Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (10): 2004071.doi: 10.3866/PKU.WHXB202004071
• ARTICLE • Previous Articles Next Articles
Mengxue Zhou1,2, Ning Ren3,*(), Jianjun Zhang1,2,*()
Received:
2020-04-27
Accepted:
2020-05-15
Published:
2020-05-20
Contact:
Ning Ren,Jianjun Zhang
E-mail:ningren9@163.com;jjzhang6@126.com
About author:
Email: jjzhang6@126.com (Z.J.); Tel.: +86-311-80786457 (Z.J.)Supported by:
Mengxue Zhou, Ning Ren, Jianjun Zhang. Crystal Structure, Thermal Decomposition Mechanism and Properties of Lanthanide Supramolecular Complexes Based on 2, 4, 6-Trimethylbenzoic Acid and 5, 5'-Dimethyl-2, 2'-bipyridine[J]. Acta Phys. -Chim. Sin. 2021, 37(10), 2004071. doi: 10.3866/PKU.WHXB202004071
"
Complex | 1 | 2 | 3 |
Empirical formula | C84H90N4O12Pr2 | C84H90N4O12Nd2 | C84H90N4O12Sm2 |
Formula weight/(g·mol-1) | 1629.42 | 1636.08 | 1648.30 |
Temperature/K | 298(2) | 298(2) | 298(2) |
Wavelength/? | 0.71073 | 0.71073 | 0.71073 |
Crystal system | Triclinic | Triclinic | Triclinic |
Space group | P ī | P ī | P ī |
Unit cell dimensions | |||
a/? | 12.4109 (11) | 12.1605 (13) | 12.3684 (11) |
b/? | 13.4486 (12) | 13.1382 (13) | 13.3244 (11) |
c/? | 13.4944 (13) | 13.2316 (14) | 13.4910 (12) |
α/(°) | 107.863 (3) | 107.790 (2) | 107.653 (2) |
β/(°) | 108.458 (3) | 108.686 (2) | 108.945 (2) |
γ/(°) | 91.858 (2) | 91.7080 (10) | 91.5490 (10) |
Volume/?3 | 2012.4 (3) | 1887.6 (3) | 1984.4 (3) |
Z, calculated density/(mg·m-3) | 1, 1.344 | 1, 1.439 | 1, 1.379 |
Absorption coefficient/mm-1 | 1.257 | 1.425 | 1.526 |
F(000) | 836 | 838 | 842 |
Crystal size/mm3 | 0.13 × 0.08 × 0.05 | 0.16 × 0.08 × 0.06 | 0.15 × 0.08 × 0.05 |
Theta range for data collection/(°) | 2.34 to 25.02 | 2.38 to 25.02 | 2.34 to 25.02 |
Limiting indices | -14 ≤ h ≤ 14 | -14 ≤ h ≤ 14 | -14 ≤ h ≤ 14 |
-15 ≤ k ≤ 15 | -11 ≤ k ≤ 15 | -15 ≤ k ≤ 15 | |
-12 ≤ l ≤ 16 | -15 ≤ l ≤ 15 | -10 ≤ l ≤ 16 | |
Reflections collected/unique | 10173/6956 | 9719/6570 | 10125/6888 |
[R(int) = 0.0564] | [R(int) = 0.0655] | [R(int) = 0.0494] | |
Completeness to theta = 25.02° | 98.3% | 98.5% | 98.5% |
Max. and min. transmission | 0.9398 and 0.8537 | 0.9194 and 0.8041 | 0.9276 and 0.8034 |
Data/restraints/parameters | 6956/0/460 | 6570/0/471 | 6888/0/471 |
Goodness-of-fit on F2 | 1.072 | 1.033 | 1.014 |
Final R indices [I > 2σ(I)] | R1 = 0.0681 | R1 = 0.0650 | R1 = 0.0533 |
wR2 = 0.1529 | wR2 = 0.1490 | wR2 = 0.0929 | |
R indices (all data) | R1 = 0.0929 | R1 = 0.0901 | R1 = 0.0832 |
wR2 = 0.1634 | wR2 = 0.1621 | wR2 = 0.1004 | |
Complex | 4 | 5 | 6 |
Empirical formula | C84H90N4O12Eu2 | C84H90N4O12Gd2 | C252H270N12O36Dy6 |
Formula weight/(g·mol-1) | 1651.52 | 1662.10 | 5017.80 |
Temperature/K | 298 (2) | 298 (2) | 298 (2) |
Wavelength/? | 0.71073 | 0.71073 | 0.71073 |
Crystal system | Triclinic | Triclinic | Triclinic |
Space group | P ī | P ī | P ī |
Unit cell dimensions | |||
a/? | 12.3030 (11) | 11.8539 (12) | 13.8471 (12) |
b/? | 13.1940 (12) | 12.6869 (13) | 16.3534 (14) |
c/? | 13.4110 (12) | 12.9280 (14) | 28.649 (3) |
α/(°) | 107.599 (2) | 107.535 (3) | 78.807 (2) |
β/(°) | 109.113 (4) | 109.358 (3) | 77.3610 (10) |
γ/(°) | 91.4870 (10) | 91.3950 (10) | 78.530 (2) |
Volume/?3 | 1941.7 (3) | 1732.3 (3) | 6126.5 (9) |
Z, calculated density/(mg·m-3) | 1, 1.412 | 1, 1.593 | 1, 1.360 |
Absorption coefficient/mm-1 | 1.663 | 1.968 | 1.875 |
F(000) | 844 | 846 | 2550 |
Crystal size/mm3 | 0.20 × 0.11 × 0.10 | 0.11 × 0.07 × 0.04 | 0.41 × 0.37 × 0.13 |
Theta range for data collection/(°) | 2.36 to 25.02 | 2.67 to 25.02 | 2.30 to 25.02 |
Limiting indices | -14 ≤ h ≤14 | -7 ≤ h ≤ 14 | -8 ≤ h ≤ 16 |
-15 ≤ k ≤ 15 | -14 ≤ k ≤ 15 | -18 ≤ k ≤ 19 | |
-15 ≤ l ≤ 12 | -15 ≤ l ≤ 14 | -34 ≤ l ≤ 33 | |
Reflections collected/unique | 9927/6752 | 8934/6028 | 31411/21320 |
[R(int) = 0.0280] | [R(int) = 0.1072] | [R(int) = 0.0620] | |
Completeness to theta = 25.02° | 98.5% | 98.9% | 98.5% |
Data/restraints/parameters | 6752/0/471 | 6028/0/471 | 21320/37/1378 |
Goodness-of-fit on F2 | 1.025 | 1.082 | 0.778 |
Final R indices [I > 2σ(I)] | R1 = 0.0369 | R1 = 0.0917 | R1 = 0.0592 |
wR2 = 0.0688 | wR2 = 0.2045 | wR2 = 0.0973 | |
R indices (all data) | R1 = 0.0532 | R1 = 0.1293 | R1 = 0.1234 |
wR2 = 0.0744 | wR2 = 0.2209 | wR2 = 0.1125 | |
Largest diff. peak and hole (e·?-3) | 1.858 and -0.644 | 2.959 and -2.296 | 2.028 and -0.891 |
Largest diff. peak and hole (e·?-3) | 2.276 and -1.794 | 1.922 and -1.438 | 1.357 and -0.851 |
"
Pr(1) | Bond length/? | Nd(2)Ln-O/? | Bond length/? | Sm(3) | Bond length/? | |
Ln-O | Pr(1)-O(1) | 2.461 | Nd(1)-O(1) | 2.401 | Sm(1)-O(1) | 2.396 |
Pr(1)-O(2) | 2.581 | Nd(1)-O(2) | 2.515 | Sm(1)-O(2)#1 | 2.403 | |
Pr(1)-O(3) | 2.455 | Nd(1)-O(3) | 2.380 | Sm(1)-O(3) | 2.366 | |
Pr(1)-O(4)#1 | 2.458 | Nd(1)-O(4)#1 | 2.383 | Sm(1)-O(4)#1 | 2.574 | |
Pr(1)-O(5) | 2.440 | Nd(1)-O(5) | 2.374 | Sm(1)-O(5) | 2.402 | |
Pr(1)-O(6)#1 | 2.617 | Nd(1)-O(6)#1 | 2.557 | Sm(1)-O(6) | 2.528 | |
Pr(1)-O(5)#1 | 2.702 | Nd(1)-O(5)#1 | 2.633 | Sm(1)-O(3)#1 | 2.666 | |
Average Ln-O | 2.531 | 2.463 | 2.476 | |||
Ln-N | Pr(1)-N(1) | 2.722 | Nd(1)-N(1) | 2.646 | Sm(1)-N(1) | 2.677 |
Pr(1)-N(2) | 2.737 | Nd(1)-N(2) | 2.678 | Sm(1)-N(2) | 2.694 | |
Average Ln-N | 2.730 | 2.662 | 2.686 | |||
Eu(4) | Bond length/? length/? | Gd(5) | Bond length/? | Dy(6) | Bond length/? | |
Ln-O | Eu(1)-O(1) | 2.367 | Gd(1)-O(1) | 2.271 | Dy(1)-O(1) | 2.394 |
Eu(1)-O(2)#1 | 2.372 | Gd(1)-O(2)#1 | 2.288 | Dy(1)-O(3) | 2.274 | |
Eu(1)-O(3) | 2.346 | Gd(1)-O(3) | 2.246 | Dy(1)-O(5) | 2.374 | |
Eu(1)-O(4)#1 | 2.535 | Gd(1)-O(4)#1 | 2.417 | Dy(1)-O(7) | 2.326 | |
Eu(1)-O(5) | 2.381 | Gd(1)-O(5) | 2.276 | Dy(1)-O(9) | 2.409 | |
Eu(1)-O(6) | 2.503 | Gd(1)-O(6) | 2.413 | Dy(1)-O(10) | 2.461 | |
Eu(1)-O(3)#1 | 2.651 | Gd(1)-O(3)#1 | 2.566 | |||
Average Ln-O | 2.451 | 2.354 | 2.373 | |||
Ln-N | Eu(1)-N(1) | 2.637 | Gd(1)-N(1) | 2.501 | Dy(1)-N(1) | 2.565 |
Eu(1)-N(2) | 2.668 | Gd(1)-N(2) | 2.571 | Dy(1)-N(2) | 2.588 | |
Average Ln-N | 2.653 | 2.536 | 2.577 |
"
Step | Temperature range/K | DTG Tp/K | Mass loss rate/% | Probable expelled groups | Intermediate and residue | ||
Found | Calcd. | ||||||
1 | Ⅰ | 454.15–555.15 | 512.95 | 22.59 | 22.61 a | 2(5, 5'-DM-2, 2'-dipy) | [Pr2(2, 4, 6-TMBA)6] |
Ⅱ | 555.15–678.15 | 630.05 | 32.20 | x 2, 4, 6-TMBA | [Pr2(2, 4, 6-TMBA)6-x] | ||
Ⅲ | 678.15–716.15 | 690.95 | 4.50 | у 2, 4, 6-TMBA | [Pr2(2, 4, 6-TMBA)6-x-у] | ||
Ⅳ | 716.15–873.15 | 761.35 | 19.80 | 56.49 b | (6-x-y) 2, 4, 6-TMBA | Pr6O11 | |
79.09 | 79.10 c | ||||||
2 | Ⅰ | 457.15–554.15 | 507.35 | 22.22 | 22.52 a | 2(5, 5'-DM-2, 2'-dipy) | [Nd2(2, 4, 6-TMBA)6] |
Ⅱ | 554.15–681.15 | 633.35 | 32.28 | x 2, 4, 6-TMBA | [Nd2(2, 4, 6-TMBA)6-x] | ||
Ⅲ | 681.15–716.15 | 689.75 | 4.78 | у 2, 4, 6-TMBA | [Nd2(2, 4, 6-TMBA) 6-x-у] | ||
Ⅳ | 716.15–973.15 | 752.85 | 18.91 | 56.91 b | (6-x-y) 2, 4, 6-TMBA | Nd2O3 | |
78.19 | 79.43 c | ||||||
3 | Ⅰ | 455.15–548.15 | 496.45 | 22.26 | 22.35 a | 2(5, 5'-DM-2, 2'-dipy) | [Sm2(2, 4, 6-TMBA)6] |
Ⅱ | 548.15–682.15 | 632.45 | 33.07 | x 2, 4, 6-TMBA | [Sm2(2, 4, 6-TMBA)6-x] | ||
Ⅲ | 682.15–731.15 | 691.85 | 8.21 | у 2, 4, 6-TMBA | [Sm2(2, 4, 6-TMBA)6-x-у] | ||
Ⅳ | 731.15–973.15 | 763.25 | 15.19 | 56.49 b | (6-x-y) 2, 4, 6-TMBA | Sm2O3 | |
78.73 | 78.84 c | ||||||
4 | Ⅰ | 456.15–547.15 | 497.25 | 22.16 | 22.31 a | 2(5, 5'-DM-2, 2'-dipy) | [Eu2(2, 4, 6-TMBA)6] |
Ⅱ | 547.15–647.15 | 615.85 | 26.76 | x 2, 4, 6-TMBA | [Eu2(2, 4, 6-TMBA)6-x] | ||
Ⅲ | 647.15–675.15 | 658.95 | 5.65 | у 2, 4, 6-TMBA | [Eu2(2, 4, 6-TMBA) 6-x-у] | ||
Ⅳ | 675.15–973.15 | 710.45 | 23.86 | 56.38 b | (6-x-y) 2, 4, 6-TMBA | Eu2O3 | |
78.43 | 78.69 c | ||||||
5 | Ⅰ | 454.15–548.15 | 485.15 | 22.11 | 22.12 a | 2(5, 5'-DM-2, 2'-dipy) | [Gd2(2, 4, 6-TMBA)6] |
Ⅱ | 548.15–682.15 | 633.45 | 32.11 | x 2, 4, 6-TMBA | [Gd2(2, 4, 6-TMBA)6-x] | ||
Ⅲ | 682.15–737.15 | 693.05 | 9.39 | у 2, 4, 6-TMBA | [Gd2(2, 4, 6-TMBA) 6-x-у] | ||
Ⅳ | 737.15–973.15 | 764.25 | 14.10 | 56.11 b | (6-x-y) 2, 4, 6-TMBA | Gd2O3 | |
77.71 | 78.23 c | ||||||
6 | Ⅰ | 432.15–460.15 | 456.85 | 5.15 | x (5, 5'-DM-2, 2'-dipy) | [Dy2(2, 4, 6-TMBA)6(5, 5'-DM-2, 2'-dipy)2-x] | |
Ⅱ | 460.15–540.15 | 469.25 | 16.95 | 22.03 a | 2-x (5, 5'-DM-2, 2'-dipy) | [Dy2(2, 4, 6-TMBA)6] | |
Ⅲ | 540.15–687.15 | 621.25 | 29.97 | y 2, 4, 6-TMBA | [Dy2(2, 4, 6-TMBA)6-y] | ||
Ⅳ | 687.15–736.15 | 702.45 | 8.22 | z 2, 4, 6-TMBA | [Dy2(2, 4, 6-TMBA)6-y-z] | ||
Ⅴ | 736.15–873.15 | 763.85 | 15.99 | 55.67 b | (6-y-z) 2, 4, 6-TMBA | Dy2O3 | |
76.28 | 77.70 c |
1 |
Janicki R. ; Mondry A. ; Starynowicz P. Coordin. Chem. Rev 2017, 340, 98.
doi: 10.1016/j.ccr.2016.12.001 |
2 |
Allendorf M. D. ; Bauer C. A. ; Bhakta R. K. ; Houk R. J. Chem. Soc. Rev. 2009, 38 (5), 1330.
doi: 10.1039/b802352m |
3 |
Ahmed Z. ; Iftikhar K. Inorg. Chem. 2015, 54 (23), 11209.
doi: 10.1021/acs.inorgchem.5b01630 |
4 |
Bradberry S. J. ; Savyasachi A. J. ; Martinez-Calvo M. ; Gunnlaugsson T. Coordin. Chem. Rev. 2014, 273-274, 226.
doi: 10.1016/j.ccr.2014.03.023 |
5 |
Bunzli J. C. ; Piguet C. Chem. Soc. Rev. 2005, 34 (12), 1048.
doi: 10.1039/b406082m |
6 |
Hiller M. ; Krieg S. ; Ishikawa N. ; Enders M. Inorg. Chem. 2017, 56 (24), 15285.
doi: 10.1021/acs.inorgchem.7b02704 |
7 |
Lin P. H. ; Burchell T. J. ; Clerac R. ; Murugesu M. Angew. Chem. Int. Ed. Engl. 2008, 47 (46), 8848.
doi: 10.1002/anie.200802966 |
8 |
Reis S. G. ; Briganti M. ; Soriano S. ; Guedes G. P. ; Calancea S. ; Tiseanu C. Inorg. Chem. 2016, 55 (22), 11676.
doi: 10.1021/acs.inorgchem.6b01616 |
9 |
Rinehart J. D. ; Long J. R. Chem. Sci. 2011, 2 (11), 2078.
doi: 10.1039/c1sc00513h |
10 |
Wang G. ; Song T. ; Fan Y. ; Xu J. ; Wang M. ; Wang L. Inorg. Chem. Commun. 2010, 13 (1), 95.
doi: 10.1016/j.inoche.2009.10.026 |
11 |
Niu Y. ; Xu Q. ; Wang Y. ; Li Z. ; Lu J. ; Ma P. Dalton Trans. 2018, 47 (29), 9677.
doi: 10.1039/c8dt01243a |
12 |
Wang W. ; Wang X. ; Zhou S. ; Xu X. ; Du J. ; Zhang L. Inorg. Chem. 2018, 57 (16), 10390.
doi: 10.1021/acs.inorgchem.8b01556 |
13 |
Li Y. J. ; Yan B. Inorg. Chem. 2009, 48 (17), 8276.
doi: 10.1021/ic900971h |
14 |
Heffern M. C. ; Matosziuk L. M. ; Meade T. J. Chem. Rev. 2014, 114 (8), 4496.
doi: 10.1021/cr400477t |
15 |
Bünzli J. C. G. J. Lumin. 2016, 170, 866.
doi: 10.1016/j.jlumin.2015.07.033 |
16 |
Zhao Q. Q. ; Zhu M. M. ; Ren N. ; Zhang J. J. J. Mol. Struct. 2017, 1149, 171.
doi: 10.1016/j.molstruc.2017.07.080 |
17 |
Monteiro J. H. S. K. ; Sigoli F. A. ; de Bettencourt-Dias A. Can. J. Chem. 2018, 96 (9), 859.
doi: 10.1139/cjc-2017-0436 |
18 |
Jin C. W. ; Wang Y. ; Ren N. ; Geng L. N. ; Zhang J. J. J. Chem. Thermodyn. 2016, 103, 181.
doi: 10.1016/j.jct.2016.08.011 |
19 |
Wu J. ; Li H. ; Ren N. ; Zhang J. ; Wang S. J. Rare Earths 2016, 34 (11), 1083.
doi: 10.1016/s1002-0721(16)60138-2 |
20 |
Xia C. K. ; Sun W. ; Min Y. Y. ; Yang K. ; Wu Y. L. Polyhedron 2018, 141, 377.
doi: 10.1016/j.poly.2017.11.011 |
21 |
Utochnikova V. V. ; Grishko A. ; Vashchenko A. ; Goloveshkin A. ; Averin A. ; Kuzmina N. Eur. J. Inorg. Chem. 2017, 2017 (48), 5635.
doi: 10.1002/ejic.201700896 |
22 |
He S. M. ; Sun S. J. ; Zheng J. R. ; Zhang J. J. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 123, 211.
doi: 10.1016/j.saa.2013.12.023 |
23 |
Carter K. P. ; Pope S. J. A. ; Cahill C. L. CrystEngComm 2014, 16 (10), 1873.
doi: 10.1039/c3ce42267d |
24 |
Zapała L. ; Kosińska M. ; Woźnicka E. ; Byczyński Ł. ; Zapała W. ; Kalembkiewicz J. J. Anal. Appl. Pyrol. 2017, 123, 1.
doi: 10.1016/j.jaap.2017.01.010 |
25 |
Gao H. L. ; Huang S. X. ; Zhou X. P. ; Liu Z. ; Cui J. Z. Dalton Trans 2018, 47 (10), 3503.
doi: 10.1039/c8dt00063h |
26 |
Kariem M. ; Yawer M. ; Kumar M. ; Nawaz Sheikh H. ; Sood P. ; Kolekar S. S. J. Solid. State. Chem. 2017, 255, 61.
doi: 10.1016/j.jssc.2017.08.001 |
27 |
Shen P. P. ; Zhu M. M. ; Ren N. ; Zhang J. J. ; Wang S. P. Appl. Organomet. Chem. 2017, 31 (12), e3886.
doi: 10.1002/aoc.3886 |
28 |
Xie H. ; Lu G. J. Rare Earths 2013, 31 (6), 639.
doi: 10.1016/s1002-0721(12)60334-2 |
29 |
Zhao Y. F. ; Chu H. B. ; Bai F. ; Gao D. Q. ; Zhang H. X. ; Zhou Y. S. J. Organomet. Chem. 2012, 716, 167.
doi: 10.1016/j.jorganchem.2012.06.031 |
30 |
Shen C. Q. ; Yan T. L. ; Wang Y. T. ; Ye Z. J. ; Xu C. J. ; Zhou W. J. J. Lumin. 2017, 184, 48.
doi: 10.1016/j.jlumin.2016.12.018 |
31 |
Zhu M. M. ; Ren N. ; Zhang J. J. Inorg. Chim. Acta 2018, 480, 140.
doi: 10.1016/j.ica.2018.05.022 |
32 |
Bünzli J. C. G. ; Chauvin A. S. ; Kim H. K. ; Deiters E. ; Eliseeva S. V. Coordin. Chem. Rev. 2010, 254 (21-22), 2623.
doi: 10.1016/j.ccr.2010.04.002 |
33 |
Wei X. H. ; Yang L. Y. ; Liao S. Y. ; Zhang M. ; Tian J. L. ; Du P. Y. Dalton Trans. 2014, 43 (15), 5793.
doi: 10.1039/c3dt53112k |
[1] | Xianhong Chen, Pengchao Ruan, Xianwen Wu, Shuquan Liang, Jiang Zhou. Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2111003-. |
[2] | Zijun Jing, Chen Tan Khai, Teng He, Yang Yu, Qijun Pei, Jintao Wang, Hui Wu, Ping Chen. Synthesis, Characterization, and Crystal Structure of Lithium Pyrrolide [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2009039-. |
[3] | Jian Li,Cong Lin,Jianhua Lin,Junliang Sun. Application of Combining X-ray Diffraction and Electron Crystallography for Determination of Complex Inorganic Crystal Structure [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907052-. |
[4] | An XIE,Zhi WANG,Qiaoyu WU,Liping CHENG,Genggeng LUO,Di SUN. [Ag25(SC6H4Pri)18(dppp)6](CF3SO3)7·CH3CN (HSC6H4Pri = 4-t-isopropylthiophenol, and dppp = 1, 3-bis(diphenyphosphino)propane) Cluster Containing a Sandwich-like Skeleton: Structural Characterization and Optical Properties [J]. Acta Phys. -Chim. Sin., 2018, 34(7): 776-780. |
[5] | Youkun ZHENG,Hui JIANG,Xuemei WANG. Multiple Strategies for Controlled Synthesis of Atomically Precise Alloy Nanoclusters [J]. Acta Phys. -Chim. Sin., 2018, 34(7): 740-754. |
[6] | Xue HAN,Jin YANG,Yingying LIU,Jianfang MA. Syntheses and Luminescent Properties of Coordination Polymers Based on 1, 2, 4-Triazole-Substituted Resorcin[4]arene [J]. Acta Phys. -Chim. Sin., 2018, 34(5): 476-482. |
[7] | Shun-Sheng ZHAO,Lan-Lan LI,Xiang-Rong LIU,Zuo-Cheng DING,Zai-Wen YANG. Crystal Structure, Thermal Decomposition and Interaction with CT-DNA of Three 2-Hydroxy-1-naphthaldehyde Acyl Hydrazones [J]. Acta Phys. -Chim. Sin., 2017, 33(2): 356-363. |
[8] | Shi CAO,Li-Li ZENG,Jing XIE,Shi-Gang WAN,Dan Li,Hui ZHANG. Supramolecular Helical Chirality of Schiff Base Copper(Ⅱ) Complexes and Their Chiroptical Spectroscopy [J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2480-2490. |
[9] | Jian-Xia HUO,Su-Wei SONG,Cheng-Wei JIN,Ning REN,Li-Na GENG,Jian-Jun ZHANG. Synthesis, Characterization, Thermal Decomposition Mechanism and Properties of the [Eu(4-MOBA)3(terpy)(H2O)]2 Complex [J]. Acta Phys. -Chim. Sin., 2016, 32(4): 901-906. |
[10] | MIAO Yan-Qin, GAO Zhi-Xiang, WU Yu-Ling, DU Xiao-Gang, LI Yuan-Hao, LIU Hui-Hui, JIA Hu-Sheng, WANG Hua, LIU Xu-Guang. Antimicrobial Drug Levofloxacin Applied to an Organic Light-Emitting Diode [J]. Acta Phys. -Chim. Sin., 2015, 31(3): 552-558. |
[11] | Jing. LI,Li-Zhen. CHEN,Jian-Long. WANG,Guan-Chao. LAN,Huan. HOU,Man. LI. Crystal Structure and Thermal Decomposition Kinetics of Byproduct of Synthesis of RDX: 3, 5-Dinitro-1-oxygen-3, 5-diazacyclohexane [J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2049-2056. |
[12] | ZHANG Xiang-Xiong, CHEN Min. Influence of Homogeneous Electric Field on the Structure and Growth of Ice [J]. Acta Phys. -Chim. Sin., 2014, 30(7): 1208-1214. |
[13] | LI Jie, XIONG Ping-Ping, BU Huai-Yu, CHEN San-Ping. Syntheses, Structures, Antifungal Activities and DNACleavage of Transition Metal Coordination Compounds with 4-(1H-1,2,4-triazol-1-ylmethyl) Benzoic Acid [J]. Acta Phys. -Chim. Sin., 2014, 30(7): 1354-1362. |
[14] | CHEN Lai, CHEN Shi, HU Dao-Zhong, SU Yue-Feng, LI Wei-Kang, WANG Zhao, BAO Li-Ying, WU Feng. Crystal Structure and Electrochemical Performance of Lithium-Rich Cathode Materials xLi2MnO3·(1-x)LiNi0.5Mn0.5O2 (x=0.1-0.8) [J]. Acta Phys. -Chim. Sin., 2014, 30(3): 467-475. |
[15] | ZHAO Feng-Qi, ZHANG Heng, AN Ting, ZHANG Xiao-Hong, YI Jian-Hua, XU Si-Yu, WANG Ying-Lei. Preparation, Characterization and Combustion Catalytic Action of Bismuth/Zirconium Gallate [J]. Acta Phys. -Chim. Sin., 2013, 29(04): 777-784. |
|