.1002/adma.202002430 |
113 |
HouP.;SongW.;WangX.;HuZ.;KangP.Small2020,16,24.
doi: 10.1002/smll.202001896 |
114 |
SuP.;IwaseK.;HaradaT.;KamiyaK.;NakanishiS.Chem. Sci.2018,9,16.
doi: 10.1039/c8sc00604k |
115 |
YangH.;LinQ.;WuY.;LiG.;HuQ.;ChaiX.;RenX.;ZhangQ.;LiuJ.;HeC.Nano Energy2020,70,104454.
doi: 10.1016/j.nanoen.2020.104454 |
116 |
WangX.;ChenZ.;ZhaoX.;YaoT.;ChenW.;YouR.;ZhaoC.;WuG.;WangJ.;HuangW.;et alAngew. Chem. Int. Ed.2018,57,7.
doi: 10.1002/anie.201712451 |
117 |
WuY.;JiangZ.;LuX.;LiangY.;WangH.Nature2019,575,7784.
doi: 10.1038/s41586-019-1760-8 |
118 | ChuS.;LiX.;RobertsonA. W.;SunZ.Acta Phys. -Chim. Sin.2021,37,2009023. |
楚森林;李欣;RobertsonA. W.;孙振宇;物理化学学报,2021,37,2009023.
doi: 10.3866/PKU.WHXB202009023 |
|
119 |
ChuS.;YanX.;ChoiC.;HongS.;RobertsonA. W.;MasaJ.;HanB.;JungY.;SunZ.Green Chem.2020,22,19.
doi: 10.1039/d0gc02279a |
120 | YangY.;ZhangY.;HuJ.-S.;WanL.-J. Acta Phys. -Chim. Sin.2020,36,1906085. |
杨艳;张云;胡劲松;万立骏;物理化学学报,2020,36,1906085.
doi: 10.3866/PKU.WHXB201906085 |
|
121 | MengY.;KuangS.;LiuH.;FanQ.;MaX.;ZhangS.Acta Phys. -Chim. Sin.2021,37,2006034. |
孟怡辰;况思宇;刘海;范群;马新宾;张生;物理化学学报,2021,37,2006034.
doi: 10.3866/PKU.WHXB202006034 |
|
122 |
LiY.;ChuS.;ShenH.;XiaQ.;RobertsonA. W.;MasaJ.;SiddiquiU.;SunZ.ACS Sustain. Chem. Eng.2020,8,12.
doi: 10.1021/acssuschemeng.0c00800 |
123 |
ChenR.;SuH. Y.;LiuD.;HuangR.;MengX.;CuiX.;TianZ. Q.;ZhangD. H.;DengD.Angew. Chem. Int. Ed.2020,59,1.
doi: 10.1002/anie.201910662 |
124 |
YangH.;WuY.;LiG.;LinQ.;HuQ.;ZhangQ.;LiuJ.;HeC.J. Am. Chem. Soc.2019,141,32.
doi: 10.1021/jacs.9b04907 |
125 |
GuanA.;ChenZ.;QuanY.;PengC.;WangZ.;ShamT.-K.;YangC.;JiY.;QianL.;XuX.;et alCS Energy Lett.2020,5,4.
doi: 10.1021/acsenergylett.0c00018 |
126 |
KarapinarD.;HuanN. T.;SahraieN. R.;LiJ. K.;WakerleyD.;TouatiN.;ZannaS.;TavernaD.;Galvão TizeiL.H.;ZitoloA.;et alAngew. Chem. Int. Ed.2019,58,42.
doi: 10.1002/anie.201907994 |
127 |
XuH.;RebollarD.;HeH.;ChongL.;LiuY.;LiuC.;SunC.-J.;LiT.;MunteanJ. V.;WinansR. E.;et alNat. Energy2020,5,8.
doi: 10.1038/s41560-020-0666-x |
128 |
ChenZ.;MouK.;YaoS.;LiuL.ChemSusChem2018,11,17.
doi: 10.1002/cssc.201800925 |
129 |
YangF.;SongP.;LiuX.;MeiB.;XingW.;JiangZ.;GuL.;XuW.Angew. Chem. Int. Ed.2018,57,38.
doi: 10.1002/anie.201805871 |
130 |
LinL.;LiuT.;XiaoJ.;LiH.;WeiP.;GaoD.;NanB.;SiR.;WangG.;BaoX.Angew. Chem. Int. Ed.2020,59,50.
doi: 10.1002/anie.202009191 |
131 |
ZhaoC.;DaiX.;YaoT.;ChenW.;WangX.;WangJ.;YangJ.;WeiS.;WuY.;LiY.J. Am. Chem. Soc.2017,139,24.
doi: 10.1021/jacs.7b02736 |
132 |
ZuX.;LiX.;LiuW.;SunY.;XuJ.;YaoT.;YanW.;GaoS.;WangC.;WeiS.;et alAdv. Mater.2019,31,15.
doi: 10.1002/adma.201808135 |
133 |
JiangZ.;WangT.;PeiJ.;ShangH.;ZhouD.;LiH.;DongJ.;WangY.;CaoR.;ZhuangZ.;et alEnergy Environ. Sci.2020,13,9.
doi: 10.1039/d0ee01486a |
134 |
SaY. J.;JungH.;ShinD.;JeongH. Y.;RingeS.;KimH.;HwangY. J.;JooS. H.ACS Catal.2020,10,19.
doi: 10.1021/acscatal.0c02325 |
135 |
GongY.;JiaoL. L.;QianY.;PanC.;ZhengL.;CaiX.;LiuB.;YuS.;JiangH.Angew. Chem.2020,132,7.
doi: 10.1002/ange.201914977 |
136 |
ZhengW.;YangJ.;ChenH.;HouY.;WangQ.;GuM.;HeF.;XiaY.;XiaZ.;LiZ.;et alAdv. Funct. Mater.2019,30,4.
doi: 10.1002/adfm.201907658 |
137 |
ZhangH.;LiJ.;XiS.;DuY.;HaiX.;WangJ.;XuH.;WuG.;ZhangJ.;LuJ.;et alAngew. Chem. Int. Ed.2019,58,42.
doi: 10.1002/anie.201906079 |
138 |
PanY.;LinR.;ChenY.;LiuS.;ZhuW.;CaoX.;ChenW.;WuK.;CheongW. C.;WangY.;et alJ. Am. Chem. Soc.2018,140,12.
doi: 10.1021/jacs.8b00814 |
139 |
SunL.;HuangZ.;RedduV.;SuT.;FisherA. C.;WangX.Angew. Chem. Int. Ed.2020,59,39.
doi: 10.1002/anie.202007445 |
140 |
WangX.;PanY.;NingH.;WangH.;GuoD.;WangW.;YangZ.;ZhaoQ.;ZhangB.;ZhengL.;et alAppl. Catal. B: Environ.2020,266,118630.
doi: 10.1016/j.apcatb.2020.118630 |
141 |
ZhangB.;ZhangJ.;ShiJ.;TanD.;LiuL.;ZhangF.;LuC.;SuZ.;TanX.;ChengX.;et alNat. Commun.2019,10,1.
doi: 10.1038/s41467-019-10854-1 |
142 |
NiW.;GaoY.;LinY.;MaC.;GuoX.;WangS.;ZhangS.ACS Catal.2021,11,9.
doi: 10.1021/acscatal.0c05514 |
143 |
YingY.;LuoX.;QiaoJ.;HuangH.Adv. Funct. Mater.2020,31,3.
doi: 10.1002/adfm.202007423 |
144 |
PanY.;ZhangC.;LiuZ.;ChenC.;LiY.Matter2020,2,1.
doi: 10.1016/j.matt.2019.11.014 |
145 |
VasileffA.;XuC.;JiaoY.;ZhengY.;QiaoS.-Z.Chem2018,4,8.
doi: 10.1016/j.chempr.2018.05.001 |
146 |
OuyangY.;ShiL.;BaiX.;LiQ.;WangJ.Chem. Sci.2020,11,7.
doi: 10.1039/c9sc05236d |
147 |
DingC.;FengC.;MeiY.;LiuF.;WangH.;DupuisM.;LiC.Appl. Catal. B: Environ.2020,268,118391.
doi: 10.1016/j.apcatb.2019.118391 |
148 |
ZhongM.;TranK.;MinY.;WangC.;WangZ.;DinhC. T.;De LunaP.;YuZ.;RasouliA. S.;BrodersenP.;et alNature2020,581,7807.
doi: 10.1038/s41586-020-2242-8 |
149 |
ChenD.;ZhangL. H.;DuJ.;WangH.;GuoJ.;ZhanJ.;LiF.;YuF.Angew. Chem. Int. Ed.2021,60,45.
doi: 10.1002/anie.202109579 |
150 |
WangX.;De AraujoJ. F.;JuW.;BaggerA.;SchmiesH.;KuhlS.;RossmeislJ.;StrasserP.Nat. Nanotechnol.2019,14,11.
doi: 10.1038/s41565-019-0551-6 |
151 |
JiaoJ.;LinR.;LiuS.;CheongW. C.;ZhangC.;ChenZ.;PanY.;TangJ.;WuK.;HungS. F.;et alNat. Chem.2019,11,3.
doi: 10.1038/s41557-018-0201-x |
152 |
WuY.;CaoS.;HouJ.;LiZ.;ZhangB.;ZhaiP.;ZhangY.;SunL.Adv. Energy Mater.2020,10,29.
doi: 10.1002/aenm.202070123 |
153 |
WangY.;ChenZ.;HanP.;DuY.;GuZ.;XuX.;ZhengG.ACS Catal.2018,8,8.
doi: 10.1021/acscatal.8b01014 |
154 |
GuoW.;LiuS.;TanX.;WuR.;YanX.;ChenC.;ZhuQ.;ZhengL.;MaJ.;ZhangJ.;et alAngew. Chem. Int. Ed.2021,60,40.
doi: 10.1002/anie.202108635 |
155 |
QinX.;ZhuS.;XiaoF.;ZhangL.;ShaoM.ACS Energy Lett.2019,4,7.
doi: 10.1021/acsenergylett.9b01015 |
156 |
NiW.;LiuZ.;ZhangY.;MaC.;DengH.;ZhangS.;WangS.Adv. Mater.2021,33,1.
doi: 10.1002/adma.202003238 |
157 |
RongX.;WangH. J.;LuX. L.;SiR.;LuT. B.Angew. Chem. Int. Ed.2020,59,5.
doi: 10.1002/anie.201912458 |
158 |
HanS.-G.;MaD.-D.;ZhouS.-H.;ZhangK.;WeiW.-B.;DuY.;WuX.-T.;XuQ.;ZouR.;ZhuQ.-L.Appl. Catal. B: Environ.2021,283,119591.
doi: 10.1016/j.apcatb.2020.119591 |
159 |
HuangP.;ChengZ.;ZengL.;YuJ.;TanL.;MohapatraP.;FanL.-S.;ZhuY.ACS Catal.2020,10,24.
doi: 10.1021/acscatal.0c03941 |
160 |
PanF.;LiB.;SarnelloE.;HwangS.;GangY.;FengX.;XiangX.;AdliN. M.;LiT.;SuD.;et alNano Energy2020,68,104384.
doi: 10.1016/j.nanoen.2019.104384 |
161 |
WangH.-H.;LvL.-B.;ZhangS.-N.;SuH.;ZhaiG.-Y.;LeiW.-W.;LiX.-H.;ChenJ.-S.Nano Res.2020,13,8.
doi: 10.1007/s12274-020-2810-0 |
162 |
LiY.;AdliN. M.;ShanW.;WangM.;ZachmanM.J.;HwangS.;TabassumH.;KarakalosS.;FengZ.;WangG.;et alEnergy Environ. Sci.2022,15,5.
doi: 10.1039/d2ee00318j |
163 |
ChenX.;MaD.-D.;ChenB.;ZhangK.;ZouR.;WuX.-T.;ZhuQ.-L.Appl. Catal. B: Environ.2020,267,118720.
doi: 10.1016/j.apcatb.2020.118720 |
164 |
ChenS.;LiW.H.;JiangW.;YangJ.;ZhuJ.;WangL.;OuH.;ZhuangZ.;ChenM.;SunX.;et alAngew. Chem. Int. Ed.2022,61,4.
doi: 10.1002/anie.202114450 |
165 |
PazF. A.;KlinowskiJ.;VilelaS. M.;TomeJ. P.;CavaleiroJ. A.;RochaJ.Chem. Soc. Rev.2012,41,3.
doi: 10.1039/c1cs15055c |
166 |
BangS.;LeeY. M.;HongS.;ChoK. B.;NishidaY.;SeoM. S.;SarangiR.;FukuzumiS.;NamW.Nat. Chem.2014,6,10.
doi: 10.1038/nchem.2055 |
167 |
RenX.;LiuS.;LiH.;DingJ.;LiuL.;KuangZ.;LiL.;YangH.;BaiF.;HuangY.;et alSci. Chin. Chem.2020,63,12.
doi: 10.1007/s11426-020-9847-9 |
168 |
ZhangX.;WuZ.;ZhangX.;LiL.;LiY.;XuH.;LiX.;YuX.;ZhangZ.;LiangY.;et alNat. Commun.2017,8,14675.
doi: 10.1038/ncomms14675 |
169 |
ZhangX.;WangY.;GuM.;WangM.;ZhangZ.;PanW.;JiangZ.;ZhengH.;LuceroM.;WangH.;et alNat. Energy2020,5,9.
doi: 10.1038/s41560-020-0667-9 |
170 | Gao, Y.; Yang, Y.; Hao, L.; Hong, S.; Tan, X.; Wu, T. -S.; Soo, Y. -L.; Robertson, A. W.; Yang, Q.; Sun, Z. Chem. Catal. 2022, in press. doi: 10.1016/j.checat.2022.06.010 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[3] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[4] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[5] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[6] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[7] | Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2 [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212053-0. |
[8] | Liu Yuankai, Yu Tao, Guo Shaohua, Zhou Haoshen. Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301027-0. |
[9] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[10] | Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2211051-. |
[11] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[12] | Ji-Chao Wang, Xiu Qiao, Weina Shi, Jing He, Jun Chen, Wanqing Zhang. S-Scheme Heterojunction of Cu2O Polytope-Modified BiOI Sheet for Efficient Visible-Light-Driven CO2 Conversion under Water Vapor [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2210003-. |
[13] | Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211025-0. |
[14] | Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2211029-0. |
[15] | Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2301023-0. |
|