物理化学学报 >> 2011, Vol. 27 >> Issue (02): 461-467.doi: 10.3866/PKU.WHXB20110216

电化学和新能源 上一篇    下一篇

IrO2基体上阳极电沉积MnO2的电化学行为

史艳华1,2, 孟惠民1   

  1. 1. 北京科技大学腐蚀与防护中心, 北京 100083;
    2. 辽宁石油化工大学, 石油化工过程腐蚀与防护技术中心, 辽宁 抚顺 113001
  • 收稿日期:2010-07-26 修回日期:2010-10-29 发布日期:2011-01-25
  • 通讯作者: 史艳华 E-mail:siyanhua@yahoo.com.cn
  • 基金资助:

    国家高技术研究发展计划(863)项目(2007AA05Z103)资助

Electrochemical Behavior of IrO2 Electrodes in the Anodic Electrodeposition of MnO2

SHI Yan-Hua1,2, MENG Hui-Min1   

  1. 1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, P. R. China;
    2. Center for Corrosion and Protection Technology in Petro-Chemical Industry (CCPT) of Liaoning Shihua University, Fushun 113001, Liaoning Province, P. R. China
  • Received:2010-07-26 Revised:2010-10-29 Published:2011-01-25
  • Contact: SHI Yan-Hua E-mail:siyanhua@yahoo.com.cn
  • Supported by:

    The project was supported by the National High-Tech Research and Development Program of China (863) (2007AA05Z103 ).

摘要:

采用极化曲线和循环伏安等电化学方法, 对不同温度下IrO2电极在MnSO4镀液与硫酸溶液中的电化学行为进行对比研究, 并以镀液中极化曲线上不同电流密度值进行阳极电沉积, 测量镀速大小. 研究结果表明:IrO2电极在镀液中同时发生阳极电沉积反应和析氧副反应, 阳极电沉积反应对析氧反应具有明显的抑制作用; MnO2的阳极电沉积过程较复杂, 存在Mn3+中间产物, 既有Mn3+→Mn4+的电沉积过程, 也有Mn3+的水解及水解产物的脱附的过程, 水解反应的存在严重降低了MnO2的阳极电沉积的电流效率; MnO2的阳极电沉积存在一定的电位区间, 在此区间, 镀速存在最大值.

关键词: 二氧化锰, 阳极电沉积, 电化学行为, 电流效率

Abstract:

The electrochemical behavior of IrO2 electrodes in a MnSO4 plating solution and in a H2SO4 solution at different temperatures was investigated by polarity curve and cyclic voltammetry methods. The anodic electrode deposition was carried out at different current densities according to the polarity curve obtained in the bath and the deposition velocity was measured. The results show that the anodic electrode deposition reactions and the O2 production reaction on the IrO2 electrode in the bath occur simultaneously and the former reaction obviously restrains O2 production. The process of MnO2 electrodeposition onto IrO2 is complicated and a Mn3+ intermediate product is produced, which can be oxidized to Mn4+ during the electrode deposition. Mn3+ is hydrolyzed at the same time as the oxidation and its hydrolysate desorbs, which causes an obvious reduction in current efficiency for the MnO2 anodic electrodeposition. A potential range exists for the MnO2 anodic electrode deposition and we also found a maximum value for the deposition velocity within the potential range.

Key words: Manganese dioxide, Anode electrode position, Electrochemical behavior, Current efficiency