Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (2): 2008078.doi: 10.3866/PKU.WHXB202008078
Special Issue: Lithium Metal Anodes
• REVIEW • Previous Articles Next Articles
Dongdong Liu, Chao Chen, Xunhui Xiong()
Received:
2020-08-25
Accepted:
2020-09-21
Published:
2020-10-12
Contact:
Xunhui Xiong
E-mail:esxxiong@scut.edu.cn
About author:
Xunhui Xiong, Email: esxxiong@scut.edu.cn. Tel.: +86-20-39381203Supported by:
Dongdong Liu, Chao Chen, Xunhui Xiong. Research Progress on Artificial Protective Films for Lithium Metal Anodes[J]. Acta Phys. -Chim. Sin. 2021, 37(2), 2008078. doi: 10.3866/PKU.WHXB202008078
Fig 2
Schematic diagrams of the polymer structure and its bonding state with Li atoms after geometry optimization for (a) PVA, (b) PVAm, (c) PAA and (d) comparison of the corresponding binding energies (Eb) 62; (e) voltage–time curves at a higher current density of 3 mA·cm-2 for the capacity of 1 mAh·cm-2 and Detailed voltage profiles at 3 mA·cm-2 for: (f) 30th, (g) 60th, and (h) 77th cycles 63."
Fig 3
(a) Schematic diagram of PEO-UPy coating on Li metal surface; (b)photographs of bare Li and LiPEO-UPy@Li anodes exposed to ambient air for different durations; (c) adhesion test of PEO-UPy@Li anode against 50 g mass; (d) LiPEO-UPy polymer kept integrity in DOL/DME solution; CEs of bare Cu and LiPEO-UPy@Cu electrodes with a fixed capacity of 1 mAh·cm-2 at a current density of (d) 1 mA·cm-2 and (e) 5 mA·cm-2 65."
Fig 4
(a) Chemical structures of the polymer coatings used in this study, coloring of the label corresponds to the chemical functionality of the polymer; (b) diagram of the conditions used to study the initial stages of Li metal growth under polymer coatings; (c) schematic of the factors influencing Li metal deposition through a polymer coating 66."
Fig 6
Schematic of the design of a lithium metal electrode in lithium-sulfur battery configurations, (a) a battery without the Li3N layer and (b) a battery with the Li3N layer 78; (c) schematic diagram of preparation of LiF coating 79; (d) cycling performance of the Li|LiFePO4 battery system using Li metal and PPA-Li anodes and (e) the typical charge/discharge profiles after activation at a current rate of 0.5C, the inset of (e) shows enlarged profiles 81."
Fig 7
(a) Schematic illustration of fabrication process of LSSe@Li anode; the electrochemical performance of Li-LFP and LSSe@Li-LFP: (b) the rate performance, (c) the cycling performance at the rate of 1C, (d) the charge/discharge curves at the rate of 1C; the surface morphology of (e) bare Li and (f) LSSe@Li anode after rate cycling 83."
Fig 10
(a) Atomic structure and binding energy between Li cation and the dual-layered film (left), ester-based SEI (right); (b) the overpotential of Li plating on Cu and PPE-Cu substrates; (c) a schematic diagram for the operational principle of AFM; the force–distance curves and the corresponding Young's modulus values of the (d) organic layer and (e) inorganic layer in the dual-layered film 91."
Fig 11
Schematic illustration of the Li deposition process on the (a) Ag(Au)-Li anode and (b) pristine Li anode; (c) time–voltage profiles of Li plating/stripping in Ag-Li and bare Li symmetric cells at 1 mA·cm-2 with a Li deposition capacity of 1 mAh·cm-2; (d) electrochemical impedance spectra (EIS) of Ag-Li, Au-Li and Li symmetric cells 99."
1 |
Evarts E. C. Nature 2015, 526, S93.
doi: 10.1038/526S93a |
2 |
Janek J. ; Zeier W. G. Nat. Energy 2016, 1, 16141.
doi: 10.1038/nenergy.2016.141 |
3 |
Li P. ; Hwang J. Y. ; Sun Y. K. ACS Nano 2019, 13, 2624.
doi: 10.1021/acsnano.9b00169 |
4 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
5 |
Sun Y. ; Ma P. ; Liu L. ; Chen J. ; Zhang X. ; Lang J. ; Yan X. Sol. RRL 2018, 2, 1800223.
doi: 10.1002/solr.201800223 |
6 |
Sun Y. ; Yan X. Sol. RRL 2017, 1, 1700002.
doi: 10.1002/solr.201700002 |
7 |
Tarascon J. M. ; Armand M. Nature 2001, 414, 359.
doi: 10.1038/35104644 |
8 |
Xu W. ; Wang J. ; Ding F. ; Chen X. ; Nasybulin E. ; Zhang Y. ; Zhang J. G. Energy Environ. Sci. 2014, 7, 513.
doi: 10.1039/C3EE40795K |
9 |
Niu C. ; Pan H. ; Xu W. ; Xiao J. ; Zhang J. G. ; Luo L. ; Wang C. ; Mei D. ; Meng J. ; Wang X. ; et al Nat. Nanotechnol. 2019, 14, 594.
doi: 10.1038/s41565-019-0427-9 |
10 |
Bruce P. G. ; Freunberger S. A. ; Hardwick L. J. ; Tarascon J. M. Nat. Mater. 2012, 11, 19.
doi: 10.1038/nmat3191 |
11 |
Bruce P. G. ; Hardwick L. J. ; Abraham K. M. MRS Bull. 2011, 36, 506.
doi: 10.1557/mrs.2011.157 |
12 |
Xu X. ; Wang S. ; Wang H. ; Hu C. ; Jin Y. ; Liu J. ; Yan H. J. Energy Chem. 2018, 27, 513.
doi: 10.1016/j.jechem.2017.11.010 |
13 |
Zhang X. Q. ; Zhao C. Z. ; Huang J. Q. ; Zhang Q. Engineering 2018, 4, 831.
doi: 10.1016/j.eng.2018.10.008 |
14 |
Lin D. ; Liu Y. ; Cui Y. Nat. Nanotechnol. 2017, 12, 194.
doi: 10.1038/nnano.2017.16 |
15 |
Feng Y. ; Zhang C. ; Li B. ; Xiong S. ; Song J. J. Mater. Chem. A 2019, 7, 6090.
doi: 10.1039/C8TA10779C |
16 |
Qie L. ; Zu C. ; Manthiram A. Adv. Energy Mater. 2016, 6, 1502459.
doi: 10.1002/aenm.201502459 |
17 |
Zhang Y. ; Luo W. ; Wang C. ; Li Y. ; Chen C. ; Song J. ; Dai J. ; Hitz E. M. ; Xu S. ; Yang C. ; et al Proc. Natl. Acad. Sci. 2017, 114, 3584.
doi: 10.1073/pnas.1618871114 |
18 |
Chazalviel J. N. Phys. Rev. A 1990, 42, 7355.
doi: 10.1103/PhysRevA.42.7355 |
19 |
Brissot C. ; Rosso M. ; Chazalviel J. N. ; Lascaud S. J. Power Sources 1999, 81–82, 925.
doi: 10.1016/S0378-7753(98)00242-0 |
20 |
Ding F. ; Xu W. ; Graff G. L. ; Zhang J. ; Sushko M. L. ; Chen X. ; Shao Y. ; Engelhard M. H. ; Nie Z. ; Xiao J. ; et al J. Am. Chem. Soc. 2013, 135, 4450.
doi: 10.1021/ja312241y |
21 |
Enze L. J. Phys. D: Appl. Phys. 1986, 19, 1.
doi: 10.1088/0022-3727/19/1/005 |
22 | Liu F. F. ; Zhang Z. W. ; Ye S. F. ; Yao Y. ; Yu Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021. |
刘凡凡; 张志文; 叶淑芬; 姚雨; 余彦. 物理化学学报, 2021, 37, 2006021.
doi: 10.3866/PKU.WHXB202006021 |
|
23 |
Kushima A. ; So K. P. ; Su C. ; Bai P. ; Kuriyama N. ; Maebashi T. ; Fujiwara Y. ; Bazant M. Z. ; Li J. Nano Energy 2017, 32, 271.
doi: 10.1016/j.nanoen.2016.12.001 |
24 |
Jäckle M. ; Groß A. J. Chem. Phys. 2014, 141, 174710.
doi: 10.1063/1.4901055 |
25 |
Wang D. ; Zhang W. ; Zheng W. ; Cui X. ; Rojo T. ; Zhang Q. Adv. Sci. 2017, 4, 1600168.
doi: 10.1002/advs.201600168 |
26 |
Yamaki J. ; Tobishima S. ; Hayashi K. ; Saito K. ; Nemoto Y. ; Arakawa M. J. Power Sources 1998, 74, 219.
doi: 10.1016/S0378-7753(98)00067-6 |
27 |
Wang G. ; Xiong X. ; Xie D. ; Fu X. ; Ma X. ; Li Y. ; Liu Y. ; Lin Z. ; Yang C. ; Liu M. Energy Storage Mater. 2019, 23, 701.
doi: 10.1016/j.ensm.2019.02.026 |
28 |
Fu X. ; Wang G. ; Dang D. ; Liu Q. ; Xiong X. ; Wu C. J. Mater. Chem. A 2019, 7, 25003.
doi: 10.1039/C9TA09068A |
29 | Ran Q. ; Sun T. Y. ; Han C. Y. ; Zhang H. N. ; Yan J. ; Wang J. L. Acta Phys. -Chim. Sin. 2020, 36, 1912068. |
冉琴; 孙天霷; 韩冲宇; 张浩楠; 颜剑; 汪靖伦. 物理化学学报, 2020, 36, 1912068.
doi: 10.3866/PKU.WHXB201912068 |
|
30 |
Luo C. ; Ji X. ; Chen J. ; Gaskell K. J. ; He X. ; Liang Y. ; Jiang J. ; Wang C. Angew. Chem. 2018, 130, 8703.
doi: 10.1002/ange.201804068 |
31 |
Zhang B. ; Tan R. ; Yang L. ; Zheng J. ; Zhang K. ; Mo S. ; Lin Z. ; Pan F. Energy Storage Mater. 2018, 10, 139.
doi: 10.1016/j.ensm.2017.08.015 |
32 |
Luo W. ; Gong Y. ; Zhu Y. ; Fu K. K. ; Dai J. ; Lacey S. D. ; Wang C. ; Liu B. ; Han X. ; Mo Y. ; et al J. Am. Chem. Soc. 2016, 138, 12258.
doi: 10.1021/jacs.6b06777 |
33 |
Gu J. ; Zhu Q. ; Shi Y. ; Chen H. ; Zhang D. ; Du Z. ; Yang S. ACS Nano 2020, 14, 891.
doi: 10.1021/acsnano.9b08141 |
34 |
Xu B. ; Zhai H. ; Liao X. ; Qie B. ; Mandal J. ; Gong T. ; Tan L. ; Yang X. ; Sun K. ; Cheng Q. ; et al Energy Storage Mater. 2019, 17, 31.
doi: 10.1016/j.ensm.2018.11.035 |
35 |
Kim M. S. ; Ryu J. H. ; Deepika ; Lim Y. R. ; Nah I. W. ; Lee K. R. ; Archer L. A. ; Il Cho W. Nat. Energy 2018, 3, 889.
doi: 10.1038/s41560-018-0237-6 |
36 |
Liu Y. ; Lin D. ; Yuen P. Y. ; Liu K. ; Xie J. ; Dauskardt R. H. ; Cui Y. Adv. Mater. 2017, 29, 1605531.
doi: 10.1002/adma.201605531 |
37 |
Deng K. ; Han D. ; Ren S. ; Wang S. ; Xiao M. ; Meng Y. J. Mater. Chem. A 2019, 7, 13113.
doi: 10.1039/C9TA02407G |
38 |
Zhang C. ; Lyu R. ; Lv W. ; Li H. ; Jiang W. ; Li J. ; Gu S. ; Zhou G. ; Huang Z. ; Zhang Y. ; et al Adv. Mater. 2019, 31, 1904991.
doi: 10.1002/adma.201904991 |
39 |
Chi S. ; Liu Y. ; Song W. ; Fan L. ; Zhang Q. Adv. Funct. Mater. 2017, 27, 1700348.
doi: 10.1002/adfm.201700348 |
40 |
Luo L. ; Li J. ; Yaghoobnejad Asl H. ; Manthiram A. Adv. Mater. 2019, 31, 1904537.
doi: 10.1002/adma.201904537 |
41 | Wang M. Q. ; Peng Z. ; Lin H. ; Li Z. D. ; Liu J. ; Ren Z. M. ; He H. Y. ; Wang D. Y. Acta Phys. -Chim. Sin. 2021, 37, 2007016. |
王木钦; 彭哲; 林欢; 李振东; 刘健; 任重民; 何海勇; 王德宇. 物理化学学报, 2021, 37, 2007016.
doi: 10.3866/PKU.WHXB202007016 |
|
42 |
Chen X. ; Hou T. Z. ; Li B. ; Yan C. ; Zhu L. ; Guan C. ; Cheng X. B. ; Peng H. J. ; Huang J. Q. ; Zhang Q. Energy Storage Mater. 2017, 8, 194.
doi: 10.1016/j.ensm.2017.01.003 |
43 |
Tao R. ; Bi X. ; Li S. ; Yao Y. ; Wu F. ; Wang Q. ; Zhang C. ; Lu J. ACS Appl. Mater. Interfaces 2017, 9, 7003.
doi: 10.1021/acsami.6b13859 |
44 |
Huang G. ; Han J. ; Zhang F. ; Wang Z. ; Kashani H. ; Watanabe K. ; Chen M. Adv. Mater. 2019, 31, 1805334.
doi: 10.1002/adma.201805334 |
45 |
Liu S. ; Zhang X. ; Li R. ; Gao L. ; Luo J. Energy Storage Mater. 2018, 14, 143.
doi: 10.1016/j.ensm.2018.03.004 |
46 |
Cheng X. ; Zhang R. ; Zhao C. ; Wei F. ; Zhang J. G. ; Zhang Q. Adv. Sci. 2016, 3, 1500213.
doi: 10.1002/advs.201500213 |
47 |
Rui K. ; Wen Z. ; Lu Y. ; Jin J. ; Shen C. Adv. Energy Mater. 2015, 5, 1401716.
doi: 10.1002/aenm.201401716 |
48 |
Zheng J. ; Engelhard M. H. ; Mei D. ; Jiao S. ; Polzin B. J. ; Zhang J. G. ; Xu W. Nat. Energy 2017, 2, 17012.
doi: 10.1038/nenergy.2017.12 |
49 |
Yan K. ; Lee H. W. ; Gao T. ; Zheng G. ; Yao H. ; Wang H. ; Lu Z. ; Zhou Y. ; Liang Z. ; Liu Z. ; et al Nano Lett. 2014, 14, 6016.
doi: 10.1021/nl503125u |
50 |
Chen L. ; Connell J. G. ; Nie A. ; Huang Z. ; Zavadil K. R. ; Klavetter K. C. ; Yuan Y. ; Sharifi-Asl S. ; Shahbazian-Yassar R. ; Libera J. A. ; et al J. Mater. Chem. A 2017, 5, 12297.
doi: 10.1039/C7TA03116E |
51 |
Kushima A. ; So K. P. ; Su C. ; Bai P. ; Kuriyama N. ; Maebashi T. ; Fujiwara Y. ; Bazant M. Z. ; Li J. Nano Energy 2017, 32, 271.
doi: 10.1016/j.nanoen.2016.12.001 |
52 |
Zheng G. ; Wang C. ; Pei A. ; Lopez J. ; Shi F. ; Chen Z. ; Sendek A. D. ; Lee H. W. ; Lu Z. ; Schneider H. ; et al ACS Energy Lett. 2016, 1, 1247.
doi: 10.1021/acsenergylett.6b00456 |
53 |
Choi S. M. ; Kang I. S. ; Sun Y. K. ; Song J. H. ; Chung S. M. ; Kim D. W. J. Power Sources 2013, 244, 363.
doi: 10.1016/j.jpowsour.2012.12.106 |
54 |
Zhu J. ; Li P. ; Chen X. ; Legut D. ; Fan Y. ; Zhang R. ; Lu Y. ; Cheng X. ; Zhang Q. Energy Storage Mater. 2019, 16, 426.
doi: 10.1016/j.ensm.2018.06.023 |
55 |
Bai M. ; Xie K. ; Yuan K. ; Zhang K. ; Li N. ; Shen C. ; Lai Y. ; Vajtai R. ; Ajayan P. ; Wei B. Adv. Mater. 2018, 30, 1801213.
doi: 10.1002/adma.201801213 |
56 |
Wang G. ; Xiong X. ; Xie D. ; Fu X. ; Lin Z. ; Yang C. ; Zhang K. ; Liu M. ACS Appl. Mater. Interfaces 2019, 11, 4962.
doi: 10.1021/acsami.8b18101 |
57 |
Zhou D. ; Liu R. ; He Y. ; Li F. ; Liu M. ; Li B. ; Yang Q. ; Cai Q. ; Kang F. Adv. Energy Mater. 2016, 6, 1502214.
doi: 10.1002/aenm.201502214 |
58 |
Jang E. K. ; Ahn J. ; Yoon S. ; Cho K. Y. Adv. Funct. Mater. 2019, 29, 1905078.
doi: 10.1002/adfm.201905078 |
59 |
Zhang Z. ; Zhang L. ; Liu Y. ; Yang T. ; Wang Z. ; Yan X. ; Yu C. J. Mater. Chem. A 2019, 7, 23173.
doi: 10.1039/C9TA08415K |
60 |
Liang X. ; Pang Q. ; Kochetkov I. R. ; Sempere M. S. ; Huang H. ; Sun X. ; Nazar L. F. Nat. Energy 2017, 2, 17119.
doi: 10.1038/nenergy.2017.119 |
61 |
Wang G. ; Xiong X. ; Lin Z. ; Zheng J. ; Fenghua Z. ; Li Y. ; Liu Y. ; Yang C. ; Tang Y. ; Liu M. Nanoscale 2018, 10, 10018.
doi: 10.1039/C8NR01995A |
62 |
Wu H. ; Yao Z. ; Wu Q. ; Fan S. ; Yin C. ; Li C. J. Mater. Chem. A 2019, 7, 22257.
doi: 10.1039/C9TA09146G |
63 |
Sun Y. ; Zhao Y. ; Wang J. ; Liang J. ; Wang C. ; Sun Q. ; Lin X. ; Adair K. R. ; Luo J. ; Wang D. ; et al Adv. Mater. 2019, 31, 1806541.
doi: 10.1002/adma.201806541 |
64 |
Wu H. ; Wu Q. ; Chu F. ; Hu J. ; Cui Y. ; Yin C. ; Li C. J. Power Sources 2019, 419, 72.
doi: 10.1016/j.jpowsour.2019.02.033 |
65 |
Wang G. ; Chen C. ; Chen Y. ; Kang X. ; Yang C. ; Wang F. ; Liu Y. ; Xiong X. Angew. Chem. Int. Ed. 2020, 59, 2055.
doi: 10.1002/anie.201913351 |
66 |
Lopez J. ; Pei A. ; Oh J. Y. ; Wang G. J. N. ; Cui Y. ; Bao Z. J. Am. Chem. Soc. 2018, 140, 11735.
doi: 10.1021/jacs.8b06047 |
67 |
Monroe C. ; Newman J. J. Electrochem. Soc. 2003, 150, A1377.
doi: 10.1149/1.1606686 |
68 |
Stone G. M. ; Mullin S. A. ; Teran A. A. ; Hallinan D. T. ; Minor A. M. ; Hexemer A. ; Balsara N. P. J. Electrochem. Soc. 2012, 159, A222.
doi: 10.1149/2.030203jes |
69 |
Pei A. ; Zheng G. ; Shi F. ; Li Y. ; Cui Y. Nano Lett. 2017, 17, 1132.
doi: 10.1021/acs.nanolett.6b04755 |
70 |
Huang S. ; Zhang W. ; Ming H. ; Cao G. ; Fan L. Z. ; Zhang H. Nano Lett. 2019, 19, 1832.
doi: 10.1021/acs.nanolett.8b04919 |
71 | Cui Y. Acta Phys. -Chim. Sin. 2019, 35, 661. |
崔屹. 物理化学学报, 2019, 35, 661.
doi: 10.3866/PKU.WHXB201809053 |
|
72 |
Xiang H. ; Chen J. ; Li Z. ; Wang H. J. Power Sources 2011, 196, 8651.
doi: 10.1016/j.jpowsour.2011.06.055 |
73 |
He M. ; Zhang X. ; Jiang K. ; Wang J. ; Wang Y. ACS Appl. Mater. Interfaces 2015, 7, 738.
doi: 10.1021/am507145h |
74 |
Wang G. ; Xiong X. ; Zou P. ; Fu X. ; Lin Z. ; Li Y. ; Liu Y. ; Yang C. ; Liu M. Chem. Eng. J. 2019, 378, 122243.
doi: 10.1016/j.cej.2019.122243 |
75 |
Kozen A. C. ; Lin C. F. ; Pearse A. J. ; Schroeder M. A. ; Han X. ; Hu L. ; Lee S. B. ; Rubloff G. W. ; Noked M. ACS Nano 2015, 9, 5884.
doi: 10.1021/acsnano.5b02166 |
76 |
Kazyak E. ; Wood K. N. ; Dasgupta N. P. Chem. Mater. 2015, 27, 6457.
doi: 10.1021/acs.chemmater.5b02789 |
77 |
Umeda G. A. ; Menke E. ; Richard M. ; Stamm K. L. ; Wudl F. ; Dunn B. J. Mater. Chem. 2011, 21, 1593.
doi: 10.1039/C0JM02305A |
78 |
Ma G. ; Wen Z. ; Wu M. ; Shen C. ; Wang Q. ; Jin J. ; Wu X. Chem. Commun. 2014, 50, 14209.
doi: 10.1039/C4CC05535G |
79 |
Zhao J. ; Liao L. ; Shi F. ; Lei T. ; Chen G. ; Pei A. ; Sun J. ; Yan K. ; Zhou G. ; Xie J. ; et al J. Am. Chem. Soc. 2017, 139, 11550.
doi: 10.1021/jacs.7b05251 |
80 |
Lin Y. ; Wen Z. ; Liu J. ; Wu D. ; Zhang P. ; Zhao J. J. Energy Chem. 2021, 55, 129.
doi: 10.1016/j.jechem.2020.07.003 |
81 |
Li N. ; Yin Y. ; Yang C. ; Guo Y. Adv. Mater. 2016, 28, 1853.
doi: 10.1002/adma.201504526 |
82 |
Lin L. ; Liang F. ; Zhang K. ; Mao H. ; Yang J. ; Qian Y. J. Mater. Chem. A 2018, 6, 15859.
doi: 10.1039/C8TA05102J |
83 |
Liu F. ; Wang L. ; Zhang Z. ; Shi P. ; Feng Y. ; Yao Y. ; Ye S. ; Wang H. ; Wu X. ; Yu Y. Adv. Funct. Mater. 2020, 30, 2001607.
doi: 10.1002/adfm.202001607 |
84 |
Herbert E. G. ; Tenhaeff W. E. ; Dudney N. J. ; Pharr G. M. Thin Solid Films 2011, 520, 413.
doi: 10.1016/j.tsf.2011.07.068 |
85 |
Wang W. ; Yue X. ; Meng J. ; Wang J. ; Wang X. ; Chen H. ; Shi D. ; Fu J. ; Zhou Y. ; Chen J. ; et al Energy Storage Mater. 2019, 18, 414.
doi: 10.1016/j.ensm.2018.08.010 |
86 |
Zhang Y. J. ; Liu X. Y. ; Bai W. Q. ; Tang H. ; Shi S. J. ; Wang X. L. ; Gu C. D. ; Tu J. P. J. Power Sources 2014, 266, 43.
doi: 10.1016/j.jpowsour.2014.04.147 |
87 |
Zheng G. ; Lee S. W. ; Liang Z. ; Lee H. W. ; Yan K. ; Yao H. ; Wang H. ; Li W. ; Chu S. ; Cui Y. Nat. Nanotechnol. 2014, 9, 618.
doi: 10.1038/nnano.2014.152 |
88 |
Bai M. ; Xie K. ; Yuan K. ; Zhang K. ; Li N. ; Shen C. ; Lai Y. ; Vajtai R. ; Ajayan P. ; Wei B. Adv. Mater. 2018, 30, 1801213.
doi: 10.1002/adma.201801213 |
89 |
Xu R. ; Zhang X. ; Cheng X. ; Peng H. ; Zhao C. ; Yan C. ; Huang J. Adv. Funct. Mater. 2018, 28, 1705838.
doi: 10.1002/adfm.201705838 |
90 |
Wu C. ; Guo F. ; Zhuang L. ; Ai X. ; Zhong F. ; Yang H. ; Qian J. ACS Energy Lett. 2020, 5, 1644.
doi: 10.1021/acsenergylett.0c00804 |
91 |
Liu X. ; Liu J. ; Qian T. ; Chen H. ; Yan C. Adv. Mater. 2020, 32, 1902724.
doi: 10.1002/adma.201902724 |
92 |
Zhang Y. ; Wang G. ; Tang L. ; Wu J. ; Guo B. ; Zhu M. ; Wu C. ; Dou S. X. ; Wu M. J. Mater. Chem. A 2019, 7, 25369.
doi: 10.1039/C9TA09523C |
93 |
Kim H. ; Lee J. T. ; Lee D. C. ; Oschatz M. ; Cho W. Il ; Kaskel S. ; Yushin G. Electrochem. Commun. 2013, 36, 38.
doi: 10.1016/j.elecom.2013.09.002 |
94 |
Jiang Y. ; Jiang J. ; Wang Z. ; Han M. ; Liu X. ; Yi J. ; Zhao B. ; Sun X. ; Zhang J. Nano Energy 2020, 70, 104504.
doi: 10.1016/j.nanoen.2020.104504 |
95 |
Obrovac M. N. ; Chevrier V. L. Chem. Rev. 2014, 114, 11444.
doi: 10.1021/cr500207g |
96 |
He G. ; Li Q. ; Shen Y. ; Ding Y. Angew. Chem. Int. Ed. 2019, 58, 18466.
doi: 10.1002/anie.201911800 |
97 |
Wang H. ; Li Y. ; Li Y. ; Liu Y. ; Lin D. ; Zhu C. ; Chen G. ; Yang A. ; Yan K. ; Chen H. ; et al Nano Lett. 2019, 19, 1326.
doi: 10.1021/acs.nanolett.8b04906 |
98 |
Yang C. ; Yao Y. ; He S. ; Xie H. ; Hitz E. ; Hu L. Adv. Mater. 2017, 29, 1702714.
doi: 10.1002/adma.201702714 |
99 |
Guo F. ; Wu C. ; Chen H. ; Zhong F. ; Ai X. ; Yang H. ; Qian J. Energy Storage Mater. 2020, 24, 635.
doi: 10.1016/j.ensm.2019.06.010 |
100 |
Wu L. ; He G. ; Ding Y. J. Mater. Chem. A 2019, 7, 25415.
doi: 10.1039/C9TA09464D |
[1] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
[2] | Qiuying Xia, Yu Cai, Wei Liu, Jinshi Wang, Chuanzhi Wu, Feng Zan, Jing Xu, Hui Xia. Direct Recycling of All-Solid-State Thin Film Lithium Batteries with Lithium Anode Failure [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212051-0. |
[3] | Shenglong Tang, Chunlei Wang, Xiangjun Pu, Xiangkui Gu, Zhongxue Chen. Unravelling Zn2+ Intercalation Mechanism in TiX2 (X = S, Se) Anodes for Aqueous Zn-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212037-0. |
[4] | Hao-Tian Teng, Wen-Tao Wang, Xiao-Feng Han, Xiang Hao, Ruizhi Yang, Jing-Hua Tian. Recent Development and Perspectives of Flexible Zinc-Air Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2107017-0. |
[5] | Yingying Zhu, Yong Wang, Miao Xu, Yongmin Wu, Weiping Tang, Di Zhu, Yu-Shi He, Zi-Feng Ma, Linsen Li. Tracking Pressure Changes and Morphology Evolution of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2110040-0. |
[6] | Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2103052-. |
[7] | Wei Zhang, Haichen Liang, Kerun Zhu, Yong Tian, Yao Liu, Jiayin Chen, Wei Li. Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2105024-. |
[8] | Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106002-. |
[9] | Yuecheng Xiong, Fei Yu, Jie Ma. Research Progress in Chlorine Ion Removal Electrodes for Desalination by Capacitive Deionization [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006037-. |
[10] | Xuewei Liu, Ying Niu, Ruixiong Cao, Xiaohong Chen, Hongyan Shang, Huaihe Song. Is there a Demand of Conducting Agent of Acetylene Black for Graphene-Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries? [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012062-. |
[11] | Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204049-. |
[12] | Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2205005-. |
[13] | Yun Fan, Guodan Chen, Xiuan Xi, Jun Li, Qi Wang, Jingli Luo, Xianzhu Fu. Co-Generation of Ethylene and Electricity from Ethane by CeO2/RP-PSCFM@CoFe Anode Materials in Proton Conductive Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009107-. |
[14] | Zibo Zhang, Wei Deng, Xufeng Zhou, Zhaoping Liu. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008092-. |
[15] | Zhida Wang, Yuancheng Feng, Songtao Lu, Rui Wang, Wei Qin, Xiaohong Wu. Improvement in Performance of Three-Dimensional SnLi/Carbon Paper Anode in Lean Electrolyte with In Situ Fluorinated Protection Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008082-. |
|