物理化学学报 >> 2011, Vol. 27 >> Issue (08): 1975-1978.doi: 10.3866/PKU.WHXB20110825

光化学和辐射化学 上一篇    下一篇

脉冲辐解研究吩噻嗪与CCl3OO··OH的反应

唐睿智1,2, 张鹏1,2, 李海霞1,2, 刘艳成1,2, 王文锋1   

  1. 1. 中国科学院上海应用物理研究所, 上海 201800;
    2. 中国科学院研究生院, 北京 100049
  • 收稿日期:2011-04-26 修回日期:2011-06-08 发布日期:2011-07-19
  • 通讯作者: 王文锋 E-mail:wangwenfeng@sinap.ac.cn
  • 基金资助:

    国家自然科学基金(10675158)资助项目

Pulse Radiolysis Study of the Reactions between Phenothiazine and CCl3OO·, ·OH

TANG Rui-Zhi1,2, ZHANG Peng1,2, LI Hai-Xia1,2, LIU Yan-Cheng1,2, WANG Wen-Feng1   

  1. 1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049
  • Received:2011-04-26 Revised:2011-06-08 Published:2011-07-19
  • Contact: WANG Wen-Feng E-mail:wangwenfeng@sinap.ac.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (10675158).

摘要:

采用纳秒级脉冲辐解技术研究了吩噻嗪与CCl3OO··OH的反应, 提出了相应的反应机理, 得到了相关的反应速率常数. 研究结果表明: 吩噻嗪与CCl3OO··OH反应得到的瞬态产物的最大吸收峰都位于380 nm左右, 该吸收峰归属于CCl3OO··OH夺取吩噻嗪氮原子上的氢而产生的吩噻嗪氮自由基. 吩噻嗪与CCl3OO··OH反应的速率常数分别为1.1×109和4.0×109 L·mol-1·s-1. 这些结果将为进一步研究吩噻嗪的抗氧化活性提供理论基础.

关键词: 抗氧化剂, 吩噻嗪, 三氯甲基过氧自由基, 羟基自由基, 脉冲辐解

Abstract:

The kinetics and mechanisms of the reactions between phenothiazine and CCl3OO·, ·OH were evaluated and the related rate constants were determined using nanosecond pulse radiolysis technique. The experimental results indicate that the maximum absorption of the transient product from the reaction between phenothiazine and CCl3OO·, ·OH was located at 380 nm, which is attributed to CCl3OO· and ·OH abstracting hydrogen from phenothiazine to generate a phenothiazine radical. The rate constants of the reactions between phenothiazine and CCl3OO·, ·OH were determined to be 1.1×109, 4.0×109 L·mol-1·s-1, respectively. These results provide a theoretical foundation for the further study of the antioxidant activity of phenothiazine.

Key words: Antioxidant, Phenothiazine, Trichloromethylperoxyl radical, Hydroxide radical, Pulse radiolysis