Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (1): 227-238    DOI: 10.3866/PKU.WHXB201511181
REVIEW     
Supramolecular Gels: Structural Diversity and Supramolecular Chirality
WANG Xiu-Feng1,2, ZHANG Li2, LIU Ming-Hua2
1 College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong Province, P. R. China;
2 CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
Download:   PDF(14660KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Supramolecular gels, an important type of soft matter, have showed unique advantages in the construction of functional soft materials, such as multiple stimuli responsive, photoelectrical, and biological compatibility materials. Through supramolecular gelation, diverse, uniform nanostructures can be obtained in a large quantity. On the other hand, most gelators are chiral molecules, so supramolecular gel is a medium to realize the expression of the chirality in supramolecular and nano level, especially to realize effectively chirality transfer, amplification, and asymmetric catalysis, and to fabricate various chiral architectures. In this paper, we describe the structural diversity and chirality in supramolecular gels, and discuss the future prospects for supramolecular gels.



Key wordsSupramolecular gel      Self-assembly      Nanotube      Helical and twisted ribbons      Supramolecular chirality      Chiral amplification     
Received: 14 October 2015      Published: 18 November 2015
MSC2000:  O648  
Fund:  

The project was supported by the National Key Basic Research Program (973) (2013CB834504), National Natural Science Foundation of China (21321063, 91427302), Fund of the Chinese Academy of Sciences (XDB12020200), Outstanding Young Scientists Award Fund of Shandong Province, China (BS2014CL028), and Fundamental Research Funds for the Central Universities, China (15CX02052A).

Corresponding Authors: LIU Ming-Hua     E-mail: liumh@iccas.ac.cn
Cite this article:

WANG Xiu-Feng, ZHANG Li, LIU Ming-Hua. Supramolecular Gels: Structural Diversity and Supramolecular Chirality. Acta Phys. -Chim. Sin., 2016, 32(1): 227-238.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201511181     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2016/V32/I1/227

(1) George, M.; Weiss, R. G. Accounts Chem. Res. 2006, 39, 489. doi: 10.1021/ar0500923
(2) Dastidar, P. Chem. Soc. Rev. 2008, 37 (12), 2699. doi: 10.1039/b807346e
(3) Piepenbrock, M. O. M.; Lloyd, G. O.; Clarke, N.; Steed, J. W. Chem. Rev. 2010, 110 (4), 1960. doi: 10.1021/cr9003067
(4) Hirst, A. R.; Smith, D. K. Chem. -Eur. J. 2005, 11 (19), 5496.
(5) Weiss, R. G. J. Am. Chem. Soc. 2014, 136 (21), 7519. doi: 10.1021/ja503363v
(6) Babu, S. S.; Prasanthkumar, S.; Ajayaghosh, A. Angew. Chem. Int. Edit. 2012, 51 (8), 1766. doi: 10.1002/anie.v51.8
(7) Diaz Diaz, D.; Kuhbeck, D.; Koopmans, R. J. Chem. Soc. Rev. 2011, 40 (1), 427. doi: 10.1039/C005401C
(8) Wang, J.; Yang, G.; Jiang, H.; Zou, G.; Zhang, Q. Soft Matter 2013, 9 (41), 9785. doi: 10.1039/c3sm51896e
(9) Praveen, V. K.; Ranjith, C.; Armaroli, N. Angew. Chem. Int. Edit. 2014, 53 (2), 365. doi: 10.1002/anie.v53.2
(10) Yang, Z.; Liang, G.; Xu, B. Accounts Chem. Res. 2008, 41, 315. doi: 10.1021/ar7001914
(11) Gao, Y.; Zhao, F.; Wang, Q.; Zhang, Y.; Xu, B. Chem. Soc. Rev. 2010, 39 (9), 3425. doi: 10.1039/b919450a
(12) Li, W. S.; Jia, X. R.; Wang, B. B.; Ji, Y.; Wei, Y. Tetrahedron 2007, 63 (36), 8794. doi: 10.1016/j.tet.2007.06.028
(13) Xue, M.; Miao, Q.; Fang, Y. Acta Phys. -Chim. Sin. 2013, 29 (9), 2005. [薛敏, 苗青, 房喻. 物理化学学报, 2013, 29 (9), 2005.] doi: 10.3866/PKU.WHXB201306142
(14) Zhong, J. L.; Pan, H.; Luo, X. Z.; Hong, S. G.; Zhang, N.; Huang, J. B. Acta Phys. -Chim. Sin., 2014, 30 (9), 1688. [钟金莲, 潘虹, 罗序中, 洪三国, 张宁, 黄建滨. 物理化学学报, 2014, 30 (9), 1688.] doi: 10.3866/PKU.WHXB201407041
(15) Amabilino, D.; Veciana, J. Supramolecular Chiral Functional Materials. In Supramolecular Chirality; Crego-Calama, M., Reinhoudt, D., Eds.; Springer Berlin Heidelberg: 2006; Vol. 265, p 253.
(16) Dawn, A.; Shiraki, T.; Haraguchi, S.; Sato, H.; Sada, K.; Shinkai, S. Chem. -Eur. J. 2010, 16 (12), 3676. doi: 10.1002/chem.v16:12
(17) Cornelissen, J. J.; Rowan, A. E.; Nolte, R. J.; Sommerdijk, N. A. Chem. Rev. 2001, 101 (12), 4039. doi: 10.1021/cr990126i
(18) Yashima, E.; Maeda, K.; Furusho, Y. Accounts Chem. Res. 2008, 41 (9), 1166. doi: 10.1021/ar800091w
(19) de Jong, J. J.; Lucas, L. N.; Kellogg, R. M.; van Esch, J. H.; Feringa, B. L. Science 2004, 304, 278. doi: 10.1126/science.1095353
(20) Das, A. K.; Bose, P. P.; Drew, M. G.; Banerjee, A. Tetrahedron 2007, 63 (31), 7432. doi: 10.1016/j.tet.2007.05.045
(21) Palui, G.; Garai, A.; Nanda, J.; Nandi, A. K.; Banerjee, A. J. Phys. Chem. B 2009, 114 (3), 1249.
(22) Zhu, X. F.; Duan, P. F.; Zhang, L.; Liu, M. H. Chem. -Eur. J. 2011, 17 (12), 3429. doi: 10.1002/chem.v17.12
(23) Qin, L.; Xie, F.; Jin, X.; Liu, M. Chem. -Eur. J. 2015, 21 (32), 11300. doi: 10.1002/chem.201500929
(24) Wang, X.; Duan, P.; Liu, M. Chem. -Asian J. 2014, 9 (3), 770. doi: 10.1002/asia.v9.3
(25) Qing, G.; Shan, X.; Chen, W.; Lv, Z.; Xiong, P.; Sun, T. Angew. Chem. Int. Edit. 2014, 53 (8), 2124. doi: 10.1002/anie.201308554
(26) Meazza, L.; Foster, J. A.; Fucke, K.; Metrangolo, P.; Resnati, G.; Steed, J. W. Nat. Chem. 2013, 5 (1), 42. doi: 10.1038/nchem.1496
(27) Xu, H. Q.; Song, J.; Tian, T.; Feng, R. X. Soft Matter 2012, 8 (12), 3478. doi: 10.1039/c2sm07387k
(28) Miao, W.; Qin, L.; Yang, D.; Jin, X.; Liu, M. Chem. -Eur. J. 2015, 21 (3), 1064. doi: 10.1002/chem.201405406
(29) Babu, S. S.; Mahesh, S.; Kartha, K. K.; Ajayaghosh, A. Chem. Asian J. 2009, 4 (6), 824. doi: 10.1002/asia.v4:6
(30) Lv, K.; Zhang, L.; Liu, M. Langmuir 2014, 30 (31), 9295. doi: 10.1021/la502335p
(31) Kulbaba, K.; Cheng, A.; Bartole, A.; Greenberg, S.; Resendes, R.; Coombs, N.; Safa-Sefat, A.; Greedan, J. E.; Stöver, H. D. H.; Ozin, G. A.; Manners, I. J. Am. Chem. Soc. 2002, 124 (42), 12522. doi: 10.1021/ja0202053
(32) Cao, X.; Gao, A.; Lv, H.; Wu, Y.; Wang, X.; Fan, Y. Org. Biomol. Chem. 2013, 11 (45), 7931. doi: 10.1039/c3ob41449c
(33) Huang, C.; Wen, L.; Liu, H.; Li, Y.; Liu, X.; Yuan, M.; Zhai, J.; Jiang, L.; Zhu, D. Adv. Mater. 2009, 21 (17), 1721. doi: 10.1002/adma.v21:17
(34) Wang, M.; Mohebbi, A. R.; Sun, Y.; Wudl, F. Angew. Chem. Int. Edit. 2012, 51 (28), 6920. doi: 10.1002/anie.201201796
(35) Huang, X.; Li, C.; Jiang, S. G.; Wang, X. S.; Zhang, B. W.; Liu, M. H. J. Am. Chem. Soc. 2004, 126 (5), 1322. doi: 10.1021/ja036878i
(36) Zhou, W.; Lin, L.; Zhao, D.; Guo, L. J. Am. Chem. Soc. 2011, 133 (22), 8389. doi: 10.1021/ja201101p
(37) Wang, X.; Duan, P.; Liu, M. Chem. -Eur. J. 2013, 19 (47), 16072. doi: 10.1002/chem.201302200
(38) Banerjee, S.; Datta, A. Langmuir 2010, 26 (2), 1172. doi: 10.1021/la902265e
(39) Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich, N. Nature 1993, 366 (6453), 324. doi: 10.1038/366324a0
(40) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew. Chem. Int. Edit. 2001, 40, 988.
(41) Zhan, C. L.; Gao, P.; Liu, M. H. Chem. Commun. 2005, No. 4, 462.
(42) Liu, Y. Q.; Wang, T. Y.; Li, Z. B.; Liu, M. H. Chem. Commun. 2013, 49 (42), 4767. doi: 10.1039/c3cc41786g
(43) Duan, P. F.; Qin, L.; Zhu, X. F.; Liu, M. H. Chem. -Eur. J. 2011, 17 (23), 6389. doi: 10.1002/chem.201003049
(44) Zhu, X. F.; Li, Y. G.; Duan, P. F.; Liu, M. H. Chem. -Eur. J. 2010, 16 (27), 8034. doi: 10.1002/chem.201000595
(45) Jin, Q.; Zhang, L.; Liu, M. Chem. -Eur. J. 2013, 19 (28), 9234. doi: 10.1002/chem.v19.28
(46) Cao, H.; Duan, P. F.; Zhu, X. F.; Jiang, J.; Liu, M. H. Chem. -Eur. J. 2012, 18 (18), 5546. doi: 10.1002/chem.v18.18
(47) Oda, R.; Huc, I.; Schmutz, M.; Candau, S. J.; MacKintosh, F. C. Nature 1999, 399 (6736), 566. doi: 10.1038/21154
(48) Adamcik, J.; Castelletto, V.; Bolisetty, S.; Hamley, I. W.; Mezzenga, R. Angew. Chem. Int. Edit. 2011, 50 (24), 5495. doi: 10.1002/anie.201100807
(49) Jung, J. H.; John, G.; Masuda, M.; Yoshida, K.; Shinkai, S.; Shimizu, T. Langmuir 2001, 17 (23), 7229. doi: 10.1021/la0109516
(50) Yan, Y.; Fang, J.; Liang, J.; Zhang, Y.; Wei, Z. Chem. Commun. 2012, 48 (23), 2843. doi: 10.1039/c2cc17235f
(51) Huang, B.; Hirst, A. R.; Smith, D. K.; Castelletto, V.; Hamley, I. W. J. Am. Chem. Soc. 2005, 127 (19), 7130. doi: 10.1021/ja050412d
(52) Oda, R.; Huc, I.; Candau, S. J. Angew. Chem. Int. Edit. 1998, 37 (19), 2689.
(53) Berthier, D.; Buffeteau, T.; Leger, J. M.; Oda, R.; Huc, I. J. Am. Chem. Soc. 2002, 124, 13486. doi: 10.1021/ja027660j
(54) Brizard, A.; Aime, C.; Labrot, T.; Huc, I.; Berthier, D.; Artzner, F.; Desbat, B.; Oda, R. J. Am. Chem. Soc. 2007, 129 (12), 3754. doi: 10.1021/ja0682172
(55) Wang, X. F.; Duan, P. F.; Liu, M. H. Chem. Commun. 2012, 48 (60), 7501. doi: 10.1039/c2cc33246a
(56) Cao, H.; Yuan, Q. Z.; Zhu, X. F.; Zhao, Y. P.; Liu, M. H. Langmuir 2012, 28 (43), 15410. doi: 10.1021/la303263g
(57) Pashuck, E. T.; Stupp, S. I. J. Am. Chem. Soc. 2010, 132 (26), 8819. doi: 10.1021/ja100613w
(58) Segarra-Maset, M. D.; Nebot, V. J.; Miravet, J. F.; Escuder, B. Chem. Soc. Rev. 2013, 42 (17), 7086. doi: 10.1039/C2CS35436E
(59) Zhu, G.; Dordick, J. S. Chem. Mater. 2006, 18 (25), 5988. doi: 10.1021/cm0619297
(60) Zhao, C. X.; Wang, H. T.; Li, M. Acta Phys. -Chim. Sin. 2014, 30 (12), 2197. [赵呈孝, 王海涛, 李敏. 物理化学学报, 2014, 30 (12), 2197.] doi: 10.3866/PKU.WHXB201410211
(61) Puigmartí-Luis, J.; del Pino, Á. P.; Laukhin, V.; Feldborg, L. N.; Rovira, C.; Laukhina, E.; Amabilino, D. B. J. Mater. Chem. 2010, 20 (3), 466. doi: 10.1039/B917751E
(62) Yu, W.; Li, Y. G.; Wang, T. Y.; Liu, M. H.; Li, Z. S. Acta Phys. -Chim. Sin. 2008, 24 (9), 1535. [于微, 李远刚, 王天宇, 刘鸣华, 李占双. 物理化学学报, 2008, 24 (9), 1535.] doi: 10.1016/S1872-1508(08)60062-5
(63) Pal, A.; Dey, J. Langmuir 2011, 27 (7), 3401. doi: 10.1021/la105027b
(64) Ramakanth, I.; Patnaik, A. J. Phys. Chem. B 2012, 116 (9), 2722. doi: 10.1021/jp2096345
(65) Liu, C.; Jin, Q.; Lv, K.; Zhang, L.; Liu, M. Chem. Commun. 2014, 50 (28), 3702. doi: 10.1039/c4cc00311j
(66) Wang, X. F.; Yang, D.; Liu, M. H. Imaging Sci. Photochem. 2015, 33 (1), 49. [王秀凤, 杨东, 刘鸣华. 影像科学与光化学, 2015, 33 (1), 49.]
(67) Yagai, S.; Kitamura, A. Chem. Soc. Rev. 2008, 37 (8), 1520. doi: 10.1039/b703092b
(68) Wang, X.; Liu, M. Chem. -Eur. J. 2014, 20 (32), 10110. doi: 10.1002/chem.v20.32
(69) Yu, X. D.; Chen, L. M.; Zhang, M. M.; Yi, T. Chem. Soc. Rev. 2014, 43 (15), 5346. doi: 10.1039/C4CS00066H
(70) Wang, Y.; Zhan, C.; Fu, H.; Li, X.; Sheng, X.; Zhao, Y.; Xiao, D.; Ma, Y.; Ma, J. S.; Yao, J. Langmuir 2008, 24 (15), 7635. doi: 10.1021/la801499y
(71) Komiya, N.; Muraoka, T.; Iida, M.; Miyanaga, M.; Takahashi, K.; Naota, T. J. Am. Chem. Soc. 2011, 133 (40), 16054. doi: 10.1021/ja2039369
(72) Chen, H. B.; Zhou, Y.; Yin, J.; Yan, J.; Ma, Y.; Wang, L.; Cao, Y.; Wang, J.; Pei, J. Langmuir 2009, 25 (10), 5459. doi: 10.1021/la9010086
(73) Nanda, J.; Biswas, A.; Banerjee, A. Soft Matter 2013, 9 (16), 4198. doi: 10.1039/c3sm27050e
(74) Jin, Q. X.; Zhang, L.; Zhu, X. F.; Duan, P. F.; Liu, M. H. Chem. -Eur. J. 2012, 18 (16), 4916. doi: 10.1002/chem.v18.16
(75) Chen, J.; Wu, W.; McNeil, A. J. Chem. Commun. 2012, 48 (58), 7310. doi: 10.1039/c2cc33486k
(76) Zhang, L.; Wang, X.; Wang, T.; Liu, M. Small 2015, 11 (9–10), 1025. doi: 10.1002/smll.v11.9-10
(77) Liu, M.; Zhang, L.; Wang, T. Chem. Rev. 2015, 115 (15), 7304. doi: 10.1021/cr500671p
(78) Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema, E. M. Chem. Rev. 2000, 100 (5), 1789. doi: 10.1021/cr9900228
(79) Jin, Q. X.; Li, J.; Li, X. G.; Zhang, L.; Fang, S. M.; Liu, M. H. Prog. Chem. 2014, 26 (6), 919. [靳清贤, 李晶, 李孝刚,
张莉, 方少明, 刘鸣华. 化学进展, 2014, 26 (6), 919.]
(80) Das, R. K.; Kandanelli, R.; Linnanto, J.; Bose, K.; Maitra, U. Langmuir 2010, 26 (20), 16141. doi: 10.1021/la1029905
(81) Duan, P. F.; Zhu, X. F.; Liu, M. H. Chem. Commun. 2011, 47 (19), 5569. doi: 10.1039/c1cc10813a
(82) Kar, T.; Mandal, S. K.; Das, P. K. Chem. -Eur. J. 2011, 17 (52), 14952. doi: 10.1002/chem.201101173
(83) Duan, P. F.; Cao, H.; Zhang, L.; Liu, M. H. Soft Matter 2014, 10 (30), 5428. doi: 10.1039/C4SM00507D
(84) Zhang, W.; Fujiki, M.; Zhu, X. Chem. -Eur. J. 2011, 17 (38), 10628. doi: 10.1002/chem.201100208
(85) Yang, D.; Liu, C.; Zhang, L.; Liu, M. Chem. Commun. 2014, 50 (84), 12688. doi: 10.1039/C4CC05406G
(86) Sobczuk, A. A.; Tsuchiya, Y.; Shiraki, T.; Tamaru, S. I.; Shinkai, S. Chem. -Eur. J. 2012, 18 (10), 2832. doi: 10.1002/chem.201103249
(87) Lv, K.; Qin, L.; Wang, X. F.; Zhang, L.; Liu, M. H. Phys. Chem. Chem. Phys. 2013, 15 (46), 20197. doi: 10.1039/c3cp53620c
(88) Samanta, S. K.; Bhattacharya, S. Chem. Commun. 2013, 49 (14), 1425. doi: 10.1039/c2cc38221k
(89) Stepanenko, V.; Li, X. Q.; Gershberg, J.; Würthner, F. Chem. -Eur. J. 2013, 19 (13), 4176. doi: 10.1002/chem.201204146
(90) Lifson, S.; Green, M. M.; Andreola, C.; Peterson, N. J. Am. Chem. Soc. 1989, 111 (24), 8850. doi: 10.1021/ja00206a013
(91) Prins, L. J.; Timmerman, P.; Reinhoudt, D. N. J. Am. Chem. Soc. 2001, 123 (42), 10153. doi: 10.1021/ja010610e
(92) Ishi-i, T.; Kuwahara, R.; Takata, A.; Jeong, Y.; Sakurai, K.; Mataka, S. Chem. -Eur. J. 2006, 12 (3), 763.
(93) Nam, S. R.; Lee, H. Y.; Hong, J. I. Chem. -Eur. J. 2008, 14 (20), 6040. doi: 10.1002/chem.v14:20
(94) van Gestel, J. Macromolecules 2004, 37 (10), 3894. doi: 10.1021/ma030480p
(95) van Gestel, J.; Palmans, A. R. A.; Titulaer, B.; Vekemans, J. A. J. M.; Meijer, E. W. J. Am. Chem. Soc. 2005, 127 (15), 5490. doi: 10.1021/ja0501666
(96) Palmans, A. R. A.; Meijer, E. W. Angew. Chem. Int. Edit. 2007, 46 (47), 8948.
(97) Cao, H.; Zhu, X. F.; Liu, M. H. Angew. Chem. Int. Edit. 2013, 52 (15), 4122. doi: 10.1002/anie.201300444
(98) Stals, P. J.; Korevaar, P. A.; Gillissen, M. A.; de Greef, T. F.; Fitié, C. F.; Sijbesma, R. P.; Palmans, A. R.; Meijer, E. Angew. Chem. Int. Edit. 2012, 124 (45), 11459. doi: 10.1002/ange.201204727
(99) Keith, C.; Reddy, R. A.; Hauser, A.; Baumeister, U.; Tschierske, C. J. Am. Chem. Soc. 2006, 128 (9), 3051. doi: 10.1021/ja057685t
(100) Kimura, M.; Hatanaka, T.; Nomoto, H.; Takizawa, J.; Fukawa, T.; Tatewaki, Y.; Shirai, H. Chem. Mater. 2010, 22 (20), 5732. doi: 10.1021/cm102276a
(101) Zhang, S.; Yang, S.; Lan, J.; Yang, S.; You, J. Chem. Commun. 2008, No. 46, 6170. doi: 10.1039/B813375A
(102) Shen, Z.; Wang, T.; Liu, M. Angew. Chem. Int. Edit. 2014, 126 (49), 13642. doi: 10.1002/ange.201407223
(103) Jin, Q. X.; Zhang, L.; Cao, H.; Wang, T. Y.; Zhu, X. F.; Jiang, J.; Liu, M. H. Langmuir 2011, 27 (22), 13847. doi: 10.1021/la203110z
(104) Liu, G. F.; Zhang, D.; Feng, C. L. Angew. Chem. Int. Edit. 2014, 53 (30), 7789. doi: 10.1002/anie.201403249

[1] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[2] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[3] ZHANG Hong-Zhi, ZHANG Zhi-Qing, WANG Fang, ZHOU Ting, WANG Xiu-Feng, ZHANG Guo-Dong, LIU Ting-Ting, LIU Shu-Zhen. Application of Structural DNA Nanotechnology[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1520-1532.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428.
[5] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[7] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.
[8] ZHANG Zhen, XIE Wen-Jun, YANG Yi Isaac, SUN Geng, GAO Yi-Qin. Simulation Studies of the Self-Assembly of Halogen-Bonded Sierpiński Triangle Fractals[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 539-547.
[9] YANG Hai-Kuan. A Solution-Based Self-Assembly Approach to Preparing Functional Supramolecular Hybrid Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 582-589.
[10] WANG Wei, TAN Kai. Structure and Electronic Properties of Single Walled Nanotubes from AlAs(111) Sheets: A DFT Study[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 548-553.
[11] HUANG Ya-Yu, FANG Qiu-Yan, ZHOU Jian-Zhang, ZHAN Dong-Ping, SHI Kang, TIAN Zhong-Qun. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2042-2051.
[12] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.
[13] WANG Yun-He, QIN Yuan, YAO Man, WANG Xu-Dong, LI Shu-Ying, WANG Dong, CHEN Ting. Molecular Dynamics Simulation of a Chiral Self-Assembled Structure of a BIC and HA System on a HOPG Surface Driven by Hydrogen Bonds[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2255-2263.
[14] XIA Ji-Ye, DONG Guo-Dong, TIAN Bo-Yuan, YAN Qiu-Ping, HAN Jie, QIU Song, LI Qing-Wen, LIANG Xue-Lei, PENG Lian-Mao. Contact Resistance Effects in Carbon Nanotube Thin Film Transistors[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 1029-1035.
[15] LI Qing, YANG Deng-Feng, WANG Jian-Hua, WU Qi, LIU Qing-Zhi. Biomimetic Modification and Desalination Behavior of (15,15) Carbon Nanotubes with a Diameter Larger than 2 nm[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 691-700.