Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (1): 2111011.doi: 10.3866/PKU.WHXB202111011
• REVIEW • Previous Articles Next Articles
Ruojuan Liu1,2, Bingzhi Liu2,3, Jingyu Sun2,3,*(), Zhongfan Liu1,2,3,*(
)
Received:
2021-11-04
Accepted:
2021-11-29
Published:
2021-12-06
Contact:
Jingyu Sun,Zhongfan Liu
E-mail:sunjy86@suda.edu.cn;zfliu@pku.edu.cn
Supported by:
Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects[J]. Acta Phys. -Chim. Sin. 2023, 39(1), 2111011. doi: 10.3866/PKU.WHXB202111011
Fig 1
Copper-vapor sublimed from copper foil assisted the growth of graphene on insulating substrates 41, 68, 72. (a) Schematic of the distance-dependent graphene growth along the gas flow direction; (b) Growth setup; (c) The Raman G band intensity as a function of distance; (d) A schematic of the Cu-vapor-catalyst-assisted growth of graphene on quartz glass and SiO2/Si substrate, where the copper foil was laid over the substrate without physical contact; (e) The Raman spectrum of graphene grown on glass with the Cu-vapor catalyst; (f) Illustration of graphene growth on insulating substrates by physical contact of copper foil through the formation of Cu-Si alloy; (g) Raman spectrum obtained from a random position on quartz glass. (a–e) Adapted from American Chemical Society publisher; (f, g) Adapted from Wiley-VCH publisher."
Fig 2
Graphene growth catalyzed by liquid metal Ga on the insulating substrate 42, 74. (a) and (b) Schematic of two experimental setups for CVD using Ga vapor catalysts; (c) Typical Raman spectra of the graphene layers synthesized on quartz and SiO2/Si substrates. The inset is a SEM image of the graphene on quartz; (d) Schematic of direct growth of graphene on quartz with the assistance of Ga vapor for transparent defogger; (e) The resistance profiles of directly grown graphene defoggers and transferred graphene defoggers before and after exposure to fog; (f) and (g) Upper surface of directly grown graphene absorbed by water molecules, while the current carriers passing through the under surface protected by the quartz substrate; (h) and (i) Both sides of transferred graphene absorbed by water molecules for lack of strong interaction force between the graphene and the quartz substrate. (a–c) Adapted from American Institute of Physics publisher; (d–i) Adapted from Wiley-VCH publisher."
Fig 3
Metal-containing species assisted direct growth of graphene 56, 76. (a) Illustration of graphene growth on h-BN/Cu foils using a nickelocene precursor; (b) Plot of the graphene domain size as a function of growth time using nickelocene (red), benzoic acid (blue), and methane (black) as precursors, respectively; (c) Schematic illustration of the graphene growth process with the presence of Cu(OAc)2; (d) Multilayer percentage of graphene grown with/without Cu(OAc)2; (e) Representative Raman spectra of graphene grown through the two routes; (f) Corresponding UV-Vis transmittance spectra of graphene films. (a, b) Adapted from Wiley-VCH publisher; (c–f) Adapted from Oxford University Press publisher."
Fig 4
Oxygen-aided growth of graphene on the insulating substrate 63, 79. (a) Schematic diagram of the oxygen-aided CVD growth of graphene on a SiO2/Si substrate; (b) Morphology of graphene without annealing treatment; (c) Morphology of graphene grown after a pre-annealing treatment in air; (d) Morphology of graphene grown after a pre-annealing treatment in H2, Scale bar 1 µm; (e) and (f) Schematic diagrams showing the surface reaction pathways for direct graphene growth on quartz throughout the O2-assisted and O2-free CVD; (g) and (h) Optical transmittance spectra, (i) and (j) Spatial sheet resistance mapping of the two types of graphene glass, respectively. (a–d) Adapted from American Chemical Society publisher; (e–j) Adapted from Springer Nature publisher."
Fig 5
Oxygen-containing species assisted direct growth of graphene 64, 81, 82. (a) Schematic of water-assisted CVD growth of graphene on SiO2/Si substrate; (b) and (c) AFM images of graphene grown on SiO2/Si substrates with and without water. Scale bars: 500 nm; (d) Arrhenius plots of grain size versus growth temperature; (e) Schematic illustration of graphene growth on glass with H2O assistance; (f) Time-dependent morphology evolution of graphene growth w-H2O promoters on quartz glass with growth time of 3, 4, and 5 h, respectively; (g–i) SEM images of graphene samples with uniform shape and size grown by the precursor-modification strategy; (j) Formation energies of the four hybrid structures consisting of graphene nanoribbons deposited on Si-terminated silica. (a–d) Adapted from Elsevier publisher; (e, f) Adapted from Wiley-VCH publisher; (g–j) Adapted from American Chemical Society publisher."
Fig 6
SiH4/GeH4 / BaF2-assisted direct growth of graphene 65, 83, 84. (a) The gaseous catalyst-assisted CVD growth of graphene on h-BN; (b) The growth duration dependence of the domain dimensions for single-crystalline graphene in the presence of silane (black), germane (red) gaseous catalysts and no catalyst (green), respectively; (c) Schematic illustration of gaseous GeH4 catalyst-assisted direct growth of uniform graphene on SiO2/Si surface; (d) Diagram of the experimental design and the lateral view of the gap between metal fluoride AF2 and quartz surface; (e) Number of nuclei of graphene as a function of growth time using BaF2 promotor; (f) Time evolution of the domain size by using BaF2 as promotor. (a, b) Adapted from Nature Publishing Group publisher; (c) Adapted from American Institute of Physics publisher; (d–f) Adapted from American Chemical Society publisher."
1 |
MayorovA. S.;GorbachevR. V.;MorozovS. V.;BritnellL.;JalilR.;PonomarenkoL. A.;BlakeP.;NovoselovK. S.;WatanabeK.;TaniguchiT.;et alNano Lett.2011,11,2396.
doi: 10.1021/nl200758b |
2 |
ZhangY. B.;TanY. W.;StormerH. L.;KimP.Nature2005,438,201.
doi: 10.1038/nature04235 |
3 |
NairR. R.;BlakeP.;GrigorenkoA. N.;NovoselovK. S.;BoothT. J.;StauberT.;PeresN. M.;GeimA. K.Science2008,320,1308.
doi: 10.1126/science.1156965 |
4 |
LeeC.;WeiX.;KysarJ. W.;HoneJ.Science2008,321,385.
doi: 10.1126/science.1157996 |
5 |
BalandinA. A.Nat. Mater.2011,10,569.
doi: 10.1038/nmat3064 |
6 |
DuaV.;SurwadeS. P.;AmmuS.;AgnihotraS. R.;JainS.;RobertsK. E.;ParkS.;RuoffR. S.;ManoharS. K.Angew. Chem. Int. Ed.2010,122,2200.
doi: 10.1002/ange.200905089 |
7 |
StollerM. D.;ParkS.;ZhuY.;AnJ.;RuoffR. S.Nano Lett.2008,8,3498.
doi: 10.1021/nl802558y |
8 |
GoossensS.;NavickaiteG.;MonasterioC.;GuptaS.;PiquerasJ.J.;PerezR.;BurwellG.;NikitskiyI.;LasantaT.;GalanT.;et alNat. Photon.2017,11,366.
doi: 10.1038/nphoton.2017.75 |
9 |
BaeS.;KimH.;LeeY.;XuX.;ParkJ. S.;ZhengY.;BalakrishnanJ.;LeiT.;KimH. R.;SongY.I.;et alNat. Nanotechnol.2010,5,574.
doi: 10.1038/nnano.2010.132 |
10 |
RomagnoliM.;SorianelloV.;MidrioM.;KoppensF. H. L.;HuyghebaertC.;NeumaierD.;GalliP.;TemplW.;D'ErricoA.;FerrariA. C.Nat. Rev. Mater.2018,3,392.
doi: 10.1038/s41578-018-0040-9 |
11 |
GarajS.;HubbardW.;ReinaA.;KongJ.;BrantonD.;GolovchenkoJ. A.Nature2010,467,190.
doi: 10.1038/nature09379 |
12 |
XuM.;FujitaD.;HanagataN.Small2009,5,2638.
doi: 10.1002/smll.200900976 |
13 |
XingF.;LiuZ. B.;DengZ. C.;KongX. T.;YanX. Q.;ChenX. D.;YeQ.;ZhangC. P.;ChenY. S.;TianJ. G.Sci. Rep.2012,2,908.
doi: 10.1038/srep00908 |
14 |
ZhaoJ.;HeC.;YangR.;ShiZ.;ChengM.;YangW.;XieG.;WangD.;ShiD.;ZhangG.Appl. Phys. Lett.2012,101,063112.
doi: 10.1063/1.4742331 |
15 |
NovoselovK. S.;GeimA. K.;MorozovS. V.;JiangD.;ZhangY.;DubonosS. V.;GrigorievaI. V.;FirsovA. A.Science2004,306,666.
doi: 10.1126/science.1102896 |
16 |
EdaG.;FanchiniG.;ChhowallaM.Nat. Nanotechnol.2008,3,270.
doi: 10.1038/nnano.2008.83 |
17 |
HirataM.;GotouT.;HoriuchiS.;FujiwaraM.;OhbaM.Carbon2004,42,2929.
doi: 10.1016/j.carbon.2004.07.003 |
18 |
BergerC.;SongZ.;LiX.;WuX.;BrownN.;NaudC.;MayouD.;LiT.;HassJ.;MarchenkovA. N.;et alScience2006,312,1191.
doi: 10.1126/science.1125925 |
19 |
LiX.;CaiW.;AnJ.;KimS.;NahJ.;YangD.;PinerR.;VelamakanniA.;JungI.;TutucE.;et alScience2009,324,1312.
doi: 10.1126/science.1171245 |
20 |
ReinaA.;JiaX.;HoJ.;NezichD.;SonH.;BulovicV.;DresselhausM. S.;KongJ.Nano Lett.2009,9,30.
doi: 10.1021/nl801827v |
21 |
LiX.;MagnusonC. W.;VenugopalA.;AnJ.;SukJ.W.;HanB.;BorysiakM.;CaiW.;VelamakanniA.;ZhuY.;et alNano Lett.2010,10,4328.
doi: 10.1021/nl101629g |
22 |
WuT.;ZhangX.;YuanQ.;XueJ.;LuG.;LiuZ.;WangH.;WangH.;DingF.;YuQ.;et alNat. Mater.2016,15,43.
doi: 10.1038/nmat4477 |
23 |
LinL.;LiJ.;RenH.;KohA. L.;KangN.;PengH.;XuH. Q.;LiuZ. F.ACS Nano2016,10,2922.
doi: 10.1021/acsnano.6b00041 |
24 |
PangJ.;MendesR. G.;WrobelP. S.;WlodarskiM. D.;TaH. Q.;ZhaoL.;GiebelerL.;TrzebickaB.;GemmingT.;FuL.;et alACS Nano2017,11,946.
doi: 10.1021/acsnano.6b08069 |
25 |
ChenJ.;GuoY.;JiangL.;XuZ.;HuangL.;XueY.;GengD.;WuB.;HuW.;YuG.;LiuY.Adv. Mater.2014,26,1348.
doi: 10.1002/adma.201304872 |
26 |
ChenZ.;LiuZ.;WeiT.;YangS.;DouZ.;WangY.;CiH.;ChangH.;QiY.;YanJ.;et alAdv. Mater.2019,31,1807345.
doi: 10.1002/adma.201807345 |
27 | ChenZ.;GaoP.;LiuZ. F.Acta Phys. -Chim. Sin.2020,36,1907004. |
陈召龙;高鹏;刘忠范.物理化学学报,2020,36,1907004.
doi: 10.3866/PKU.WHXB201907004 |
|
28 |
YangW.;ChenG.;ShiZ.;LiuC. C.;ZhangL.;XieG.;ChengM.;WangD.;YangR.;ShiD.;et alNat. Mater.2013,12,792.
doi: 10.1038/nmat3695 |
29 |
ChenL.;WangH.;TangS.;HeL.;WangH. S.;WangX.;XieH.;WuT.;XiaH.;LiT.;et alNanoscale2017,9,11475.
doi: 10.1039/c7nr02578e |
30 |
SunJ.;GaoT.;SongX.;ZhaoY.;LinY.;WangH.;MaD.;ChenY.;XiangW.;WangJ.;et alJ. Am. Chem. Soc.2014,136,6574.
doi: 10.1021/ja5022602 |
31 |
ChenJ.;GuoY.;WenY.;HuangL.;XueY.;GengD.;WuB.;LuoB.;YuG.;LiuY.Adv. Mater.2013,25,992.
doi: 10.1002/adma.201202973 |
32 |
ChenZ.;QiY.;ChenX.;ZhangY.;LiuZ. F.Adv. Mater.2019,31,1803639.
doi: 10.1002/adma.201803639 |
33 |
ChenX. D.;ChenZ.;JiangW. S.;ZhangC.;SunJ.;WangH.;XinW.;LinL.;PriydarshiM. K.;YangH.;et alAdv. Mater.2017,29,1603428.
doi: 10.1002/adma.201603428 |
34 |
SunJ.;ChenZ.;YuanL.;ChenY.;NingJ.;LiuS.;MaD.;SongX.;PriydarshiM. K.;BachmatiukA.;et alACS Nano2016,10,11136.
doi: 10.1021/acsnano.6b06066 |
35 |
SunJ.;ChenY.;PriydarshiM. K.;ChenZ.;BachmatiukA.;ZouZ.;ChenZ.;SongX.;GaoY.;RummeliM. H.;et alNano Lett.2015,15,5846.
doi: 10.1021/acs.nanolett.5b01936 |
36 |
RuemmeliM. H.;BachmatiukA.;ScottA.;BoerrnertF.;WarnerJ. H.;HoffmanV.;LinJ.-H.;CunibertiG.;BuechnerB.ACS Nano2010,4,4206.
doi: 10.1021/nn100971s |
37 |
MiyasakaY.;NakamuraA.;TemmyoJ.Jpn. J. Appl. Phys.2011,50,04D.
doi: 10.1143/jjap.50.04dh12 |
38 |
JiangB.;ZhaoQ. Y.;ZhangZ. P.;LiuB. Z.;ShanJ. Y.;ZhaoL.;RümmeliM. H.;GaoX.;ZhangY. F.;YuT. J.;et alNano Res.2020,13,1564.
doi: 10.1007/s12274-020-2771-3 |
39 |
YanZ.;PengZ.;SunZ.;YaoJ.;ZhuY.;LiuZ.;AjayanP. M.;TourJ. M.ACS Nano2011,5,8187.
doi: 10.1021/nn202829y |
40 |
SuC. Y.;LuA. Y.;WuC. Y.;LiY. T.;LiuK. K.;ZhangW.;LinS. Y.;JuangZ. Y.;ZhongY. L.;ChenF. R.;et alNano Lett.2011,11,3612.
doi: 10.1021/nl201362n |
41 |
TengP. Y.;LuC. C.;Akiyama-HasegawaK.;LinY. C.;YehC. H.;SuenagaK.;ChiuP. W.Nano Lett.2012,12,1379.
doi: 10.1021/nl204024k |
42 |
MurakamiK.;TanakaS.;HirukawaA.;HiyamaT.;KuwajimaT.;KanoE.;TakeguchiM.;FujitaJ. I.Appl. Phys. Lett.2015,106,093112.
doi: 10.1063/1.4914114 |
43 |
SunJ. Y.;ChenY. B.;CaiX.;MaB. J.;ChenZ. L.;PriydarshiM. K.;ChenK.;GaoT.;SongX. J.;JiQ.Nano Res.2015,8,3496.
doi: 10.1007/s12274-015-0849-0 |
44 |
ZhangL. C.;ShiZ. W.;WangY.;YangR.;ShiD. X.;ZhangG. Y.Nano Res.2011,4,315.
doi: 10.1007/s12274-010-0086-5 |
45 |
QiY.;DengB.;GuoX.;ChenS.;GaoJ.;LiT.;DouZ.;CiH.;SunJ.;ChenZ.;et alAdv. Mater.2018,30,1704839.
doi: 10.1002/adma.201704839 |
46 |
MonaghanS.;GreerJ. C.;ElliottS. D.J. Appl. Phys.2005,97,114911.
doi: 10.1063/1.1926399 |
47 |
LiX.;CaiW.;ColomboL.;RuoffR. S.Nano Lett.2009,9,4268.
doi: 10.1021/nl902515k |
48 |
LinL.;DengB.;SunJ.;PengH.;LiuZ.Chem. Rev.2018,118,9281.
doi: 10.1021/acs.chemrev.8b00325 |
49 |
SunL.;YuanG.;GaoL.;YangJ.;ChhowallaM.;GharahcheshmehM. H.;GleasonK. K.;ChoiY. S.;HongB. H.;LiuZ. F.Nat. Rev. Methods Primers2021,1,5.
doi: 10.1038/s43586-020-00005-y |
50 |
FantonM. A.;RobinsonJ. A.;PulsC.;LiuY.;HollanderM. J.;WeilandB. E.;LabellaM.;TrumbullK.;KasardaR.;HowsareC.;et alACS Nano2011,5,8062.
doi: 10.1021/nn202643t |
51 | ChenX. D.;ChenZ. L.;SunJ. Y.;ZhangY. F.;LiuZ. F.Acta Phys. -Chim. Sin.2016,32,14. |
陈旭东;陈召龙;孙靖宇;张艳锋;刘忠范.物理化学学报,2016,32,14.
doi: 10.3866/PKU.WHXB201511133 |
|
52 |
LiG.;HuangS. H.;LiZ. Y.Phys. Chem. Chem. Phys.2015,17,22832.
doi: 10.1039/c5cp02301g |
53 |
ZhangJ.;LinL.;SunL.;HuangY.;KohA. L.;DangW.;YinJ.;WangM.;TanC.;LiT.;et alAdv. Mater.2017,29,1700639.
doi: 10.1002/adma.201700639 |
54 |
LinL.;ZhangJ.;SuH.;LiJ.;SunL.;WangZ.;XuF.;LiuC.;LopatinS.;ZhuY.;et alNat. Commun.2019,10,1912.
doi: 10.1038/s41467-019-09565-4 |
55 |
JiaK.;ZhangJ.;LinL.;LiZ.;GaoJ.;SunL.;XueR.;LiJ.;KangN.;LuoZ.;et alJ. Am. Chem. Soc.2019,141,7670.
doi: 10.1021/jacs.9b02068 |
56 |
ShanJ.;FangS.;WangW.;ZhaoW.;ZhangR.;LiuB.;LinL.;JiangB.;CiH.;LiuR.;et alNatl. Sci. Rev.2021,
doi: 10.1093/nsr/nwab169 |
57 |
ShemellaP.;NayakS. K.Appl. Phys. Lett.2009,94,032101.
doi: 10.1063/1.3070238 |
58 |
ChenZ.;ChangH.;ChengT.;WeiT.;WangR.;YangS.;DouZ.;LiuB.;ZhangS.;XieY.;et alAdv. Funct. Mater.2020,30,2070209.
doi: 10.1002/adfm.202070209 |
59 |
KohlerC.;HajnalZ.;DeakP.;FrauenheimT.;SuhaiS.Phys. Rev. B2001,64,085333.
doi: 10.1103/PhysRevB.64.085333 |
60 |
YazyevO. V.Phys. Rev. Lett.2008,101,037203.
doi: 10.1103/PhysRevLett.101.037203 |
61 |
HaoY.;BharathiM. S.;WangL.;LiuY.;ChenH.;NieS.;WangX.;ChouH.;TanC.;FallahazadB.;et alScience2013,342,720.
doi: 10.1126/science.1243879 |
62 |
GuoW.;JingF.;XiaoJ.;ZhouC.;LinY.;WangS.Adv. Mater.2016,28,3152.
doi: 10.1002/adma.201503705 |
63 |
ChenJ.;WenY.;GuoY.;WuB.;HuangL.;XueY.;GengD.;WangD.;YuG.;LiuY.J. Am. Chem. Soc.2011,133,17548.
doi: 10.1021/ja2063633 |
64 |
WeiS.;MaL. P.;ChenM. L.;LiuZ.;MaW.;SunD. M.;ChengH. M.;RenW.Carbon2019,148,241.
doi: 10.1016/j.carbon.2019.03.083 |
65 |
TangS.;WangH.;WangH. S.;SunQ.;ZhangX.;CongC.;XieH.;LiuX.;ZhouX.;HuangF.;et alNat. Commun.2015,6,6499.
doi: 10.1038/ncomms7499 |
66 |
ZhuJ.;XuH.;ZouG.;ZhangW.;ChaiR.;ChoiJ.;WuJ.;LiuH.;ShenG.;FanH.J. Am. Chem. Soc.2019,141,5392.
doi: 10.1021/jacs.9b00047 |
67 |
PengZ.;YanZ.;SunZ.;TourJ. M.ACS Nano2011,5,8241.
doi: 10.1021/nn202923y |
68 |
KimH.;SongI.;ParkC.;SonM.;HongM.;KimY.;KimJ. S.;ShinH. J.;BaikJ.;ChoiH. C.ACS Nano2013,7,6575.
doi: 10.1021/nn402847w |
69 |
LiuN.;ZhangJ.;QiuY. F.;YangJ.;HuP. A.Sci. China Chem.2016,59,707.
doi: 10.1007/s11426-015-0536-8 |
70 |
YangC.;WuT. R.;WangH. M.;ZhangX. F.;ShiZ. Y.;XieX. M.Appl. Phys. Lett.2017,111,043107d.
doi: 10.1063/1.4995559 |
71 |
ZhouL.;WeiS.;GeC.;ZhaoC.;GuoB.;ZhangJ.;ZhaoJ.Nanomaterials2019,9,964d.
doi: 10.3390/nano9070964 |
72 |
SongI.;ParkY.;ChoH.;ChoiH. C.Angew. Chem. Int. Ed.2018,57,15374.
doi: 10.1002/anie.201805923 |
73 |
ChenY. Z.;MedinaH.;LinH. C.;TsaiH. W.;SuT. Y.;ChuehY. L.Nanoscale2015,7,1678.
doi: 10.1039/c4nr04627g |
74 |
TanL.;ZengM.;WuQ.;ChenL.;WangJ.;ZhangT.;EckertJ.;RummeliM. H.;FuL.Small2015,11,1840.
doi: 10.1002/smll.201402427 |
75 |
YangJ.;JiangQ. Q.;ChenZ. H.;HuP. A.;LiJ. J.;GuC. Z.;YuG.Diam. Relat. Mater.2019,91,112.
doi: 10.1016/j.diamond.2018.11.009 |
76 |
LiQ. C.;ZhaoZ. F.;YanB. M.;SongX. J.;ZhangZ. P.;LiJ.;WuX. S.;BianZ. Q.;ZouX. L.;ZhangY. F.;et alAdv. Mater.2017,29,1701325.
doi: 10.1002/adma.201701325 |
77 |
ZhangJ.;JiaK.;LinL.;ZhaoW.;QuangH. T.;SunL.;LiT.;LiZ.;LiuX.;ZhengL.;et alAngew. Chem. Int. Ed.2019,58,14446.
doi: 10.1002/anie.201905672 |
78 |
ZhangY. H.;SuiY. P.;ChenZ. Y.;KangH.;LiJ.;WangS.;ZhaoS. W.;YuG. H.;PengS. G.;JinZ.;LiuX. Y.;et alCarbon2021,185,82.
doi: 10.1016/j.carbon.2021.09.016 |
79 |
LiuB. Z.;WangH. H.;GuW.;ZhouL.;ChenZ. L.;NieY. F.;TanC. W.;CiH. N.;WeiN.;CuiL. Z.;et alNano Res.2021,14,260.
doi: 10.1007/s12274-020-3080-6 |
80 |
MaT.;LiuZ.;WenJ.;GaoY.;RenX.;ChenH.;JinC.;MaX. L.;XuN.;ChengH.-M.;et alNat. Commun.2017,8,14486.
doi: 10.1038/ncomms14486 |
81 |
XieH. H.;CuiK. J.;CuiL. Z.;LiuB. Z.;YuY.;TanC. W.;ZhangY. Y.;ZhangY. F.;LiuZ. F.Small2020,16,1905485.
doi: 10.1002/smll.201905485 |
82 |
WangH.;XueX.;JiangQ.;WangY.;GengD.;CaiL.;WangL.;XuZ.;YuG.J. Am. Chem. Soc.2019,141,11004.
doi: 10.1021/jacs.9b05705 |
83 |
LeeJ. H.;KimM. S.;LimJ. Y.;JungS. H.;KangS. G.;ShinH. J.;ChoiJ. Y.;HwangS. W.;WhangD.Appl. Phys. Lett.2016,109,053102.
doi: 10.1063/1.4960293 |
84 |
XieY.;ChengT.;LiuC.;ChenK.;ChengY.;ChenZ.;QiuL.;CuiG.;YuY.;CuiL.;et alACS Nano2019,13,10272.
doi: 10.1021/acsnano.9b03596 |
85 | ChenH.;ZhangJ.;LiuX.;LiuZ. F.Acta Phys. -Chim. Sin.2022,38,2101053. |
陈恒;张金灿;刘晓婷;刘忠范.物理化学学报,2022,38,2101053.
doi: 10.3866/PKU.WHXB202101053 |
|
86 |
BachmatiukA.;BorrnertF.;GroboschM.;SchaffelF.;WolffU.;ScottA.;ZakaM.;WarnerJ. H.;KlingelerR.;KnupferM.;et alACS Nano2009,3,4098.
doi: 10.1021/nn9009278 |
87 |
HongG.;WuQ.-H.;RenJ.;LeeS. T.Appl. Phys. Lett2012,100,231604.
doi: 10.1063/1.4726114 |
88 |
SunJ.;ZhangY.;LiuZ. F.ChemNanoMat2016,2,9.
doi: 10.1002/cnma.201500160 |
89 |
SaitoK.;OginoT.J. Phys. Chem. C2014,118,5523.
doi: 10.1021/jp408126e |
90 |
MedinaH.;LinY. C.;JinC.;LuC. C.;YehC. H.;HuangK. P.;SuenagaK.;RobertsonJ.;ChiuP. W.Adv. Funct. Mater.2012,22,2123.
doi: 10.1002/adfm.201102423 |
91 | ChengT.;SunL.;LiuZ.;DingF.;LiuZ. F.Acta Phys. -Chim. Sin2022,38,2012006. |
程婷;孙禄钊;刘志荣;丁峰;刘忠范.物理化学学报,2022,38,2012006.
doi: 10.3866/PKU.WHXB202012006 |
|
92 | ChangC.;ChenW.;ChenY.;ChenY.;ChenY.;DingF.;FanC.;Jin FanH.;FanZ.;GongC.;et alActa Phys. -Chim. Sin2021,37,2108017. |
常诚;陈伟;陈也;陈永华;陈雨;丁峰;樊春海;范红金;范战西;龚成;等.物理化学学报,2021,37,2108017.
doi: 10.3866/PKU.WHXB202108017 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210014-0. |
[3] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[4] | Junhao Liao, Yixuan Zhao, Zhaoning Hu, Saiyu Bu, Qi Lu, Mingpeng Shang, Kaicheng Jia, Xiaohui Qiu, Qin Xie, Li Lin, Zhongfan Liu. Crack-Free Transfer of Graphene Wafers via Photoresist as Transfer Medium [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306038-. |
[5] | Mengshi Yu, Congwei Tan, Xiaoyin Gao, Junchuan Tang, Hailin Peng. Chemical Vapor Deposition Growth of High-Mobility 2D Semiconductor Bi2O2Se: Controllability and Material Quality [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306043-. |
[6] | Yue Qi, Luzhao Sun, Zhongfan Liu. Super Graphene-Skinned Material: A New Member of Graphene Materials Family [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307028-. |
[7] | Jiawei Yang, Chunyang Zheng, Yahui Pang, Zhongyang Ji, Yurui Li, Jiayi Hu, Jiangrui Zhu, Qi Lu, Li Lin, Zhongfan Liu, Qingmei Hu, Baolu Guan, Jianbo Yin. Graphene Based Room-Temperature Terahertz Detector with Integrated Bow-Tie Antenna [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307012-. |
[8] | Zhenfei Gao, Qingquan Song, Zhihua Xiao, Zhaolong Li, Tao Li, Jiajun Luo, Shanshan Wang, Wanli Zhou, Lanying Li, Junrong Yu, Jin Zhang. Submicron-Sized, High Crystalline Graphene-Reinforced Meta-Aramid Fibers with Enhanced Tensile Strength [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307046-. |
[9] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[10] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[11] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[12] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[13] | Zeyao Zhang, Yixi Yao, Yan Li. Modulating the Diameter of Bulk Single-Walled Carbon Nanotubes Grown by FeCo/MgO Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2101055-. |
[14] | Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2005006-. |
[15] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
|