物理化学学报 >> 2007, Vol. 23 >> Issue (04): 581-584.doi: 10.3866/PKU.WHXB20070425

研究简报 上一篇    下一篇

界面聚合法制备正二十烷微胶囊化相变储热材料

兰孝征; 杨常光; 谭志诚; 孙立贤; 徐芬   

  1. 山东农业大学化学与材料科学学院, 山东 泰安 271018;中国科学院大连化学物理研究所热化学实验室,辽宁 大连 116023
  • 收稿日期:2006-09-05 修回日期:2006-11-07 发布日期:2007-04-05
  • 通讯作者: 谭志诚 E-mail:tzc@dicp.ac.cn

Microencapsulation of n-eicosane as Energy StorageMaterial Synthesized by Interfacial Polymerization

LAN Xiao-Zheng; YANG Chang-Guang; TAN Zhi-Cheng; SUN Li-Xian; XU Fen   

  1. College of Chemistry and Material Science, Shandong Agriculture University, Taian 271018, Shandong Province, P. R. China; Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China
  • Received:2006-09-05 Revised:2006-11-07 Published:2007-04-05
  • Contact: TAN Zhi-Cheng E-mail:tzc@dicp.ac.cn

摘要: 采用界面聚合的方法, 以甲苯鄄2,4-二异氰酸酯(TDI)和乙二胺(EDA)为反应单体, 非离子表面活性剂聚乙二醇壬基苯基醚(OP)为乳化剂, 合成了正二十烷为相变材料的聚脲包覆微胶囊. 结果表明, 二异氰酸酯和乙二胺按质量比1.9:1 进行反应. 以透射电镜和激光粒度分析仪分析微胶囊, 测得空心微胶囊直径约为0.2 μm, 含正二十烷微胶囊约为2-6 μm. 红外光谱分析证明, 壁材料聚脲是由TDI 及EDA 两种单体形成的. 正二十烷的包裹效率约为75%. 微胶囊的熔点接近囊芯二十烷的熔点, 而其储热量在壁材固定时随囊芯的量而变. 热重分析表明, 囊芯正二十烷、含正二十烷的微胶囊以及壁材料聚脲, 能够耐受的温度分别约为130 ℃、170 ℃及270 ℃.

关键词: 相变材料, 正二十烷, 微胶囊, 界面聚合

Abstract: For heat energy storage application, polyurea microcapsules containing phase change material, n-eicosane, were synthesized by interfacial polymerization method with toluene-2,4-diisocyanate (TDI) and ethylene diamine (EDA) asmonomers in an emulsion system. Poly (ethylene glycol) octyl-phenyl ether (OP), a nonionic surfactant, was the emulsifier for the system. The experiments indicated that TDI was reacted with EDA in a mass ratio of 1.9 to 1. The sizes of microcapsules were analyzed with TEM and laser particle analyzer, which showed the empty microcapsules were about 0.2 μm and those containing n-eicosane were 2-6 μm. FTIR spectra proved the formation of wall material, polyurea, from the two monomers, TDI and EDA. Encapsulation efficiency of n-eicosane was about 75%. Microcapsules of n-eicosane melted at a temperature close to that of n-eicosane, while its stored heat energy varied with the amount of core material n-eicosane. Thermogravimetric analysis revealed that the core material n-eicosane, micro-n-eicosane, and wall material polyurea could withstand temperatures up to 130 ℃, 170 ℃, and 270 ℃, respectively.

Key words: Phase change material, n-eicosane, Microcapsule, Interfacial polymerization