Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (5): 2008037.doi: 10.3866/PKU.WHXB202008037
• ARTICLE • Previous Articles
Jingyun Zou1, Bing Gao2, Xiaopin Zhang2, Lei Tang1, Simin Feng1, Hehua Jin2, Bilu Liu1,*(), Hui-Ming Cheng1,3,*()
Received:
2020-08-13
Accepted:
2020-09-08
Published:
2020-09-14
Contact:
Bilu Liu,Hui-Ming Cheng
E-mail:bilu.liu@sz.tsinghua.edu.cn;hmcheng@sz.tsinghua.edu.cn
About author:
Email: hmcheng@sz.tsinghua.edu.cn (H.C.)Supported by:
Jingyun Zou, Bing Gao, Xiaopin Zhang, Lei Tang, Simin Feng, Hehua Jin, Bilu Liu, Hui-Ming Cheng. Direct Growth of 1D SWCNT/2D MoS2 Mixed-Dimensional Heterostructures and Their Charge Transfer Property[J]. Acta Phys. -Chim. Sin. 2022, 38(5), 2008037. doi: 10.3866/PKU.WHXB202008037
Fig 1
In situ growth of SWCNT/MoS2 mixed-dimensional heterostructures. (a) Schematic of the growth method; (b) schematic of the SWCNT/MoS2 mixed-dimensional heterostructures; (c, f) SEM images of the aligned SWCNT arrays and random SWCNT networks; (d, g) distribution of SWCNTs' orientation angle in the aligned arrays and random networks. The orientation angle is defined as the angle between the axis of nanotubes and the y-direction in images (c) and (f); (e, h) Optical images (OM) of the growth results on the two substrates with SWCNT arrays and SWCNT networks."
Fig 2
Growth mechanism of the SWCNT/MoS2 mixed-dimensional heterostructures. The 'absorption-diffusion-absorption' mechanism is described as follows: (1) Mo and S precursors are vapor transported to the surfaces of SWCNTs, (2) absorbed by the SWCNTs, (3) diffused to the surface of Si nearby SWCNTs, (4) absorbed by Si, and finally, (5) MoS2 will nucleate and grow on Si surface."
Fig 3
Growth mechanism analysis of the SWCNT/MoS2 mixed-dimensional heterostructure. (a) AFM image of a nucleation site with a height of 5.5 nm, where many 1D threadlike SWCNT can be found on the surface of the nucleus and silicon substrate; (b–d) SEM images of the nucleus, where many threadlike SWCNTs can be seen on its surface (c), and MoS2 grows faster in the grooves between SWCNTs to from growth front (d); (e, f) schematic of the growth process and OM image of the growth results on the random SWCNT networks. The random SWCNTs will disturb the gas flow and excess Mo and S precursors accumulate at the groove, forming thick and irregular polycrystal MoS2; (g, h) schematic of the growth process and OM image of the growth results on aligned SWCNT array. In this case, excessive Mo and S can be carried away by the gas flow to form monolayer MoS2."
Fig 4
Raman spectroscopy analysis of the SWCNT/MoS2 mixed-dimensional heterostructures. (a) Raman spectra of the pure SWCNT, random SWCNT/MoS2 and aligned SWCNT/MoS2 heterostructure; (b) PL spectra of the pure MoS2, random SWCNT/MoS2 and aligned SWCNT/MoS2 heterostructure; (c, f) Comparison and statistic results of the E2g and A1g peaks of MoS2 from the heterostructures and pure MoS2; (d, g) Comparison and statistic results of the G peak of SWCNT from the heterostructures and pure SWCNT; (e) the band alignment of MoS2 and SWCNT; (h, i) statistics of the IG/ID, FWHM of the G+ peak of SWCNT before and after in situ growth, and the FWHM of the A1g peak of MoS2 in heterostructures and pure MoS2"
1 |
Manzeli S. ; Ovchinnikov D. ; Pasquier D. ; Yazyev O. V. ; Kis A. Nat. Rev. Mater. 2017, 2, 17033.
doi: 10.1038/natrevmats.2017.33 |
2 |
Chhowalla M. ; Shin H. S. ; Eda G. ; Li L. J. ; Loh K. P. ; Zhang H. Nat. Chem. 2013, 5, 263.
doi: 10.1038/nchem.1589 |
3 |
Ellis J. K. ; Lucero M. J. ; Scuseria G. E. Appl. Phys. Lett. 2011, 99, 261908.
doi: 10.1063/1.3672219 |
4 |
Britnell L. ; Ribeiro R. M. ; Eckmann A. ; Jalil R. ; Belle B. D. ; Mishchenko A. ; Kim Y. J. ; Gorbachev R. V. ; Georgiou T. ; Morozov S. V. ; et al Science 2013, 340, 1311.
doi: 10.1126/science.1235547 |
5 |
Radisavljevic B. ; Radenovic A. ; Brivio J. ; Giacometti V. ; Kis A. Nat. Nanotechnol. 2011, 6, 147.
doi: 10.1038/nnano.2010.279 |
6 |
Kormányos A. ; Zólyomi V. ; Drummond N. D. ; Rakyta P. ; Burkard G. ; Fal'ko V. I. Phys. Rev. B 2013, 88, 045416.
doi: 10.1103/PhysRevB.88.045416 |
7 |
Mak K. F. ; He K. ; Shan J. ; Heinz T. F. Nat. Nanotechnol. 2012, 7, 494.
doi: 10.1038/nnano.2012.96 |
8 |
Li X. ; Zhang F. ; Niu Q. Phys. Rev. Lett. 2013, 110, 066803.
doi: 10.1103/PhysRevLett.110.066803 |
9 |
Dean C. R. ; Wang L. ; Maher P. ; Forsythe C. ; Ghahari F. ; Gao Y. ; Katoch J. ; Ishigami M. ; Moon P. ; Koshino M. ; et al Nature 2013, 497, 598.
doi: 10.1038/nature12186 |
10 |
Cao Y. ; Fatemi V. ; Demir A. ; Fang S. ; Tomarken S. L. ; Luo J. Y. ; Sanchez-Yamagishi J. D. ; Watanabe K. ; Taniguchi T. ; Kaxiras E. ; et al Nature 2018, 556, 80.
doi: 10.1038/nature26154 |
11 |
Jin C. ; Regan E. C. ; Yan A. ; Utama M. I. B. ; Wang D. ; Zhao S. ; Qin Y. ; Yang S. ; Zheng Z. ; Shi S. ; et al Nature 2019, 567, 76.
doi: 10.1038/s41586-019-0976-y |
12 |
White C. T. ; Todorov T. N. Nature 1998, 393, 240.
doi: 10.1038/30420 |
13 |
Li L. ; Guo Y. ; Sun Y. ; Yang L. ; Qin L. ; Guan S. ; Wang J. ; Qiu X. ; Li H. ; Shang Y. ; et al Adv. Mater. 2018, 30, 1706215.
doi: 10.1002/adma.201706215 |
14 |
Liu C. ; Hong H. ; Wang Q. ; Liu P. ; Zuo Y. ; Liang J. ; Cheng Y. ; Zhou X. ; Wang J. ; Zhao Y. ; et al Nanoscale 2019, 11, 17195.
doi: 10.1039/C9NR04791C |
15 |
Su W. ; Jin L. ; Huo D. ; Yang L. Opt. Quant. Electron. 2017, 49, 197.
doi: 10.1007/s11082-017-1034-3 |
16 |
Wang R. ; Wang T. ; Hong T. ; Xu Y.-Q. Nanotechnology 2018, 29, 345205.
doi: 10.1088/1361-6528/aaca69 |
17 |
Gu J. ; Han J. ; Liu D. ; Yu X. ; Kang L. ; Qiu S. ; Jin H. ; Li H. ; Li Q. ; Zhang J. Small 2016, 12, 4993.
doi: 10.1002/smll.201600398 |
18 |
Chen Y. Y. ; Sun Y. ; Zhu Q. B. ; Wang B. W. ; Yan X. ; Qiu S. ; Li Q. W. ; Hou P. X. ; Liu C. ; Sun D. M. ; et al Adv. Sci. 2018, 5, 1700965.
doi: 10.1002/advs.201700965 |
19 |
Gao B. ; Zhang X. ; Qiu S. ; Jin H. ; Song Q. ; Li Q. Carbon 2019, 146, 172.
doi: 10.1016/j.carbon.2019.01.095 |
20 |
Zhou J. ; Lin J. ; Huang X. ; Zhou Y. ; Chen Y. ; Xia J. ; Wang H. ; Xie Y. ; Yu H. ; Lei J. ; et al Nature 2018, 556, 355.
doi: 10.1038/s41586-018-0008-3 |
21 |
Yang P. ; Zou X. ; Zhang Z. ; Hong M. ; Shi J. ; Chen S. ; Shu J. ; Zhao L. ; Jiang S. ; Zhou X. ; et al Nat. Commun 2018, 9, 979.
doi: 10.1038/s41467-018-03388-5 |
22 |
Islam M. F. ; Milkie D. E. ; Kane C. L. ; Yodh A. G. ; Kikkawa J. M. Phys. Rev. Lett. 2004, 93, 037404.
doi: 10.1103/PhysRevLett.93.037404 |
23 |
Fischer J. E. ; Zhou W. ; Vavro J. ; Llaguno M. C. ; Guthy C. ; Haggenmueller R. ; Casavant M. J. ; Walters D. E. ; Smalley R. E. J. Appl. Phys. 2003, 93, 2157.
doi: 10.1063/1.1536733 |
24 |
Li S. ; Lin Y. C. ; Zhao W. ; Wu J. ; Wang Z. ; Hu Z. ; Shen Y. ; Tang D. M. ; Wang J. ; Zhang Q. ; et al Nat. Mater 2018, 17, 535.
doi: 10.1038/s41563-018-0055-z |
25 |
Wu S. ; Huang C. ; Aivazian G. ; Ross J. S. ; Cobden D. H. ; Xu X. ACS Nano 2013, 7, 2768.
doi: 10.1021/nn4002038 |
26 |
Zhao J. ; Buldum A. ; Han J. ; Lu J. Nanotechnology 2002, 13, 195.
doi: 10.1088/0957-4484/13/2/312 |
27 |
Agnihotri S. ; Mota J. P. B. ; Rostam-Abadi M. ; Rood M. J. Langmuir 2005, 21, 896.
doi: 10.1021/la047662c |
28 |
Xiang R. ; Inoue T. ; Zheng Y. ; Kumamoto A. ; Qian Y. ; Sato Y. ; Liu M. ; Tang D. ; Gokhale D. ; Guo J. ; et al Science 2020, 367, 537.
doi: 10.1126/science.aaz2570 |
29 |
Cai Z. ; Lai Y. ; Zhao S. ; Zhang R. ; Tan J. ; Feng S. ; Zou J. ; Tang L. ; Lin J. ; Liu B. ; et al Natl. Sci. Rev. 2021, 8, nwaa115.
doi: 10.1093/nsr/nwaa115 |
30 |
Zhang C. ; Tan J. ; Pan Y. ; Cai X. ; Zou X. ; Cheng H. M. ; Liu B. Natl. Sci. Rev. 2020, 7, 324.
doi: 10.1093/nsr/nwz156 |
31 |
Voggu R. ; Rout C. S. ; Franklin A. D. ; Fisher T. S. ; Rao C. N. R. J. Phys. Chem. C 2008, 112, 13053.
doi: 10.1021/jp805136e |
32 |
Chae W. H. ; Cain J. D. ; Hanson E. D. ; Murthy A. A. ; Dravid V. P. Appl. Phys. Lett. 2017, 111, 143106.
doi: 10.1063/1.4998284 |
33 | Xing L. ; Jiao L. Y. Acta Phys. -Chim. Sin. 2016, 32, 2133. |
邢垒; 焦丽颖. 物理化学学报, 2016, 32, 2133.
doi: 10.3866/PKU.WHXB201606162 |
|
34 |
Weisman R. B. ; Bachilo S. M. Nano Lett. 2003, 3, 1235.
doi: 10.1021/nl034428i |
35 |
Jorio A. ; Saito R. ; Hafner J. H. ; Lieber C. M. ; Hunter M. ; McClure T. ; Dresselhaus G. ; Dresselhaus M. S. Phys. Rev. Lett. 2001, 86, 1118.
doi: 10.1103/PhysRevLett.86.1118 |
36 |
McEuen P. L. ; Fuhrer M. S. ; Hongkun P. IEEE Trans. Nanotechnol. 2002, 99, 78.
doi: 10.1109/TNANO.2002.1005429 |
37 |
Shiraishi M. ; Ata M. Carbon 2001, 39, 1913.
doi: 10.1016/S0008-6223[00)00322-5 |
38 |
Hu C. ; Yuan C. ; Hong A. ; Guo M. ; Yu T. ; Luo X. Appl. Phys. Lett. 2018, 113, 041602.
doi: 10.1063/1.5038602 |
39 | Chen S. ; Gao J. ; Srinivasan B. M. ; Zhang Y. Acta Phys. -Chim. Sin. 2019, 35, 1119. |
陈帅; 高峻峰; SrinivasanB. M.; 张永伟. 物理化学学报, 2019, 35, 1119.
doi: 10.3866/PKU.WHXB201812023 |
[1] | Lianlian Ji, Xianpeng Wang, Yingying Zhang, Xueli Shen, Di Xue, Lu Wang, Zi Wang, Wenchong Wang, Lizhen Huang, Lifeng Chi. In situ and Ex situ Investigation of the Organic-Organic Interface Effect [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304002-. |
[2] | Rong Hu, Liyun Wei, Jinglin Xian, Guangyu Fang, Zhiao Wu, Miao Fan, Jiayue Guo, Qingxiang Li, Kaisi Liu, Huiyu Jiang, Weilin Xu, Jun Wan, Yonggang Yao. Microwave Shock Process for Rapid Synthesis of 2D Porous La0.2Sr0.8CoO3 Perovskite as an Efficient Oxygen Evolution Reaction Catalyst [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212025-0. |
[3] | Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212010-. |
[4] | Mingxu Zhang, Qisen Zhou, Xinyi Mei, Jingxuan Chen, Junming Qiu, Xiuzhi Li, Shuang Li, Mubing Yu, Chaochao Qin, Xiaoliang Zhang. Colloidal Quantum Dot Solids with a Diminished Epitaxial PbI2 Matrix for Efficient Infrared Solar Cells [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210002-0. |
[5] | Lijun Zhang, Youlin Wu, Noritatsu Tsubaki, Zhiliang Jin. 2D/3D S-Scheme Heterojunction Interface of CeO2-Cu2O Promotes Ordered Charge Transfer for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302051-. |
[6] | Tao Zhang, Simin Gong, Ping Chen, Qi Chen, Liwei Chen. Incorporation of a Polyfluorinated Acrylate Additive for High-Performance Quasi-2D Perovskite Light-Emitting Diodes [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301024-. |
[7] | Xiaoyan Cai, Jiahao Du, Guangming Zhong, Yiming Zhang, Liang Mao, Zaizhu Lou. Constructing a CeO2/ZnxCd1−xIn2S4 S-Scheme Hollow Heterostructure for Efficient Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2302017-. |
[8] | Mengshi Yu, Congwei Tan, Xiaoyin Gao, Junchuan Tang, Hailin Peng. Chemical Vapor Deposition Growth of High-Mobility 2D Semiconductor Bi2O2Se: Controllability and Material Quality [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306043-. |
[9] | Kaifeng Lin, Ding Zhong, Jiahui Shao, Kaihui Liu, Jinhuan Wang, Yonggang Zuo, Xu Zhou. Research Progress of Two-Dimensional Material Hybrid Fiber Modulators [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306026-. |
[10] | Chenlu Wang, Suling Xu, Ning Ren, Jianjun Zhang. Construction, Thermochemistry, and Fluorescence Properties of Novel Lanthanide Complexes Synthesized from Halogenated Aromatic Carboxylic Acids and Nitrogen-Containing Ligands [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206035-0. |
[11] | Xiaohui Cao, Chengyi Hou, Yaogang Li, Kerui Li, Qinghong Zhang, Hongzhi Wang. MXenes-Based Functional Fibers and Their Applications in the Intelligent Wearable Field [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204058-. |
[12] | Zeyao Zhang, Yixi Yao, Yan Li. Modulating the Diameter of Bulk Single-Walled Carbon Nanotubes Grown by FeCo/MgO Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2101055-. |
[13] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[14] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[15] | Lai-Peng Ma, Wencai Ren, Hui-Ming Cheng. Progress in Surface Charge Transfer Doping of Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2012080-. |
|