Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (1): 227-238    DOI: 10.3866/PKU.WHXB201511181
REVIEW     
supramolecular Gels: Structural Diversity and supramolecular Chirality
Xiu-Feng WANG1,2,Li ZHANG2,Ming-Hua LIU2,*()
1 College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong Province, P. R. China
2 CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
Download: HTML     PDF(14660KB) Export: BibTeX | EndNote (RIS)      

Abstract  

supramolecular gels, an important type of soft matter, have showed unique advantages in the construction of functional soft materials, such as multiple stimuli responsive, photoelectrical, and biological compatibility materials. Through supramolecular gelation, diverse, uniform nanostructures can be obtained in a large quantity. On the other hand, most gelators are chiral molecules, so supramolecular gel is a medium to realize the expression of the chirality in supramolecular and nano level, especially to realize effectively chirality transfer, amplification, and asymmetric catalysis, and to fabricate various chiral architectures. In this paper, we describe the structural diversity and chirality in supramolecular gels, and discuss the future prospects for supramolecular gels.



Key wordssupramolecular gel      Self-assembly      Nanotube      Helical and twisted ribbons     
Received: 14 October 2015      Published: 18 November 2015
MSC2000:  O648  
Fund:  the National Key Basic Research Program (973)(2013CB834504);National Natural Science Foundation of China(21321063, 91427302);Fund of the Chinese Academy of Sciences(XDB12020200);Outstanding Young Scientists Award Fund of ShandongProvince, China(BS2014CL028);Fundamental Research Funds for the Central Universities, China(15CX02052A)
Corresponding Authors: Ming-Hua LIU     E-mail: liumh@iccas.ac.cn.
Cite this article:

Xiu-Feng WANG,Li ZHANG,Ming-Hua LIU. supramolecular Gels: Structural Diversity and supramolecular Chirality. Acta Phys. -Chim. Sin., 2016, 32(1): 227-238.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201511181     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I1/227

Fig 1 Classification of supramolecular gels (A) and their nanostructures (B)
Fig 2 Two kinds of chiral nanoribbon50, 52, 36, 53
Fig 3 Illustration of various factors effect on the nanostructure conversion (A) and one example of light/heat effect (B)37
Fig 4 Illustration of supramolecular chirality formation by chiral or achiral molecules
Fig 5 Formation of optically active supramolecular gels by the self-assembly of achiral molecules102
1 George M. ; Weiss R. G. Accounts Chem. Res 2006, 39, 489.
2 Dastidar P. Chem. Soc. Rev 2008, 37 (12), 2699.
3 Piepenbrock M. O. M. ; Lloyd G. O. ; Clarke N. ; Steed J. W. Chem. Rev 2010, 110 (4), 1960.
4 Hirst A. R. ; Smith D. K. Chem. -Eur. J 2005, 11 (19), 5496.
5 Weiss R. G. J. Am. Chem. Soc 2014, 136 (21), 7519.
6 Babu S. S. ; Prasanthkumar S. ; Ajayaghosh A. Angew. Chem. Int. Edit 2012, 51 (8), 1766.
7 Diaz Diaz D. ; Kuhbeck D. ; Koopmans R. J. Chem. Soc. Rev 2011, 40 (1), 427.
8 Wang J. ; Yang G. ; Jiang H. ; Zou G. ; Zhang Q. Soft Matter 2013, 9 (41), 9785.
9 Praveen, V. K.; Ranjith, C.; Armaroli, N. Angew. Chem. Int. Edit. 2014, 53 (2), 365. doi: 10.1002/anie.v53.2.
10 Yang Z. ; Liang G. ; Xu B. Accounts Chem. Res 2008, 41, 315.
11 Gao Y. ; Zhao F. ; Wang Q. ; Zhang Y. ; Xu B. Chem. Soc. Rev 2010, 39 (9), 3425.
12 Li W. S. ; Jia X. R. ; Wang B. B. ; Ji Y. ; Wei Y. Tetrahedron 2007, 63 (36), 8794.
13 Xue M. ; Miao Q. ; Fang Y. Acta Phys. -Chim. Sin 2013, 29 (9), 2005.
13 薛敏; 苗青; 房喻. 物理化学学报, 2013, 29 (9), 2005.
14 Zhong J. L. ; Pan H. ; Luo X. Z. ; Hong S. G. ; Zhang N. ; Huang J. B. Acta Phys. -Chim. Sin. 2014, 30 (9), 1688.
14 钟金莲; 潘虹; 罗序中; 洪三国; 张宁; 黄建滨. 物理化学学报, 2014, 30 (9), 1688.
15 Amabilino D. ; Veciana J. Supramolecular Chiral Functional Materials. In Supramolecular Chirality; Crego-Calama ; M . ; Reinhoudt D. Springer Berlin Heidelberg: 2006, Vol 265, p 253.
16 Dawn A. ; Shiraki T. ; Haraguchi S. ; Sato H. ; Sada K. ; Shinkai S. Chem. -Eur. J 2010, 16 (12), 3676.
17 Cornelissen J. J. ; Rowan A. E. ; Nolte R. J. ; Sommerdijk N. A. Chem. Rev 2001, 101 (12), 4039.
18 Yashima E. ; Maeda K. ; Furusho Y. Accounts Chem. Res 2008, 41 (9), 1166.
19 de Jong J. J. ; Lucas L. N. ; Kellogg R. M. ; van Esch J. H. ; Feringa B. L. Science 2004, 304 (278)
20 Das A. K. ; Bose P. P. ; Drew M. G. ; Banerjee A. Tetrahedron 2007, 63 (31), 7432.
21 Palui G. ; Garai A. ; Nanda J. ; Nandi A. K. ; Banerjee A. J. Phys. Chem. B 2009, 114 (3), 1249.
22 Zhu X. F. ; Duan P. F. ; Zhang L. ; Liu M. H. Chem. -Eur. J 2011, 17 (12), 3429.
23 Qin L. ; Xie F. ; Jin X. ; Liu M. Chem. -Eur. J 2015, 21 (32), 11300.
24 Wang X. ; Duan P. ; Liu M. Chem.2014 -Asian J 2014, 9 (3), 770.
25 Qing G. ; Shan X. ; Chen W. ; Lv Z. ; Xiong P. ; Sun T. Angew. Chem. Int. Edit 2014, 53 (8), 2124.
26 Meazza L. ; Foster J. A. ; Fucke K. ; Metrangolo P. ; Resnati G. ; Steed J. W. Nat. Chem 2013, 5 (1), 42.
27 Xu H. Q. ; Song J. ; Tian T. ; Feng R. X. Soft Matter 2012, 8 (12), 3478.
28 Miao W. ; Qin L. ; Yang D. ; Jin X. ; Liu M. Chem. -Eur. J 2015, 21 (3), 1064.
29 Babu S. S. ; Mahesh S. ; Kartha K. K. ; Ajayaghosh A. Chem. Asian J 2009, 4 (6), 824.
30 Lv K. ; Zhang L. ; Liu M. Langmuir 2014, 30 (31), 9295.
31 Kulbaba K. ; Cheng A. ; Bartole A. ; Greenberg S. ; Resendes R. ; Coombs N. ; Safa-Sefat A. ; Greedan J. E. ; Stöver H. D. H. ; Ozin G. A. ; Manners I. J. Am. Chem. Soc 2002, 124 (42), 12522.
32 Cao X. ; Gao A. ; Lv H. ; Wu Y. ; Wang X. ; Fan Y. Org. Biomol. Chem 2013, 11 (45), 7931.
33 Huang C. ; Wen L. ; Liu H. ; Li Y. ; Liu X. ; Yuan M. ; Zhai J. ; Jiang L. ; Zhu D. Adv. Mater 2009, 21 (17), 1721.
34 Wang M. ; Mohebbi A. R. ; Sun Y. ; Wudl F. Angew. Chem. Int. Edit 2012, 51 (28), 6920.
35 Huang X. ; Li C. ; Jiang S. G. ; Wang X. S. ; Zhang B. W. ; Liu M. H. J. Am. Chem. Soc 2004, 126 (5), 1322.
36 Zhou W. ; Lin L. ; Zhao D. ; Guo L. J. Am. Chem. Soc 2011, 133 (22), 8389.
37 Wang X. ; Duan P. ; Liu M. Chem. -Eur. J 2013, 19 (47), 16072.
38 Banerjee S. ; Datta A. Langmuir 2010, 26 (2), 1172.
39 Ghadiri M. R. ; Granja J. R. ; Milligan R. A. ; McRee D. E. ; Khazanovich N. Nature 1993, 366 (6453), 324.
40 Bong D. T. ; Clark T. D. ; Granja J. R. ; Ghadiri M. R. Angew. Chem. Int. Edit 2001, 40, 988.
41 Zhan C. L. ; Gao P. ; Liu M. H. Chem. Commun 2005, No 4, 462.
42 Liu Y. Q. ; Wang T. Y. ; Li Z. B. ; Liu M. H. Chem. Commun 2013, 49 (42), 4767.
43 Duan P. F. ; Qin L. ; Zhu X. F. ; Liu M. H. Chem. -Eur. J 2011, 17 (23), 6389.
44 Zhu X. F. ; Li Y. G. ; Duan P. F. ; Liu M. H. Chem. -Eur. J 2010, 16 (27), 8034.
45 Jin Q. ; Zhang L. ; Liu M. Chem. -Eur. J 2013, 19 (28), 9234.
46 Cao H. ; Duan P. F. ; Zhu X. F. ; Jiang J. ; Liu M. H. . Chem. -Eur. J 2012, 18 (18), 5546.
47 Oda R. ; Huc I. ; Schmutz M. ; Candau S. J. ; MacKintosh F. C. Nature 1999, 399 (6736), 566.
48 Adamcik J. ; Castelletto V. ; Bolisetty S. ; Hamley I. W. ; Mezzenga R. Angew. Chem. Int. Edit 2011, 50 (24), 5495.
49 Jung J. H. ; John G. ; Masuda M. ; Yoshida K. ; Shinkai S. ; Shimizu T. Langmuir 2001, 17 (23), 7229.
50 Yan Y. ; Fang J. ; Liang J. ; Zhang Y. ; Wei Z. Chem. Commun 2012, 48 (23), 2843.
51 Huang B. ; Hirst A. R. ; Smith D. K. ; Castelletto V. ; Hamley I. W. J. Am. Chem. Soc 2005, 127 (19), 7130.
52 Oda R. ; Huc I. ; Candau S. J. Angew. Chem. Int. Edit 1998, 37 (19), 2689.
53 Berthier D. ; Buffeteau T. ; Leger J. M. ; Oda R. ; Huc I. J. Am. Chem. Soc 2002, 124, 13486.
54 Brizard A. ; Aime C. ; Labrot T. ; Huc I. ; Berthier D. ; Artzner F. ; Desbat B. ; Oda R. J. Am. Chem. Soc 2007, 129 (12), 3754.
55 Wang X. F. ; Duan P. F. ; Liu M. H. Chem. Commun 2012, 48 (60), 7501.
56 Cao H. ; Yuan Q. Z. ; Zhu X. F. ; Zhao Y. P. ; Liu M. H. Langmuir 2012, 28 (43), 15410.
57 Pashuck E. T. ; Stupp S. I. J. Am. Chem. Soc 2010, 132 (26), 8819.
58 Segarra-Maset M. D. ; Nebot V. J. ; Miravet J. F. ; Escuder B. Chem. Soc. Rev 2013, 42 (17), 7086.
59 Zhu G. ; Dordick J. S. Chem. Mater 2006, 18 (25), 5988.
60 Zhao C. X. ; Wang H. T. ; Li M. Acta Phys. -Chim. Sin 2014, 30 (12), 2197.
60 赵呈孝; 王海涛; 李敏. 物理化学学报, 2014, 30 (12), 2197.
61 Puigmartí-Luis J. ; del Pino Á. P. ; Laukhin V. ; Feldborg L. N. ; Rovira C. ; Laukhina E. ; Amabilino D. B. J. Mater. Chem 2010, 20 (3), 466.
62 Yu W. ; Li Y. G. ; Wang T. Y. ; Liu M. H. ; Li Z. S. Acta Phys. -Chim. Sin 2008, 24 (9), 1535.
62 于微; 李远刚; 王天宇; 刘鸣华; 李占双. 物理化学学报, 2008, 24 (9), 1535.
63 Pal A. ; Dey J. Langmuir 2011, 27 (7), 3401.
64 Ramakanth I. ; Patnaik A. J. Phys. Chem. B 2012, 116 (9), 2722.
65 Liu C. ; Jin Q. ; Lv K. ; Zhang L. ; Liu M. Chem. Commun 2014, 50 (28), 3702.
66 Wang X. F. ; Yang D. ; Liu M. H. Imaging Sci. Photochem 2015, 33 (1), 49.
66 王秀凤; 杨东; 刘鸣华. 影像科学与光化学, 2015, 33 (1), 49.
67 Yagai S. ; Kitamura A. Chem. Soc. Rev 2008, 37 (8), 1520.
68 Wang X. ; Liu M. Chem. -Eur. J 2014, 20 (32), 10110.
69 Yu X. D. ; Chen L. M. ; Zhang M. M. ; Yi T. Chem. Soc. Rev 2014, 43 (15), 5346.
70 Wang Y. ; Zhan C. ; Fu H. ; Li X. ; Sheng X. ; Zhao Y. ; Xiao D. ; Ma Y. ; Ma J. S. ; Yao J. Langmuir 2008, 24 (15), 7635.
71 Komiya N. ; Muraoka T. ; Iida M. ; Miyanaga M. ; Takahashi K. ; Naota T. J. Am. Chem. Soc 2011, 133 (40), 16054.
72 Chen H. B. ; Zhou Y. ; Yin J. ; Yan J. ; Ma Y. ; Wang L. ; Cao Y. ; Wang J. ; Pei J. Langmuir 2009, 25 (10), 5459.
73 Nanda J. ; Biswas A. ; Banerjee A. Soft Matter 2013, 9 (16), 4198.
74 Jin Q. X. ; Zhang L. ; Zhu X. F. ; Duan P. F. ; Liu M. H. Chem. -Eur. J 2012, 18 (16), 4916.
75 Chen J. ; Wu W. ; McNeil A. J. Chem. Commun 2012, 48 (58), 7310.
76 Zhang L. ; Wang X. ; Wang T. ; Liu M. Small 2015, 11 (9|10), 1025.
77 Liu M. ; Zhang L. ; Wang T. Chem. Rev 2015, 115 (15), 7304.
78 Feringa B. L. ; van Delden R. A. ; Koumura N. ; Geertsema E. M. Chem. Rev 2000, 100 (5), 1789.
79 Jin Q. X. ; Li J. ; Li X. G. ; Zhang L. ; Fang S. M. ; Liu M. H. Prog. Chem 2014, 26 (6), 919.
79 靳清贤; 李晶; 李孝刚; 张莉; 方少明; 刘鸣华. 化学进展, 2014, 26 (6), 919.
80 Das R. K. ; Kandanelli R. ; Linnanto J. ; Bose K. ; Maitra U. Langmuir 2010, 26 (20), 16141.
81 Duan P. F. ; Zhu X. F. ; Liu M. H. Chem. Commun 2011, 47 (19), 5569.
82 Kar T. ; Mandal S. K. ; Das P. K. Chem. -Eur. J 2011, 17 (52), 14952.
83 Duan P. F. ; Cao H. ; Zhang L. ; Liu M. H. Soft Matter 2014, 10 (30), 5428.
84 Zhang W. ; Fujiki M. ; Zhu X. Chem. -Eur. J 2011, 17 (38), 10628.
85 Yang D. ; Liu C. ; Zhang L. ; Liu M. Chem. Commun 2014, 50 (84), 12688.
86 Sobczuk A. A. ; Tsuchiya Y. ; Shiraki T. ; Tamaru S. I. ; Shinkai S. Chem. -Eur. J 2012, 18 (10), 2832.
87 Lv K. ; Qin L. ; Wang X. F. ; Zhang L. ; Liu M. H. Phys. Chem. Chem. Phys 2013, 15 (46), 20197.
88 Samanta S. K. ; Bhattacharya S. Chem. Commun 2013, 49 (14), 1425.
89 Stepanenko V. ; Li X. Q. ; Gershberg J. ; Würthner F. Chem. -Eur. J 2013, 19 (13), 4176.
90 Lifson S. ; Green M. M. ; Andreola C. ; Peterson N. J. Am. Chem. Soc 1989, 111 (24), 8850.
91 Prins L. J. ; Timmerman P. ; Reinhoudt D. N. J. Am. Chem. Soc 2001, 123 (42), 10153.
92 Ishi-i T. ; Kuwahara R. ; Takata A. ; Jeong Y. ; Sakurai K. ; Mataka S. Chem. -Eur. J 2006, 12 (3), 763.
93 Nam S. R. ; Lee H. Y. ; Hong J. I. Chem. -Eur. J 2008, 14 (20), 6040.
94 van Gestel J. Macromolecules 2004, 37 (10), 3894.
95 van Gestel J. ; Palmans A. R. A. ; Titulaer B. ; Vekemans J. A. J. M. ; Meijer E. W. J. Am. Chem. Soc 2005, 127 (15), 5490.
96 Palmans A. R. A. ; Meijer E. W. Angew. Chem. Int. Edit 2007, 46 (47), 8948.
97 Cao H. ; Zhu X. F. ; Liu M. H. Angew. Chem. Int. Edit 2013, 52 (15), 4122.
98 Stals P. J. ; Korevaar P. A. ; Gillissen M. A. ; de Greef T. F. ; Fitié C. F. ; Sijbesma R. P. ; Palmans A. R. ; Meijer E. Angew. Chem. Int. Edit 2012, 124 (45), 11459.
99 Keith C. ; Reddy R. A. ; Hauser A. ; Baumeister U. ; Tschierske C. J. Am. Chem. Soc 2006, 128 (9), 3051.
100 Kimura M. ; Hatanaka T. ; Nomoto H. ; Takizawa J. ; Fukawa T. ; Tatewaki Y. ; Shirai H. Chem. Mater 2010, 22 (20), 5732.
101 Zhang S. ; Yang S. ; Lan J. ; Yang S. ; You J. Chem. Commun 2008, No 46, 6170.
102 Shen Z. ; Wang T. ; Liu M. Angew. Chem. Int. Edit 2014, 126 (49), 13642.
103 Jin Q. X. ; Zhang L. ; Cao H. ; Wang T. Y. ; Zhu X. F. ; Jiang J. ; Liu M. H. Langmuir 2011, 27 (22), 13847.
104 Liu G. F. ; Zhang D. ; Feng C. L. Angew. Chem. Int. Edit 2014, 53 (30), 7789.
[1] Xiaomeng CHENG,Dongxia JIAO,Zhihao LIANG,Jinjin WEI,Hongping LI,Junjiao YANG. Self-Assembly Behavior of Amphiphilic Diblock Copolymer PS-b-P4VP in CO2-Expanded Liquids[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 945-951.
[2] Carlos CÁRDENAS,Macarena MUÑOZ,Julia CONTRERAS,Paul W. AYERS,Tatiana GÓMEZ,Patricio FUENTEALBA. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 631-638.
[3] Lili HUANG,Xiang SHAO. CO Induced Single and Multiple Au Adatoms Trapped by Melem Self-Assembly[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1390-1396.
[4] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[5] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[6] Hong-Zhi ZHANG,Zhi-Qing ZHANG,Fang WANG,Ting ZHOU,Xiu-Feng WANG,Guo-Dong ZHANG,Ting-Ting LIU,Shu-Zhen LIU. Application of Structural DNA Nanotechnology[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1520-1532.
[7] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428.
[8] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[9] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[10] Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.
[11] Wei WANG,Kai TAN. Structure and Electronic Properties of Single Walled Nanotubes from AlAs (111) Sheets: A DFT Study[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 548-553.
[12] Hai-Kuan YANG. A Solution-Based Self-Assembly Approach to Preparing Functional Supramolecular Hybrid Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 582-589.
[13] . Simulation Studies of the Self-Assembly of Halogen-Bonded Sierpiński Triangle Fractals[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 539-547.
[14] Ya-Yu HUANG,Qiu-Yan FANG,Jian-Zhang ZHOU,Dong-Ping ZHAN,Kang SHI,Zhong-Qun TIAN. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2042-2051.
[15] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.