Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (1): 2101013.doi: 10.3866/PKU.WHXB202101013
Special Issue: Graphene: Functions and Applications
• REVIEW • Previous Articles Next Articles
Houfu Song1, Feiyu Kang1,2,3,*()
Received:
2021-01-07
Accepted:
2021-02-08
Published:
2021-02-25
Contact:
Feiyu Kang
E-mail:fykang@sz.tsinghua.edu.cn
About author:
Feiyu Kang. Email: fykang@sz.tsinghua.edu.cnSupported by:
Houfu Song, Feiyu Kang. Recent Progress on Thermal Conduction of Graphene[J]. Acta Phys. -Chim. Sin. 2022, 38(1), 2101013. doi: 10.3866/PKU.WHXB202101013
Table 1
A summary of measurement result on graphene thermal conductivity."
Sample | Thermal conductivity (W·m-1·K-1) | Measurement method | Preparation method |
Suspended | |||
Single-layer graphene | 5300 ± 480 | Raman | Mechanical exfoliation |
Single-layer graphene | 2500 + 1100/-1050 | Raman | CVD |
2-layer graphene | 620 ± 80 | Suspended-pad | Mechanical exfoliation |
Single-layer graphene | 1689 ± 100 | Suspended-pad | CVD |
Supported | |||
Single-layer graphene | 579 ± 34 | Suspended-pad | Mechanical exfoliation, SiO2 substrate |
Single-layer graphene | 630 | Raman | Mechanical exfoliation, SiO2 substrate |
Single-layer graphene | 370 + 650/-320 | Raman | CVD, Au/SiNx substrate |
3-layer graphene | 327 | Suspended-pad | Mechanical exfoliation, SiNx substrate |
Bulk | |||
Multi-layer graphene | 1930 ± 1400 | TDTR | Mechanical exfoliation, thickness 194 nm |
HOPG | 1800 | TDTR | Bulk |
HOPG | 1861 ± 744 | TDTR | Bulk |
HOPG | 1843 | TDTR | Bulk |
Graphene film | 1100 | Laser flash | Reduced graphene oxide |
Graphene film | 1940 | Laser flash | Reduced graphene oxide |
Fig 1
Scheme of setups for different thermal measurements 49. (a) Optothermal Raman method. (b) Suspended-pad method. (c) Time-domain thermoreflectance (TDTR) method, where blue and orange lines represent pump and probe laser beams, respectively. (d) Laser flash method, where the left and right parts illustrate measurements of in-plane and cross-plane thermal conductivities. Adapted with permission from Ref. 49, Copyright 2018, Elsevier."
Fig 2
The impact of length and thickness on graphene thermal conductivity 56, 63. (a) Calculated thermal conductivity for few-layer graphene vs layer number N for N = 1–5 (black circles). Also shown are the per-branch contributions for ZA (red triangles), TA (green squares), and LA (blue diamonds) branches. The corresponding calculated graphite values are shown by the horizontal lines. (b) Calculated thermal conductivity for graphene (N = 1, solid black curve), bilayer graphene (N = 2, dashed red curve), and 4-layer graphene (N = 4, dotted blue curve) as a function of sample length L for T = 300 K. On this scale, the N = 3 and N= 5 curves cannot be distinguished from that for N = 4. Thermal conductivity of graphene as a function of (c) sample length and (d) thickness. Adapted with permission from Ref. 56, Copyright 2011, American Physical Society and Ref. 63, Copyright 2018, American Physical Society."
Fig 3
The preparation and characterization of highly thermal conductive graphene film 76. (a) Graphene film roll with 4.5-inch width (i) made by electrospray deposition integrated with a roll-to-roll process. (b) Cross-sectional SEM image of pristine graphene film made by electrospray deposition showing a layer-by-layer assembly. (f) image of pristine graphene film, graphene film annealed at 1800 ℃ (middle) and 2200 ℃ (right). (d–e) Electrical and thermal properties of freestanding graphene films: (d) Graphene film without thermal annealing and (e) annealed graphene film. The increased density is caused by mechanical press resulting in a more film compact structure. (c–e), Defect recovery, removal of functional groups and improvement of crystallinity of freestanding graphene film by high temperature annealing: (c) Raman spectra, (d) XPS and (e) XRD patterns of the as‐made graphene films and high temperature annealed graphene films. The magnified (by 5 times) O 1s peak has been shown in (d) on the right top of each XPS spectrum. The XRD pattern of pure graphite is included in (e) for comparison. Adapted with permission from Ref. 76, Copyright 2014, John Wiley and Sons."
Fig 4
The preparation, characterization and thermal feature of graphene film with a thickness of over 100 μm 81. (a) Schematic of the fabrication process of the ultrathick GF and photographs at each step. Scale bar from top to bottom: 4, 1, 1, 1, 1, 1 cm. (b–e) A series of thick films pasted with different layers, including 6 layers (b), 12 layers (c), 16 layers (d) and 24 layers (e). (f) Mechanism diagram of the fusion between the two nano-thick films. (g) TEM image of the cross section of an individual 30 nm nano-thick GF. (h, i) TEM images of the pasted 60 nm nano-thick GF, revealing the robust coalescence of the two 30 nm thick films at the contact interface. (j) Infrared thermal image of GFs and metallic foils. The right three samples have a thickness of 200 μm, attached vertically on a constant temperature heat source. (k) Temperature of the graphite bulk versus time when it was heated by 24-layer PGF, 16-layer PGF, 12-layer PGF, 6-layer PGF and single thin PGF. Adapted with permission from Ref. 81, Copyright 2020, Elsevier."
Table 2
A summary of study on thermal conductive graphene paper."
Material | Thermal conductivity/(W·m-1·K-1) | Preparation method |
GO | 2025 | Doctor-blade, 3000 ℃ annealing reduction +3000 ℃ second annealing reduction |
GO | 1940 | Casting, 3000 ℃ annealing reduction |
GO | 1100 | Evaporation, 2000 ℃ annealing reduction |
GO | 1283–1434 | Electro-spray deposition,2850 ℃ annealing reduction |
GO | 1390 | Vacuum filtration, HI reduction |
Graphene | 1529 | Ball milling,2850 ℃ annealing reduction |
GO | 1224 | Doctor-blade, film paste Hot pressing + 2800 ℃ annealing reduction |
Fig 5
Using graphene foam as 3D thermal conductive network for polymer-based composite 11, 117. (a) SEM image of UGF before wax filling. (b) SEM of UGF-wax composite. (c) SEM image of UGF-CNT hybrid structure. (d) SEM image of UGF-CNT/erythritol composites. (e) thermal diffusivity, and (f) thermal conductivity of erythritol, UGF/erythritol, and UGF-CNT/erythritol, containing additional data for powdered UGF/erythritol, powdered UGF-CNT/erythritol, and UGF-NBCNT/erythritol composites. Adapted with permission from Refs. 11, 117, Copyright 2014, Royal Society of Chemistry and Ref. 90, Copyright 2015, American Chemical Society."
Table 3
A summary of highly thermal conductive composite with graphene filler."
Fillers | Loading | Thermal conductivity/(W·m-1·K-1) | Method |
rGO | 25% (x) | 6.4 | Mixing |
rGO | 20% (w) | 5.8 | Silane functionalized |
Graphene | 10% (x) | 5.1 | Sodium cholate functionalized |
rGO | 5% (w) | 1.1 | [polyimide] NH2-functionalized, in situ polymerization |
Expanded graphite | 25% (w) | 3.8 | Silane functionalized |
rGO | 4% (w) | 1.9 | Pyrene derivatives functionalized |
Graphene + CNT | 20% (x) + 20% (x) | 6.3 | GNP, multi-walled carbon nanotube |
GO | 10% (w) | 0.2 | Hot pressed |
Graphene 3D network | 1.23% (x) | 3.2 | [Wax] CVD grown, annealed |
Graphene + CNT 3D network | 15.8% (x) (in total) | 4.1 | [Erythritol] CVD grown, annealed |
1 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896 |
2 |
Castro Neto A. H. ; Guinea F. ; Peres N. M. R. ; Novoselov K. S. ; Geim A. K. Rev. Mod. Phys. 2009, 81, 109.
doi: 10.1103/RevModPhys.81.109 |
3 |
Lee C. ; Wei X. ; Kysar J. W. ; Hone J. Science 2008, 321, 385.
doi: 10.1126/science.1157996 |
4 |
Grigorenko A. N. ; Polini M. ; Novoselov K. S. Nat. Photonics 2012, 6, 749.
doi: 10.1038/nphoton.2012.262 |
5 |
Novoselov K. ; Mishchenko O. A. ; Carvalho O. A. ; Neto A. C. Science 2016, 353, 6298.
doi: 10.1126/science.aac9439 |
6 |
Balandin A. A. ; Ghosh S. ; Bao W. ; Calizo I. ; Teweldebrhan D. ; Miao F. ; Lau C. N. Nano Lett. 2008, 8, 902.
doi: 10.1021/nl0731872 |
7 |
Lindsay L. ; Broido D. ; Mingo N. Phys. Rev. B 2010, 82, 115427.
doi: 10.1103/PhysRevB.82.115427 |
8 |
Seol J. H. ; Jo I. ; Moore A. L. ; Lindsay L. ; Aitken Z. H. ; Pettes M. T. ; Li X. ; Yao Z. ; Huang R. ; Broido D. ; et al Science 2010, 328, 213.
doi: 10.1126/science.1184014 |
9 |
Akbari A. ; Cunning B. V. ; Joshi S. R. ; Wang C. H. ; Camacho-Mojica D. C. ; Chatterjee S. ; Modepalli V. ; Cahoon C. ; Bielawski C. W. ; Bakharev P. ; et al Matter 2020, 2, 1198.
doi: 10.1016/j.matt.2020.02.014 |
10 |
Peng L. ; Xu Z. ; Liu Z. ; Guo Y. ; Li P. ; Gao C. Adv. Mater. 2017, 29, 1700589.
doi: 10.1002/adma.201700589 |
11 |
Ji H. ; Sellan D. P. ; Pettes M. T. ; Kong X. ; Ji J. ; Shi L. ; Ruoff R. S. Energy Environ. Sci. 2014, 7, 1185.
doi: 10.1039/c3ee42573h |
12 | Chen Z. L. ; Gao P. ; Liu Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004. |
陈召龙; 高鹏; 刘忠范. 物理化学学报, 2020, 36, 1907004.
doi: 10.3866/PKU.WHXB201907004 |
|
13 |
Shi L. ; Li D. ; Yu C. ; Jang W. ; Kim D. ; Yao Z. ; Kim P. ; Majumdar A. J. Heat Transf. 2003, 125, 881.
doi: 10.1115/1.1597619 |
14 |
Cahill D. G. ; Katiyar M. ; Abelson J. R. Phys. Rev. B 1994, 50, 6077.
doi: 10.1103/physrevb.50.6077 |
15 |
Cahill D. G. Rev. Sci. Instrum. 2004, 75, 5119.
doi: 10.1063/1.1819431 |
16 |
Faugeras C. ; Faugeras B. ; Orlita M. ; Potemski M. ; Nair R. R. ; Geim A. ACS Nano 2010, 4, 1889.
doi: 10.1021/nn9016229 |
17 |
Cai W. ; Moore A. L. ; Zhu Y. ; Li X. ; Chen S. ; Shi L. ; Ruoff R. S. Nano Lett. 2010, 10, 1645.
doi: 10.1021/nl9041966 |
18 |
Fan A. ; Hu Y. ; Ma W. ; Wang H. ; Zhang X. J. Therm. Sci. 2019, 28, 159.
doi: 10.1007/s11630-019-1084-x |
19 |
Zhou H. ; Zhu J. ; Liu Z. ; Yan Z. ; Fan X. ; Lin J. ; Wang G. ; Yan Q. ; Yu T. ; Ajayan P. M. Nano Res. 2014, 7, 1232.
doi: 10.1007/s12274-014-0486-z |
20 |
Sahoo S. ; Gaur A. P. ; Ahmadi M. ; Guinel M. J.-F. ; Katiyar R. S. J. Phys. Chem. C 2013, 117, 9042.
doi: 10.1021/jp402509w |
21 |
Yan R. ; Simpson J. R. ; Bertolazzi S. ; Brivio J. ; Watson M. ; Wu X. ; Kis A. ; Luo T. ; Hight Walker A. R. ; Xing H. G. ACS Nano 2014, 8, 986.
doi: 10.1021/nn405826k |
22 |
Peimyoo N. ; Shang J. ; Yang W. ; Wang Y. ; Cong C. ; Yu T. Nano Res. 2015, 8, 1210.
doi: 10.1007/s12274-014-0602-0 |
23 |
Kim P. ; Shi L. ; Majumdar A. ; McEuen P. L. Phys. Rev. Lett. 2001, 87, 215502.
doi: 10.1103/PhysRevLett.87.215502 |
24 |
Wang Z. ; Xie R. ; Bui C. T. ; Liu D. ; Ni X. ; Li B. ; Thong J. T. L. Nano Lett. 2011, 11, 113.
doi: 10.1021/nl102923q |
25 |
Pettes M. T. ; Jo I. ; Yao Z. ; Shi L. Nano Lett. 2011, 11, 1195.
doi: 10.1021/nl104156y |
26 |
Xu X. ; Pereira L. F. C. ; Wang Y. ; Wu J. ; Zhang K. ; Zhao X. ; Bae S. ; Bui C. T. ; Xie R. ; Thong J. T. L. ; et al Nat. Commun. 2014, 5, 1.
doi: 10.1038/ncomms4689 |
27 |
Jo I. ; Pettes M. T. ; Kim J. ; Watanabe K. ; Taniguchi T. ; Yao Z. ; Shi L. Nano Lett. 2013, 13, 550.
doi: 10.1021/nl304060g |
28 |
Wang C. ; Guo J. ; Dong L. ; Aiyiti A. ; Xu X. ; Li B. Sci. Rep. 2016, 6, 25334.
doi: 10.1038/srep25334 |
29 |
Jo I. ; Pettes M. T. ; Ou E. ; Wu W. ; Shi L. Appl. Phys. Lett. 2014, 104, 201902.
doi: 10.1063/1.4876965 |
30 |
Zhao Y. ; Zheng M. ; Wu J. ; Huang B. ; Thong J. T. Nanotechnology 2020, 31, 225702.
doi: 10.1088/1361-6528/ab7647 |
31 |
Lee S. ; Yang F. ; Suh J. ; Yang S. ; Lee Y. ; Li G. ; Choe H. S. ; Suslu A. ; Chen Y. ; Ko C. Nat. Commun. 2015, 6, 1.
doi: 10.1038/ncomms9573 |
32 |
Aiyiti A. ; Bai X. ; Wu J. ; Xu X. ; Li B. Sci. Bull. 2018, 63, 452.
doi: 10.1016/j.scib.2018.02.022 |
33 |
Feldman A. High Temp. High Press. 1999, 31, 293.
doi: 10.1068/htrt171 |
34 |
Wang Y. ; Park J. Y. ; Koh Y. K. ; Cahill D. G. J. Appl. Phys. 2010, 108, 043507.
doi: 10.1063/1.3457151 |
35 |
Zhang H. ; Chen X. ; Jho Y.-D. ; Minnich A. Nano Lett. 2016, 16, 1643.
doi: 10.1021/acs.nanolett.5b04499 |
36 |
Taylor R. Philos. Mag. 1966, 13, 157.
doi: 10.1080/14786436608211993 |
37 |
Klemens P. G. ; Pedraza D. F. Carbon 1994, 32, 735.
doi: 10.1016/0008-6223(94)90096-5 |
38 |
Feser J. P. ; Cahill D. G. Rev. Sci. Instrum. 2012, 83, 104901.
doi: 10.1063/1.4757863 |
39 |
Rodin D. ; Yee S. K. Rev. Sci. Instrum. 2017, 88, 014902.
doi: 10.1063/1.4973297 |
40 |
Qian X. ; Ding Z. ; Shin J. ; Schmidt A. J. ; Chen G. Rev. Sci. Instrum. 2020, 91, 064903.
doi: 10.1063/5.0003770 |
41 |
Sun B. ; Gu X. ; Zeng Q. ; Huang X. ; Yan Y. ; Liu Z. ; Yang R. ; Koh Y. K. Adv. Mater. 2017, 29, 1603297.
doi: 10.1002/adma.201603297 |
42 |
Jang H. ; Wood J. D. ; Ryder C. R. ; Hersam M. C. ; Cahill D. G. Adv. Mater. 2015, 27, 8017.
doi: 10.1002/adma.201503466 |
43 |
Zhu G. ; Liu J. ; Zheng Q. ; Zhang R. ; Li D. ; Banerjee D. ; Cahill D. G. Nat. Commun. 2016, 7, 13211.
doi: 10.1038/ncomms13211 |
44 |
Chiritescu C. ; Cahill D. G. ; Nguyen N. ; Johnson D. ; Bodapati A. ; Keblinski P. ; Zschack P. Science 2007, 315, 351.
doi: 10.1126/science.1136494 |
45 |
Kang K. ; Koh Y. K. ; Chiritescu C. ; Zheng X. ; Cahill D. G. Rev. Sci. Instrum. 2008, 79, 114901.
doi: 10.1063/1.3020759 |
46 |
Schmidt A. J. ; Cheaito R. ; Chiesa M. Rev. Sci. Instrum. 2009, 80, 094901.
doi: 10.1063/1.3212673 |
47 |
Liu J. ; Choi G.-M. ; Cahill D. G. J. Appl. Phys. 2014, 116, 233107.
doi: 10.1063/1.4904513 |
48 |
Shen B. ; Zhai W. T. ; Zheng W. G. Adv. Funct. Mater. 2014, 24, 4542.
doi: 10.1002/adfm.201400079 |
49 |
Song H. ; Liu J. ; Liu B. ; Wu J. ; Cheng H.-M. ; Kang F. Joule 2018, 2, 442.
doi: 10.1016/j.joule.2018.01.006 |
50 |
Wang Y. ; Xu N. ; Li D. ; Zhu J. Adv. Funct. Mater. 2017, 27
doi: 10.1002/adfm.201604134 |
51 | Wu X. ; Tang W. ; Xu X. Acta Phys. Sin. 2020, 69, 196602. |
吴祥水; 汤雯婷; 徐象繁. 物理学报, 2020, 69, 196602.
doi: 10.7498/aps.69.20200709 |
|
52 |
Ward A. ; Broido D. ; Stewart D. A. ; Deinzer G. Phys. Rev. B 2009, 80, 125203.
doi: 10.1103/PhysRevB.80.125203 |
53 |
Nika D. ; Pokatilov E. ; Askerov A. ; Balandin A. Phys. Rev. B 2009, 79, 155413.
doi: 10.1103/PhysRevB.79.155413 |
54 |
Nika D. L. ; Ghosh S. ; Pokatilov E. P. ; Balandin A. A. Appl. Phys. Lett. 2009, 94, 203103.
doi: 10.1063/1.3136860 |
55 |
Klemens P. G. Int. J. Thermophys. 2001, 22, 265.
doi: 10.1023/A:1006776107140 |
56 |
Lindsay L. ; Broido D. ; Mingo N. Phys. Rev. B 2011, 83, 235428.
doi: 10.1103/PhysRevB.83.235428 |
57 |
Feng T. ; Ruan X. Phys. Rev. B 2018, 97, 045202.
doi: 10.1103/PhysRevB.97.045202 |
58 |
Zou J.-H. ; Ye Z.-Q. ; Cao B.-Y. J. Chem. Phys. 2016, 145, 134705.
doi: 10.1063/1.4963918 |
59 |
Cepellotti A. ; Fugallo G. ; Paulatto L. ; Lazzeri M. ; Mauri F. ; Marzari N. Nat. Commun. 2015, 6, 6400.
doi: 10.1038/ncomms7400 |
60 |
Wang H. ; Hu S. ; Takahashi K. ; Zhang X. ; Takamatsu H. ; Chen J. Nat. Commun. 2017, 8, 1.
doi: 10.1038/ncomms15843 |
61 |
Ghosh S. ; Bao W. ; Nika D. L. ; Subrina S. ; Pokatilov E. P. ; Lau C. N. ; Balandin A. A. Nat. Mater. 2010, 9, 555.
doi: 10.1038/nmat2753 |
62 |
Sadeghi M. M. ; Jo I. ; Shi L. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 16321.
doi: 10.1073/pnas.1306175110 |
63 |
Gu X. ; Wei Y. ; Yin X. ; Li B. ; Yang R. Rev. Mod. Phys. 2018, 90, 041002.
doi: 10.1103/RevModPhys.90.041002 |
64 |
Nika D. L. ; Askerov A. S. ; Balandin A. A. Nano Lett. 2012, 12, 3238.
doi: 10.1021/nl301230g |
65 |
Lee W. ; Kihm K. D. ; Kim H. G. ; Shin S. ; Lee C. ; Park J. S. ; Cheon S. ; Kwon O. M. ; Lim G. ; Lee W. Nano Lett. 2017, 17, 2361.
doi: 10.1021/acs.nanolett.6b05269 |
66 |
Mortazavi B. ; Ahzi S. Carbon 2013, 63, 460.
doi: 10.1016/j.carbon.2013.07.017 |
67 |
Chen S. ; Wu Q. ; Mishra C. ; Kang J. ; Zhang H. ; Cho K. ; Cai W. ; Balandin A. A. ; Ruoff R. S. Nat. Mater. 2012, 11, 203.
doi: 10.1038/nmat3207 |
68 |
Chien S. K. ; Yang Y. T. ; Chen C. K. Appl. Phys. Lett. 2011, 98, 033107.
doi: 10.1063/1.3543622 |
69 |
Murakami M. ; Nishiki N. ; Nakamura K. ; Ehara J. ; Okada H. ; Kouzaki T. ; Watanabe K. ; Hoshi T. ; Yoshimura S. Carbon 1992, 30, 255.
doi: 10.1016/0008-6223(92)90088-E |
70 |
Chen H. ; Müller M. B. ; Gilmore K. J. ; Wallace G. G. ; Li D. Adv. Mater. 2008, 20, 3557.
doi: 10.1002/adma.200800757 |
71 |
Chen C. M. ; Huang J. Q. ; Zhang Q. ; Gong W. Z. ; Yang Q. H. ; Wang M. Z. ; Yang Y. G. Carbon 2012, 50, 659.
doi: 10.1016/j.carbon.2011.09.022 |
72 |
Liu Y. ; Li P. ; Wang F. ; Fang W. ; Xu Z. ; Gao W. ; Gao C. Carbon 2019, 155, 462.
doi: 10.1016/j.carbon.2019.09.021 |
73 |
Pei S. ; Cheng H.-M. Carbon 2012, 50, 3210.
doi: 10.1016/j.carbon.2011.11.010 |
74 |
Rozada R. ; Paredes J. I. ; Villar-Rodil S. ; Martínez-Alonso A. ; Tascón J. M. Nano Res. 2013, 6, 216.
doi: 10.1007/s12274-013-0298-6 |
75 |
Wu H. ; Drzal L. T. Carbon 2012, 50, 1135.
doi: 10.1016/j.carbon.2011.10.026 |
76 |
Xin G. ; Sun H. ; Hu T. ; Fard H. R. ; Sun X. ; Koratkar N. ; Borca-Tasciuc T. ; Lian J. Adv. Mater. 2014, 26, 4521.
doi: 10.1002/adma.201400951 |
77 |
Kumar P. ; Shahzad F. ; Yu S. ; Hong S. M. ; Kim Y.-H. ; Koo C. M. Carbon 2015, 94, 494.
doi: 10.1016/j.carbon.2015.07.032 |
78 |
Teng C. ; Xie D. ; Wang J. ; Yang Z. ; Ren G. ; Zhu Y. Adv. Funct. Mater. 2017, 27
doi: 10.1002/adfm.201700240 |
79 |
Cai X. ; Luo Y. ; Liu B. ; Cheng H. M. Chem. Soc. Rev. 2018, 47, 6224.
doi: 10.1039/c8cs00254a |
80 |
Luo C. ; Yeh C. N. ; Baltazar J. M. L. ; Tsai C. L. ; Huang J. Adv. Mater. 2018, 30, 1706229.
doi: 10.1002/adma.201706229 |
81 |
Zhang X. ; Guo Y. ; Liu Y. ; Li Z. ; Fang W. ; Peng L. ; Zhou J. ; Xu Z. ; Gao C. Carbon 2020, 167, 249.
doi: 10.1016/j.carbon.2020.05.051 |
82 |
Liu Y. ; Liang C. ; Wei A. ; Jiang Y. ; Tian Q. ; Wu Y. ; Xu Z. ; Li Y. ; Guo F. ; Yang Q. Mater. Today Nano 2018, 3, 1.
doi: 10.1016/j.mtnano.2018.09.005 |
83 |
Lin S. ; Zhong Y. ; Zhao X. ; Sawada T. ; Li X. ; Lei W. ; Wang M. ; Serizawa T. ; Zhu H. Adv. Mater. 2018, 30, 1803004.
doi: 10.1002/adma.201803004 |
84 |
Xu Z. ; Liu Z. ; Sun H. ; Gao C. Adv. Mater. 2013, 25, 3249.
doi: 10.1002/adma.201300774 |
85 |
Meng Y. ; Zhao Y. ; Hu C. ; Cheng H. ; Hu Y. ; Zhang Z. ; Shi G. ; Qu L. Adv. Mater. 2013, 25, 2326.
doi: 10.1002/adma.201300132 |
86 | Cheng Y. ; Wang K. ; Qi Y. ; Liu Z. Acta Phys. -Chim. Sin. 2022, 38, 2006046. |
程熠; 王坤; 亓月; 刘忠范. 物理化学学报, 202, 38, 2006046.
doi: 10.3866/PKU.WHXB202006046 |
|
87 | Jian M. ; Zhang Y. ; Liu Z. Acta Phys. -Chim. Sin. 2022, 38, 2007093. |
蹇木强; 张莹莹; 刘忠范. 物理化学学报, 2022, 38, 2007093.
doi: 10.3866/PKU.WHXB202007093 |
|
88 |
Xu Z. ; Liu Y. ; Zhao X. ; Peng L. ; Sun H. ; Xu Y. ; Ren X. ; Jin C. ; Xu P. ; Wang M. Adv. Mater. 2016, 28, 6449.
doi: 10.1002/adma.201506426 |
89 |
Xin G. ; Yao T. ; Sun H. ; Scott S. M. ; Shao D. ; Wang G. ; Lian J. Science 2015, 349, 1083.
doi: 10.1126/science.aaa6502 |
90 |
Wang Q. ; Xia H. ; Zhang C. J. Appl. Polym. Sci. 2001, 80, 1478.
doi: 10.1002/app.1239 |
91 |
Ji J. ; Chiang S.-W. ; Liu M. ; Liang X. ; Li J. ; Gan L. ; He Y. ; Li B. ; Kang F. ; Du H. Thermochim. Acta 2020, 690, 178649.
doi: 10.1016/j.tca.2020.178649 |
92 |
Pashayi K. ; Fard H. R. ; Lai F. ; Iruvanti S. ; Plawsky J. ; Borca-Tasciuc T. J. Appl. Phys. 2012, 111, 104310.
doi: 10.1063/1.4716179 |
93 |
Gou Y. ; Liu Z. ; Zhang G. ; Li Y. Int. J. Heat Mass Transf. 2014, 74, 358.
doi: 10.1016/j.ijheatmasstransfer.2014.03.009 |
94 |
Li H. ; Chen W. ; Xu J. ; Li J. ; Gan L. ; Chu X. ; Yao Y. ; He Y. ; Li B. ; Kang F. Thermochim. Acta 2019, 676, 198.
doi: 10.1016/j.tca.2019.04.008 |
95 |
Chen H. ; Ginzburg V. V. ; Yang J. ; Yang Y. ; Liu W. ; Huang Y. ; Du L. ; Chen B. Prog. Polym. Sci. 2016, 59, 41.
doi: 10.1016/j.progpolymsci.2016.03.001 |
96 |
Yu A. ; Ramesh P. ; Itkis M. E. ; Bekyarova E. ; Haddon R. C. J. Phys. Chem. C 2007, 111, 7565.
doi: 10.1021/jp071761s |
97 |
Ganguli S. ; Roy A. K. ; Anderson D. P. Carbon 2008, 46, 806.
doi: 10.1016/j.carbon.2008.02.008 |
98 |
Shahil K. M. ; Balandin A. A. Nano Lett. 2012, 12, 861.
doi: 10.1021/nl203906r |
99 |
Bigg D. M. Polym. Compos. 1986, 7, 125.
doi: 10.1002/pc.750070302 |
100 |
Zhu Y. ; Chen K. ; Kang F. Solid State Commun. 2013, 158, 46.
doi: 10.1016/j.ssc.2013.01.013 |
101 |
Stankovich S. ; Dikin D. A. ; Piner R. D. ; Kohlhaas K. A. ; Kleinhammes A. ; Jia Y. ; Wu Y. ; Nguyen S. T. ; Ruoff R. S. Carbon 2007, 45, 1558.
doi: 10.1016/j.carbon.2007.02.034 |
102 |
Coleman J. N. ; Lotya M. ; O'Neill A. ; Bergin S. D. ; King P. J. ; Khan U. ; Young K. ; Gaucher A. ; De S. ; Smith R.J. ; et al Science 2011, 331, 568.
doi: 10.1126/science.1194975 |
103 |
Nicolosi V. ; Chhowalla M. ; Kanatzidis M. G. ; Strano M. S. ; Coleman J. N. Science 2013, 340, 1226419.
doi: 10.1126/science.1226419 |
104 |
Guo Y. ; Xu G. ; Yang X. ; Ruan K. ; Ma T. ; Zhang Q. ; Gu J. ; Wu Y. ; Liu H. ; Guo Z. J. Mater. Chem. C 2018, 6, 3004.
doi: 10.1039/c8tc00452h |
105 |
Zhang Y. ; Choi J. R. ; Park S.-J. Compos. Part A: Appl. Sci. Manuf. 2018, 109, 498.
doi: 10.1016/j.compositesa.2018.04.001 |
106 |
Shen X. ; Wang Z. ; Wu Y. ; Liu X. ; Kim J.-K. Carbon 2016, 108, 412.
doi: 10.1016/j.carbon.2016.07.042 |
107 |
Teng C.-C. ; Ma C.-C. M. ; Lu C.-H. ; Yang S.-Y. ; Lee S.-H. ; Hsiao M.-C. ; Yen M.-Y. ; Chiou K.-C. ; Lee T.-M. Carbon 2011, 49, 5107.
doi: 10.1016/j.carbon.2011.06.095 |
108 |
Huang X. ; Zhi C. ; Jiang P. J. Phys. Chem. C 2012, 116, 23812.
doi: 10.1021/jp308556r |
109 |
Zeng X. ; Ye L. ; Yu S. ; Li H. ; Sun R. ; Xu J. ; Wong C. P. Nanoscale 2015, 7, 6774.
doi: 10.1039/c5nr00228a |
110 |
Ding P. ; Zhang J. ; Song N. ; Tang S. ; Liu Y. ; Shi L. Compos. Sci. Technol. 2015, 109, 25.
doi: 10.1016/j.compscitech.2015.01.015 |
111 |
Xu J. ; Gao B. ; Du H. ; Kang F. Int. J. Therm. Sci. 2016, 104, 348.
doi: 10.1016/j.ijthermalsci.2015.12.023 |
112 | Xiong Y. H. ; Wu H. ; Gao J. S. ; Chen W. ; Zhang J. C. ; Yue Y. N. Acta Phys. -Chim. Sin. 2019, 35, 1150. |
熊扬恒; 吴昊; 高建树; 陈文; 张景超; 岳亚楠. 物理化学学报, 2019, 35, 1150.
doi: 10.3866/PKU.WHXB201901002 |
|
113 |
Chen Z. ; Ren W. ; Gao L. ; Liu B. ; Pei S. ; Cheng H.-M. Nat. Mater. 2011, 10, 424.
doi: 10.1038/nmat3001 |
114 |
Shi L. ; Chen K. ; Du R. ; Bachmatiuk A. ; Rümmeli M. H. ; Xie K. ; Huang Y. ; Zhang Y. ; Liu Z. J. Am. Chem. Soc. 2016, 138, 6360.
doi: 10.1021/jacs.6b02262 |
115 |
Chen Z. ; Xu C. ; Ma C. ; Ren W. ; Cheng H. M. Adv. Mater. 2013, 25, 1296.
doi: 10.1002/adma.201204196 |
116 |
Pettes M. T. ; Ji H. ; Ruoff R. S. ; Shi L. Nano Lett. 2012, 12, 2959.
doi: 10.1021/nl300662q |
117 |
Kholmanov I. ; Kim J. ; Ou E. ; Ruoff R. S. ; Shi L. ACS Nano 2015, 9, 11699.
doi: 10.1021/acsnano.5b02917 |
118 |
Cong H.-P. ; Ren X.-C. ; Wang P. ; Yu S.-H. ACS Nano 2012, 6, 2693.
doi: 10.1021/nn300082k |
119 |
Lv W. ; Zhang C. ; Li Z. ; Yang Q.-H. J. Phys. Chem. Lett. 2015, 6, 658.
doi: 10.1021/jz502655m |
120 |
Sun H. ; Xu Z. ; Gao C. Adv. Mater. 2013, 25, 2554.
doi: 10.1002/adma.201204576 |
121 |
Xu Y. ; Sheng K. ; Li C. ; Shi G. ACS Nano 2010, 4, 4324.
doi: 10.1021/nn101187z |
122 |
Lian G. ; Tuan C. C. ; Li L. Y. ; Jiao S. L. ; Wang Q. L. ; Moon K. S. ; Cui D. L. ; Wong C. P. Chem. Mater. 2016, 28, 6096.
doi: 10.1021/acs.chemmater.6b01595 |
123 |
Idowu A. ; Boesl B. ; Agarwal A. Carbon 2018, 135, 52.
doi: 10.1016/j.carbon.2018.04.024 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210014-0. |
[3] | Yanpeng Fu, Changbao Zhu. Design Strategies for Sodium Electrode Materials: Solid-State Ionics Perspective [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209002-0. |
[4] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[5] | Junhao Liao, Yixuan Zhao, Zhaoning Hu, Saiyu Bu, Qi Lu, Mingpeng Shang, Kaicheng Jia, Xiaohui Qiu, Qin Xie, Li Lin, Zhongfan Liu. Crack-Free Transfer of Graphene Wafers via Photoresist as Transfer Medium [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306038-. |
[6] | Yue Qi, Luzhao Sun, Zhongfan Liu. Super Graphene-Skinned Material: A New Member of Graphene Materials Family [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307028-. |
[7] | Jiawei Yang, Chunyang Zheng, Yahui Pang, Zhongyang Ji, Yurui Li, Jiayi Hu, Jiangrui Zhu, Qi Lu, Li Lin, Zhongfan Liu, Qingmei Hu, Baolu Guan, Jianbo Yin. Graphene Based Room-Temperature Terahertz Detector with Integrated Bow-Tie Antenna [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307012-. |
[8] | Zhenfei Gao, Qingquan Song, Zhihua Xiao, Zhaolong Li, Tao Li, Jiajun Luo, Shanshan Wang, Wanli Zhou, Lanying Li, Junrong Yu, Jin Zhang. Submicron-Sized, High Crystalline Graphene-Reinforced Meta-Aramid Fibers with Enhanced Tensile Strength [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307046-. |
[9] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[10] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[11] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[12] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[13] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[14] | Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2005006-. |
[15] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
|