Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (8): 2211017.doi: 10.3866/PKU.WHXB202211017
Special Issue: Solid State Batteries
• REVIEW • Previous Articles Next Articles
Yongzhi Zhao, Chenyang Chen, Wenyi Liu, Weifei Hu, Jinping Liu()
Received:
2022-11-08
Accepted:
2022-12-12
Published:
2022-12-19
Contact:
Jinping Liu
E-mail:liujp@whut.edu.cn
Supported by:
Yongzhi Zhao, Chenyang Chen, Wenyi Liu, Weifei Hu, Jinping Liu. Research Progress of Interface Optimization Strategies for Solid-State Lithium Batteries[J]. Acta Phys. -Chim. Sin. 2023, 39(8), 2211017. doi: 10.3866/PKU.WHXB202211017
Fig 3
(a) EIS plots of solid-state-batteries using the bare NCM85 and ZrO2-NCM85 after 60 cycles at 0.2C current density 26; (b) schematic diagram of physical interface problems 26; (c) schematic illustration of the design principle and functions of PVDF-LPPO 34; (d) voltage profiles for cells with PEO as the catholyte and separator and (e) the DPLE cell with PPC as the catholyte and PEO as the electrolyte separator 35. (a, b) Adapted with permission from Ref. 26, Copyright 2022, Wiley-VCH Verlag GmbH & Co. KGaA. (c) Adapted with permission from Ref. 34. Copyright 2022, Elsevier B.V. (d, e) Adapted with permission from Ref. 35, Copyright 2022, Royal Society of Chemistry."
Fig 4
(a) Schematic diagrams of solid Li-metal battery with ASEs as electrolyte 44; (b) EIS plot of the LFP/ASE/Li and LFP/LLZTO/Li battery at 55 ℃ 44; (c) schematic illustration for the synthesis route of functional GCPE film 46; (d) cycling stability with Coulombic efficiency of Li/GCPE/LFP and Li/HCPE/LFP cells at 60 ℃ 46; (e) XPS results of the product collected after the reaction between Al2O3 and Li 47; (f) schematic showing ion transport for robust and Li-ion conductive Li/ Li3PO4@LLZTO interface 49; (g) comparison of the wetting behaviors of molten metal lithium on LLZWO ceramics with and without graphite-based interface layer 50. (a, b) Adapted with permission from Ref. 44, Copyright 2018, American Chemical Society. (c, d) Adapted with permission from Ref. 46, Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA. (e) Adapted with permission from Ref. 47, Copyright 2022, American Chemical Society. (f) Adapted with permission from Ref. 49, Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA. (g) Adapted with permission from Ref. 50, Copyright 2018, Royal Society of Chemistry."
Fig 5
(a) Initial charge-discharge profiles at 0.1C rate for all-solid-state-batteries using the NCM-L, NCM-M, and NCM-S 52; (b) rietveld plots of ex-situ XRD data for charged cathode composites using NCM-L, NCM-M, and NCM-S 52; (c) mean ionic and electronic conductivities of all-solid-state-batteries cathode composites using NCM-L, NCM-M, and NCM-S 52; (d) the effect of λ on θCAM at fixed fCAM (70%) 53; (e) the schematic diagram of the microstructure of composite cathodes 55; (f) schematic of a solid-state full battery 56; (g) galvanostatic charge/discharge voltage profiles of thick LiFePO4 solid-state cathodes made with or without Li-Cu-CNF ion-conducting binder 56; (h) ionic conductivity of LiFePO4 cathodes made with different amounts of Li-Cu-CNF 56. (a–c) Adapted with permission from Ref. 52, Copyright 2018, American Chemical Society. (d) Adapted with permission from Ref. 53, Copyright 2022, Wiley-VCH Verlag GmbH & Co. KGaA. (e) Adapted with permission from Ref. 55, Copyright 2022, Wiley-VCH Verlag GmbH & Co. KGaA. (f–h) Adapted with permission from Ref. 56, Copyright 2021, Nature Publishing Group."
Fig 6
(a) Schematic diagram of the solid-state batteries of different structures 58; (b) schematic diagrams of melt infiltration process 60; (c) schematic showing the in-situ polymerization process 61. (a) Adapted with permission from Ref. 58. Copyright 2021, Elsevier B.V. (b) Adapted with permission from Ref. 60, Copyright 2021, Nature Publishing Group. (c) Adapted with permission from Ref. 61, Copyright 2022, Royal Society of Chemistry."
Fig 7
(a) Reconstructed 3D structure of the pristine cathode 62; (b) reconstructed 3D structure after 50 cycles under 2 MPa 62; (c) reconstructed 3D structure after 50 cycles under 10 MPa 62; (d) schematic diagram of Li metal/Li6PS5Cl interface cycled at an overall current density above the critical current for stripping 40; (e) normalized voltage of Li symmetric cells as a function of time during plating and stripping at different stack pressures 64. (a–c) Adapted with permission from Ref. 62. Copyright 2022, Elsevier B.V. (d) Adapted with permission from Ref. 40, Copyright 2019, Nature Publishing Group. (e) Adapted with permission from Ref. 64, Copyright 2020, Royal Society of Chemistry."
Fig 8
(a) Simulation of Li-ion transport kinetics in the traditional-LFP and aligned-LFP samples 66; (b) schematic showing the preparation process of 3D integrated electrode 67; (c) schematic diagram of the fabrication procedure for the 3D LixMnO2 nanosheet arrays 68; (d) comparison of the cycle performances of the 3DLMO-TFB, 2DMO-TFB and 3DMO-LIB 68. (a) Adapted with permission from Ref. 66. Copyright 2022, Elsevier B.V. (b) Adapted with permission from Ref. 67, Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA. (c, d) Adapted with permission from Ref. 68, Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA."
1 |
Liu L. ; Wu Z. C. ; Zheng Z. ; Zhou Q. J. ; Chen K. ; Yin P. C. Chin. Chem. Lett. 2022, 33, 4326.
doi: 10.1016/j.cclet.2021.12.031 |
2 |
Song K. M. ; Chen W. H. Chem 2021, 7, 3195.
doi: 10.1016/j.chempr.2021.11.016 |
3 |
Deysher G. ; Ridley P. ; Ham S. Y. ; Doux J. M. ; Chen Y. T. ; Wu E. A. ; Tan D. H. S. ; Cronk A. ; Jang J. ; Meng Y. S. Mater. Today Phys. 2022, 24, 2542.
doi: 10.1016/j.mtphys.2022.100679 |
4 |
Zhao B. L. ; Ma L. X. ; Wu K. ; Cao M. X. ; Xu M. G. ; Zhang X. X. ; Liu W. ; Chen J. T. Chin. Chem. Lett. 2021, 32, 125.
doi: 10.1016/j.cclet.2020.10.045 |
5 |
Zhao T. ; Li S. W. ; Liu F. ; Wang Z. Q. ; Wang H. L. ; Liu Y. J. ; Tang X. Y. ; Bai M. ; Zhang M. ; Ma Y. Energy Storage Mater. 2022, 45, 796.
doi: 10.1016/j.ensm.2021.12.032 |
6 |
Zhou B. X. ; Bonakdarpour A. ; Stosevski I. ; Fang B. Z. ; Wilkinson D. P. Prog. Mater. Sci. 2022, 130, 79.
doi: 10.1016/j.pmatsci.2022.100996 |
7 |
Banerjee A. ; Wang X. ; Fang C. ; Wu E. A. ; Meng Y. S. Chem. Rev. 2020, 120, 6878.
doi: 10.1021/acs.chemrev.0c00101 |
8 | Wang H. ; An H, W. ; Shan H. M. ; Zhao L. ; Wang J. J. Acta Phys. -Chim. Sin. 2021, 36, 2007070. |
王晗; 安汉文; 单红梅; 赵雷; 王家钧. 物理化学学报, 2021, 36, 2007070.
doi: 10.3866/PKU.WHXB202007070 |
|
9 |
Zhang Z. H. ; Wu L. P. ; Zhou D. ; Weng W. ; Yao X. Y. Nano Lett. 2021, 21, 5233.
doi: 10.1021/acs.nanolett.1c01344 |
10 |
Kato Y. ; Hori S. ; Saito T. ; Suzuki K. ; Hirayama M. ; Mitsui A. ; Yonemura M. ; Iba H. ; Kanno R. Nat. Energy 2016, 1, 7.
doi: 10.1038/nenergy.2016.30 |
11 |
Kamaya N. ; Homma K. ; Yamakawa Y. ; Hirayama M. ; Kanno R. ; Yonemura M. ; Kamiyama T. ; Kato Y. ; Hama S. ; Kawamoto K. ; et al Nat. Mater. 2011, 10, 682.
doi: 10.1038/nmat3066 |
12 |
Lu Y. ; Li L. ; Zhang Q. ; Niu Z.Q. ; Chen J. Joule 2018, 2, 1747.
doi: 10.1016/j.joule.2018.07.028 |
13 |
Wang H. C. ; Zhu J. P. ; Su Y. ; Gong Z. L. ; Yang Y. Sci. China-Chem. 2021, 64, 879.
doi: 10.1007/s11426-021-9985-x |
14 |
Goodenough J. B. ; Kim Y. Chem. Mat. 2010, 22, 587.
doi: 10.1021/cm901452z |
15 |
Wenzel S. ; Leichtweiss T. ; Kruger D. ; Sann J. ; Janek J. Solid State Ion. 2015, 278, 98.
doi: 10.1016/j.ssi.2015.06.001 |
16 |
Rehnlund D. ; Wang Z. H. ; Nyholm L. Adv. Mater. 2022, 34, 2108827.
doi: 10.1002/adma.202108827 |
17 |
Haruyama J. ; Sodeyama K. ; Tateyama Y. ACS Appl. Mater. Interfaces 2017, 9, 286.
doi: 10.1021/acsami.6b08435 |
18 |
Sakuda A. ; Hayashi A. ; Tatsumisago M. Chem. Mat. 2010, 22, 949.
doi: 10.1021/cm901819c |
19 |
Park K. ; Yu B. C. ; Jung J. W. ; Li Y. T. ; Zhou W. D. ; Gao H. C. ; Son S. ; Goodenough J. B. Chem. Mat. 2016, 28, 8051.
doi: 10.1021/acs.chemmater.6b03870 |
20 |
Richards W. D. ; Miara L. J. ; Wang Y. ; Kim J. C. ; Ceder G. Chem. Mat. 2016, 28, 266.
doi: 10.1021/acs.chemmater.5b04082 |
21 |
Lu G. ; Geng F. ; Gu S. ; Li C. ; Shen M. ; Hu B. ACS Appl. Mater. Interfaces 2022, 14, 25556.
doi: 10.1021/acsami.2c05239 |
22 |
Cheng Z. ; Liu M. ; Ganapathy S. ; Li C. ; Li Z. L. ; Zhang X. Y. ; He P. ; Zhou H. S. ; Wagemaker M. Joule 2020, 4, 131.
doi: 10.1016/j.joule.2020.04.002 |
23 |
Liu S. L. ; Liu W. Y. ; Ba D. L. ; Zhao Y. Z. ; Ye Y. H. ; Li Y. Y. ; Liu J. P. Adv. Mater. 2022, 2110423
doi: 10.1002/adma.202110423 |
24 |
Nisar U. ; Muralidharan N. ; Essehli R. ; Amin R. ; Belharouak I. Energy Storage Mater. 2021, 38, 309.
doi: 10.1016/j.ensm.2021.03.015 |
25 |
Kitsche D. ; Tang Y. S. ; Ma Y. ; Goonetilleke D. ; Sann J. ; Walther F. ; Bianchini M. ; Janek J. ; Brezesinski T. ACS Appl. Energ. Mater. 2021, 4, 7338.
doi: 10.1021/acsaem.1c01487 |
26 |
Ma Y. ; Teo J. H. ; Walther F. ; Ma Y. J. ; Zhang R. Z. ; Mazilkin A. ; Tang Y. S. ; Goonetilleke D. ; Janek J. ; Bianchini M. ; et al Adv. Funct. Mater. 2022, 15, 2111829.
doi: 10.1002/adfm.202111829 |
27 |
Peng L. F. ; Ren H. T. ; Zhang J. Z. ; Chen S. J. ; Yu C. ; Miao X. F. ; Zhang Z. Q. ; He Z. Y. ; Yu M. ; Zhang L. ; et al Energy Storage Mater. 2021, 43, 53.
doi: 10.1016/j.ensm.2021.08.028 |
28 |
Li X. ; Ren Z. H. ; Banis M. N. ; Deng S. X. ; Zhao Y. ; Sun Q. ; Wang C. H. ; Yang X. F. ; Li W. H. ; Liang J. W. ; et al ACS Energy Lett. 2019, 4, 2480.
doi: 10.1021/acsenergylett.9b01676 |
29 |
Liu Y. L. ; Sun Q. ; Liu J. R. ; Banis M. N. ; Zhao Y. ; Wang B. Q. ; Adair K. ; Hu Y. F. ; Xiao Q. F. ; Zhang C. ; et al ACS Appl. Mater. Interfaces 2020, 12, 2293.
doi: 10.1021/acsami.9b16343 |
30 |
Tsai W. Y. ; Thundat T. ; Nanda J. Matter 2021, 4, 2119.
doi: 10.1016/j.matt.2021.06.014 |
31 |
Gao Y. ; Du X. Q. ; Hou Z. ; Shen X. ; Mai Y. W. ; Tarascon J. M. ; Zhang B. A. Joule 2021, 5, 1860.
doi: 10.1016/j.joule.2021.05.015 |
32 |
Krauskopf T. ; Richter F. H. ; Zeier W. G. ; Janek J. Chem. Rev. 2020, 120, 7745.
doi: 10.1021/acs.chemrev.0c00431 |
33 |
Xu B. Y. ; Li X. Y. ; Yang C. ; Li Y. T. ; Grundish N. S. ; Chien P. H. ; Dong K. ; Manke I. ; Fang R. Y. ; Wu N. ; et al J. Am. Chem. Soc. 2021, 143, 6542.
doi: 10.1021/jacs.1c00752 |
34 |
Mi J.S. ; Ma J.B. ; Chen L.K. ; Lai C. ; Yang K. ; Biao J. ; Xia H.Y. ; Song X. ; Lv W. ; Zhong G.M. Energy Storage Mater. 2022, 48, 375.
doi: 10.1016/j.ensm.2022.02.048 |
35 |
Arrese-Igor M. ; Martinez-Ibanez M. ; Pavlenko E. ; Forsyth M. ; Zhu H. ; Armand M. ; Aguesse F. ; Lopez-Aranguren P. ACS Energy Lett. 2022, 7, 1473.
doi: 10.1021/acsenergylett.2c00488 |
36 |
Wang P. ; Qu W. J. ; Song W. L. ; Chen H. S. ; Chen R. J. ; Fang D. N. Adv. Funct. Mater. 2019, 29, 29.
doi: 10.1002/adfm.201900950 |
37 |
Tian H. K. ; Qi Y. J. Electrochem. Soc. 2017, 16, 3512.
doi: 10.1149/2.0481711jes |
38 |
Stallard J. C. ; Wheatcroft L. ; Booth S. G. ; Boston R. ; Corr S. A. ; De Volder M. F. L. ; Inkson B. J. ; Fleck N. A. Joule 2022, 6, 984.
doi: 10.1016/j.joule.2022.04.001 |
39 |
Liu Y. Y. ; Tzeng Y. K. ; Lin D. C. ; Pei A. ; Lu H. Y. ; Melosh N. A. ; Shen Z. X. ; Chu S. ; Cui Y. Joule 2018, 2, 1595.
doi: 10.1016/j.joule.2018.05.007 |
40 |
Kasemchainan J. ; Zekoll S. ; Jolly D. S. ; Ning Z. ; Hartley G. O. ; Marrow J. ; Bruce P. G. Nat. Mater. 2019, 18, 1105.
doi: 10.1038/s41563-019-0438-9 |
41 |
Yamada H. ; Ito T. ; Basappa R. H. ; Bekarevich R. ; Mitsuishi K. J. Power Sources 2017, 368, 97.
doi: 10.1016/j.jpowsour.2017.09.076 |
42 |
Zhang W. B. ; Schroder D. ; Arlt T. ; Manke I. ; Koerver R. ; Pinedo R. ; Weber D. A. ; Sann J. ; Zeier W. G. ; Janek J. J. Mater. Chem. A 2017, 5, 9929.
doi: 10.1039/c7ta02730c |
43 |
Liang J. Y. ; Zeng X. X. ; Zhang X. D. ; Zuo T. T. ; Yan M. ; Yin Y. X. ; Shi J. L. ; Wu X. W. ; Guo Y. G. ; Wan L. J. J. Am. Chem. Soc. 2019, 141, 9165.
doi: 10.1021/jacs.9b03517 |
44 |
Duan H. ; Yin Y. X. ; Shi Y. ; Wang P. F. ; Zhang X. D. ; Yang C. P. ; Shi J. L. ; Wen R. ; Guo Y. G. ; Wan L. J. J. Am. Chem. Soc. 2018, 14, 82.
doi: 10.1021/jacs.7b10864 |
45 |
Wu J. Y. ; Ju Z. Y. ; Zhang X. ; Marschilok A. C. ; Takeuchi K. J. ; Wang H. L. ; Takeuchi E. S. ; Yu G. H. Adv. Mater. 2022, 34, 2202780.
doi: 10.1002/adma.202202780 |
46 |
Deng C. L. ; Chen N. ; Hou C. Y. ; Liu H. X. ; Zhou Z. M. ; Chen R. J. Small 2021, 17, 9.
doi: 10.1002/smll.202006578 |
47 |
Guo S. J. ; Li Y. T. ; Li B. ; Grundish N. S. ; Cao A. M. ; Sun Y. G. ; Xu Y. S. ; Ji Y. L. M. ; Qiao Y. ; Zhang Q. H. ; et al J. Am. Chem. Soc. 2022, 144, 2179.
doi: 10.1021/jacs.1c10872 |
48 |
Liu Y. Q. ; Wang X. ; Ghosh S. K. ; Zou M. ; Zhou H. ; Xiao X. H. ; Meng X. B. Dalton Trans. 2022, 51, 2737.
doi: 10.1039/d1dt03600a |
49 |
Deng T. ; Ji X. ; Zhao Y. ; Cao L. S. ; Li S. ; Hwang S. ; Luo C. ; Wang P. F. ; Jia H. P. ; Fan X. L. ; et al Adv. Mater. 2020, 32, 2000030.
doi: 10.1002/adma.202000030 |
50 |
Shao Y. J. ; Wang H. C. ; Gong Z. L. ; Wang D. W. ; Zheng B. Z. ; Zhu J. P. ; Lu Y. X. ; Hu Y. S. ; Guo X. X. ; Li H. ; et al ACS Energy Lett. 2018, 3, 1212.
doi: 10.1021/acsenergylett.8b00453 |
51 | Zhao J. H. ; Xie M. L. ; Zhang H. Y. ; Yi R. W. ; Hu C. J. ; Kang T. ; Zheng L. ; Cui R. G. ; Chen H. W. ; Shen Y. B. ; et al Acta Phys. -Chim. Sin. 2021, 37, 2104003. |
赵江辉; 谢茂玲; 张海洋; 易若玮; 胡晨吉; 康拓; 郑磊; 崔瑞广; 陈宏伟; 沈炎宾; 等. 物理化学学报, 2021, 37, 2104003.
doi: 10.3866/PKU.WHXB202104003 |
|
52 |
Strauss F. ; Bartsch T. ; de Biasi L. ; Kim A. Y. ; Janek J. ; Hartmann P. ; Brezesinski T. ACS Energy Lett. 2018, 3, 992.
doi: 10.1021/acsenergylett.8b00275 |
53 |
Shi T. ; Tu Q. S. ; Tian Y. S. ; Xiao Y. H. ; Miara L. J. ; Kononova O. ; Ceder G. Adv. Energy Mater. 2020, 10, 1902881.
doi: 10.1002/aenm.201902881 |
54 |
Zhao J. ; Zhao C. ; Zhu J. P. ; Liu X. S. ; Yao J. M. ; Wang B. ; Dai Q. S. ; Wang Z. F. ; Chen J. Z. ; Jia P. ; et al Nano Lett. 2022, 2, 411.
doi: 10.1021/acs.nanolett.1c04076 |
55 |
Jiang W. ; Zhu X. X. ; Huang R. Z. ; Zhao S. ; Fan X. M. ; Ling M. ; Liang C. D. ; Wang L. G. Adv. Energy Mater. 2022, 2103473
doi: 10.1002/aenm.202103473 |
56 |
Yang C.P. ; Wu Q.S. ; Xie W.Q. ; Zhang X. ; Brozena A. ; Zheng J. ; Garaga M. N. ; Ko B. H. ; Mao Y.M. ; He S.M. ; et al Nature 2021, 598, 590.
doi: 10.1038/s41586-021-03885-6 |
57 |
Li Z. ; Zhou X. Y. ; Guo X. Energy Storage Mater. 2020, 29, 149.
doi: 10.1016/j.ensm.2020.04.015 |
58 |
Bi Z. J. ; Mu S. ; Zhao N. ; Sun W. H. ; Huang W. L. ; Guo X. X. Energy Storage Mater. 2021, 35, 512.
doi: 10.1016/j.ensm.2020.11.038 |
59 |
Yubuchi S. ; Uematsu M. ; Deguchi M. ; Hayashi A. ; Tatsumisago M. ACS Appl. Energ. Mater. 2018, 1, 3622.
doi: 10.1021/acsaem.8b00280 |
60 |
Xiao Y. R. ; Turcheniuk K. ; Narla A. ; Song A. Y. ; Ren X. L. ; Magasinski A. ; Jain A. ; Huang S. ; Lee H. ; Yushin G. Nat. Mater. 2021, 20, 984.
doi: 10.1038/s41563-021-00943-2 |
61 |
Geng Z. ; Huang Y. L. ; Sun G. C. ; Chen R. S. ; Cao W. Z. ; Zheng J. Y. ; Li H. Nano Energy 2022, 91, 2211.
doi: 10.1016/j.nanoen.2021.106679 |
62 |
Gao X.W. ; Liu B.Y. ; Hu B.K. ; Ning Z.Y. ; Jolly D. S. ; Zhang S.M. ; Perera J. ; Bu J. ; Liu J.L. ; Doerrer C. ; et al Joule 2022, 6, 636.
doi: 10.1016/j.joule.2022.02.008 |
63 | Zhu G. L. ; Zhao C. Z. ; Yuan H. ; Nan H. X. ; Zhao B. C. ; Hou L. P. ; He C. X. ; Liu Q. B. ; Huang J. Q. Acta Phys. -Chim. Sin. 2021, 37, 2005003. |
朱高龙; 赵辰孜; 袁洪; 南皓雄; 赵铂琛; 侯立鹏; 何传新; 刘全兵; 黄佳琦. 物理化学学报, 2021, 37, 2005003.
doi: 10.3866/PKU.WHXB202005003 |
|
64 |
Doux J. M. ; Yang Y. Y. C. ; Tan D. H. S. ; Nguyen H. ; Wu E. A. ; Wang X. F. ; Banerjee A. ; Meng Y. S. J. Mater. Chem. A 2020, 8, 5049.
doi: 10.1039/c9ta12889a |
65 |
Li L. P. ; Liu W. Y. ; Dong H. Y. ; Gui Q. Y. ; Hu Z. Q. ; Li Y. Y. ; Liu J. P. Adv. Mater. 2021, 33, 20204959.
doi: 10.1002/adma.202004959 |
66 |
Nie L. ; Chen S. J. ; Zhang C. ; Dong L. ; He Y. J. ; Gao T. Y. ; Yu J. M. ; Liu W. Cell Rep. Phys. Sci. 2022, 3, 100851.
doi: 10.1016/j.xcrp.2022.100851 |
67 |
Liu W. Y. ; Yi C. J. ; Li L. P. ; Liu S. L. ; Gui Q. Y. ; Ba D. L. ; Li Y. Y. ; Peng D. L. ; Liu J. P. Angew. Chem. Int. Edit. 2021, 60, 12931.
doi: 10.1002/anie.202101537 |
68 |
Xia Q. Y. ; Zhang Q. H. ; Sun S. ; Hussain F. ; Zhang C. C. ; Zhu X. H. ; Meng F. Q. ; Liu K. M. ; Geng H. ; Xu J. ; et al Adv. Mater. 2021, 33, 2003524.
doi: 10.1002/adma.202003524 |
69 |
Salian G. D. ; Lebouin C. ; Demoulin A. ; Lepihin M. S. ; Maria S. ; Galeyeva A. K. ; Kurbatov A. P. ; Djenizian T. J. Power Sources 2017, 340, 242.
doi: 10.1016/j.jpowsour.2016.11.078 |
70 |
Matsuda Y. ; Kuwata N. ; Kawamura J. Solid State Ion. 2018, 320, 38.
doi: 10.1016/j.ssi.2018.02.024 |
71 |
Zhou X. ; Zhang Y. ; Shen M. ; Fang Z. ; Kong T. Y. ; Feng W. L. ; Xie Y. H. ; Wang F. ; Hu B. W. ; Wang Y. G. Adv. Energy Mater. 2022, 12, 2103932.
doi: 10.1002/aenm.202103932 |
[1] | Qiuying Xia, Yu Cai, Wei Liu, Jinshi Wang, Chuanzhi Wu, Feng Zan, Jing Xu, Hui Xia. Direct Recycling of All-Solid-State Thin Film Lithium Batteries with Lithium Anode Failure [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212051-0. |
[2] | Xianhong Chen, Pengchao Ruan, Xianwen Wu, Shuquan Liang, Jiang Zhou. Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2111003-. |
[3] | Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204049-. |
[4] | Feng JIN,Jing LI,Chenji HU,Houcai DONG,Peng CHEN,Yanbin SHEN,Liwei CHEN. High Performance Solid-state Battery with Integrated Cathode and Electrolyte [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1399-1403. |
|